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ABSTRACT

A logatropic equation of state (in which the pressure is proportional to the
logarithm of the gas density) has been used in models of molecular clouds to mimic
turbulent pressure. We explore solutions of the associated logatropic Lane-Emden
equation, describing the hydrostatic equilibrium of a self-gravitating sphere with
a logatropic equation of state. We present approximate analytic solutions for the
small radius behavior of the non-singular solution, and for its large radius conver-
gence to the singular solution. Combining a “small radius” and a “large radius”
solution, we obtain an analytic approximation to the full, non-singular solution.
Using both an exact (numerical) and the approximate analytic solution, we apply
Bonnor’s stability criterion, and determine the stability of the non-singular solution
of the logatropic, self-gravitating sphere.

RESUMEN

Una ecuación de estado logatrópica (en la que la presión es proporcional al
logaritmo de la densidad del gas) ha sido empleada en modelos de nubes moleculares
para imitar una presión turbulenta. Exploramos soluciones a la correspondien-
te ecuación de Lane-Emden logatrópica, que describe el equilibrio hidrostático de
una esfera autogravitante con una ecuación de estado logatrópica. Presentamos
soluciones anaĺıticas aproximadas para el comportamiento a radios pequeños de la
solución no singular, y para su convergencia a radios grandes a la solución singular.
Combinando soluciones para “radios pequeños” y para “radios grandes”, obtene-
mos una aproximación anaĺıtica completa para la solución no singular. Usando la
solución exacta (numérica) y la solución anaĺıtica aproximada, aplicamos el criterio
de estabilidad de Bonnor, y determinamos la estabilidad de la solución no singular
de una esfera logatrópica autogravitante.
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1. INTRODUCTION

The logatropic equation of state was first pro-
posed by Lizano & Shu (1989) motivated by the
empirical finding in molecular clouds that the non-
thermal part of the line widths in molecular gas
tracers increases with decreasing densities, so that
∆v ∝ ρ−1/2 in low mass cores (e.g., Fuller & My-
ers 1992). The interpretation of these line widths as
due to an isotropic velocity dispersion σ2 = dP/dρ
(where P is the pressure and ρ is the density), gives
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the logatropic equation of state:

P = P0 ln

(

ρ

ρ0

)

, with σ2 =
P0

ρ
, (1)

where P0 and ρ0 are a reference pressure and density,
respectively3.

Lizano & Shu (1989) used this equation of state
to mimic the effect of turbulence in low mass cores,
cradles of low mass stars. McLaughlin and Pudritz
(1996; 1997) analyzed the stability and collapse of
self-gravitating gas spheres with a logatropic pres-
sure. The hydrostatic gas equation has a singular

3The reference density can be chosen so that P > 0; nev-

ertheless, the equilibrium and collapse equations of a self-

gravitating sphere contain only the pressure gradient dP/dρ.
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solution with a radial density profile ρ ∝ r−1. Be-
cause the free-fall time is shortest in the center, the
gravitational collapse occurs inside-out: an expan-
sion wave moves outward and the inner gas falls to
the central protostar, as in the case of the singu-
lar isothermal sphere (Shu 1977). The mass accre-
tion rate grows with time as Ṁ ∝ t3, in contrast
with the isothermal sphere where Ṁ grows linearly
with time. The collapse of non-singular, finite, lo-
gatropic spheres was studied numerically by Reid et
al. (2002) and Sigalotti et al. (2002). Osorio et al.
(1999) and Osorio et al. (2009) modeled hot molec-
ular cores (HMCs) around young massive stars as
massive logatropic envelopes collapsing onto a cen-
tral protostar. The fitting of the spectral energy dis-
tribution (SED) and molecular line emission implied
large mass accretion rates Ṁ ≈ 10−4−10−3M⊙ yr−1

and ages τage ≈ 4 − 6 × 104 yr, and the accretion
luminosity dominates the core heating. Sigalotti
et al. (2009) followed the gravitational collapse of
pressure-bounded logatropic HMCs and found that
the collapse is not reversed by radiative forces on
the dust; stars as massive as 100M⊙ can form by
accretion of these massive envelopes.

Observations of the radial intensity profiles of
massive star forming regions imply envelopes with a
density distribution ρ ∝ r−p with indices 1 < p < 2,
with uncertainties due to issues like the tempera-
ture distribution, optical depth, and geometrical ef-
fects (e.g., Hatchell et al. 2000; van der Tak et al.
2000; Beuther et al. 2002; Hatchell et al. 2003).
These density profiles are expected for isothermal
and logatropic self-gravitating spheres. An interest-
ing problem is whether or not these density distribu-
tions could be established in the process of accretion
via gas streams onto massive star forming cores (e.g.,
Peretto et al. (2013); Liu et al. (2015)).

Following Raga et al. (2013a; hereafter R2013a)
in this paper we derive a new analytic approxima-
tion for the density and mass of a non-singular, lo-
gatropic, self-gravitating gas sphere. This solution
differs by less than 0.2% from the exact (numerical)
solution. We then use the criterion of Bonnor (1956)
to obtain analytically and numerically the gravita-
tional stability of finite logatropic spheres to radial
perturbations (as done by Raga et al. 2013b for the
case of the isothermal sphere) and find the maximum
radius of a stable logatropic sphere.

The paper is organized as follows: in §2 we dis-
cuss the Lane-Emden equation and the singular solu-
tion. In §3 we discuss the non-dimensional equations
and obtain the second order inner solution. In §4 we
discuss the convergence to the singular solution at

large radii. In §5 we present the full analytic solu-
tion for the dimensionless density and mass. In §6 we
calculate the criterion of gravitational stability to ra-
dial perturbations and find the maximum radius of a
gravitationally stable logatropic gas sphere. Finally,
in §7 we present the conclusions.

2. HYDROSTATIC SELF-GRAVITATING
LOGATROPIC SPHERE

The hydrostatic equation for a self-gravitating
gas sphere is:

dP

dR
= −ρGMR

R2
, (2)

where R is the spherical radius, G the gravitational
constant and the mass within a radius R is:

MR = 4π

∫ R

0

ρR′2dR′. (3)

Combining equations (2) and (3) with the logatropic
equation of state in Equation (1), multiplying both
sides of the resulting equation by R2/ρ and taking
a d/dR derivative we obtain the logatropic Lane-
Emden equation:

d

dR

(

R2

ρ2
dρ

dR

)

= −4πG

P0

ρR2 . (4)

This equation has the singular solution:

ρS(R) =

√

P0

2πG

1

R
. (5)

3. THE NON-SINGULAR SOLUTION TO
SECOND ORDER IN R AND THE
DIMENSIONLESS EQUATION

To derive a “small R” behavior of the non-
singular solution of the Lane-Emden Equation (4),
we propose a second-order Taylor series expansion:

ρ2(R) = ρc
(

1 + b1R+ b2R
2
)

(6)

where ρc is the central density and b1 and b2 are
constants to be determined. We then substitute eq.
(6) in the two sides of eq. (4), and keep only terms
up to second order in R. Equating the coefficients
that multiply the R and R2 terms we obtain b1 = 0
and

b2 = − 1

R2
c

, (7)

where the core radius Rc is defined as:

Rc ≡

√

3P0

2πGρ2c
. (8)
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Fig. 1. Dimensionless density vs. dimensionless radius
for the exact (numerical) non-singular solution (black,
solid line), the second order non-singular solution (red,
solid line) and the singular solution (dashed line). The
alternative second order solution (blue line), the 4th or-
der solution (green), the 6th order solution (magenta)
and the “near field” fit (cyan) described in § 4.1 are also
shown. The color figure can be viewed online.

Therefore, the second order solution can be written
as:

ρ2(R) = ρc

[

1−
(

R

Rc

)2
]

. (9)

With the dimensionless density η = ρ/ρc and di-
mensionless radius r = R/Rc, equation (4) now takes
the form:

d

dr

(

r2

η2
dη

dr

)

= −6r2η . (10)

This dimensionless logatropic Lane-Emden equation
can be integrated numerically in a straightforward
fashion. Starting at an initial radius ri ≪ 1, so that
the second order solution:

η2(r) = 1− r2 , (11)

is valid (see equation 9), one can integrate outwards
to large r. The black solid line in Figure 1 shows
the numerical η(r) solution, where one can see the
convergence for r ≫ 1 to the singular solution:

ηS(r) =
1√
3r

, (12)

as a dashed line (see Equation 5). The second-
order solution inner solution (Equation 11), valid for
r ≪ 1, is shown as a red line.

4. THE LARGE R CONVERGENCE TO THE
SINGULAR SOLUTION

As has been done in the past for the non-singular
isothermal sphere solution (see, e.g., Chandrasekhar
1964; R2013a), we now study the large r convergence
of the non-singular logatropic sphere to the singular
solution. In order to do this, we define a function
q(r) such that:

η(r) = ηS(r) [1 + q(r)] , (13)

where η(r) is the non-singular solution of equa-
tion (10) and ηS(r) is the singular solution (equa-
tion 12).

We substitute equation (13) in both sides of equa-
tion (10), and assuming that q, dq/dr, d2q/dr2 ≪ 1,
we only keep the terms that depend linearly on q and
its derivatives. This exercise results in the differen-
tial equation:

r2
d2q

dr2
+ 4r

dq

dr
+ 4q = 0 . (14)

Assuming a solution of the form q ∝ rp and sub-
stituting into equation (14) one obtains an exponent
p = (−3±

√
7i)/2. Then, the real part of the solution

is:

ql(r) =
B

r3/2
cos

(√
7

2
ln r + φ

)

, (15)

where B and φ are integration constants. This oscil-
lating solution at large radii has the same period (in
ln r) as the one found for the isothermal sphere (see
equation 15 of R2013a). Nevertheless, the amplitude
decreases much faster with radius, like r−3/2, rather
than the slower r−1/2 dependence obtained for the
isothermal sphere.

5. AN APPROXIMATE ANALYTIC SOLUTION

In this section we present an analytic approxima-
tion for the density η(r) over the whole 0 < r < ∞
interval.

5.1. The “Near Field” Solution

For the small r regime, one can in principle use
the second order Taylor series solution (see equa-
tion 11), but this solution starts diverging from the
exact (i.e., numerical) solution for r substantially
smaller than 1 (see Figure 1). An alternative sec-
ond order solution is:

η2p(r) =
1

1 + r2
, (16)
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which to second order coincides with equation (11).
As seen Figure 1, this solution (plotted as a blue
line) is a better approximation to the exact solution.

One can look for functions in the form of the
inverse of a polynomial (such as equation 16), that
are solutions to higher orders in r of the logatropic
hydrostatic equation (10). To 4th order one obtains:

η4p(r) =
1

1 + r2 − (3/10)r4
, (17)

and to 6th order one obtains:

η6p(r) =
1

1 + r2 − (3/10)r4 + (13/60)r6
. (18)

From Figure 1, we see that η2p substantially un-
dershoots (blue line), η4p overshoots (green line) and
η6p again undershoots (magenta line) the exact so-
lution. This lack of convergence for r → 1 (obtained
for arbitrarily high orders of r) is also seen in the
isothermal Lane-Emden equation (see, e.g., Nouh
2004).

An approximate fitting formula can be obtained
by considering the 4th order solution of equation (17)
and adding a 5th order term to the polynomial, with
an arbitrary coefficient that is used to fit the exact
(numerical) solution. In this way, we obtain a “near
field” solution (with a “fitting” fifth order term, not
coming from a Taylor series expansion) of the form:

ηnear(r) =
1

1 + r2 − (3/10)r4 + 0.1082r5
. (19)

The errors in this approximate form for the small r
regime of η(r) are discussed in § 5.3.

5.2. The “Far Field” Solution

For large values of r, we use the analytic solution
of § 4 (see Equations 13 and 15), obtaining the B
and φ constants from a fit to the exact (numerical)
solution. In this way, we obtain a “far field” solution
of the form:

ηfar(r) =
1 + qfar(r)√

3r
, (20)

with

qfar(r) = −0.155

r3/2
cos

(√
7

2
ln r + 1.295

)

. (21)

Fig. 2. Top: density vs. radius for the exact (numeri-
cal) non-singular solution (solid line). Center: deviation
q = η/ηS − 1 (see equation 13) of the exact solution
from the singular solution. Bottom: deviation ηa/η − 1
between the full near/far field analytic approximation
(equation 22) and the exact numerical solution. In the
two top frames we have also plotted the results obtained
using ηa (instead of the exact solution, as dashed lines),
but at the resolution of the plots they are indistinguish-
able from the solid curves corresponding to the exact
solution.

5.3. The Full Approximate Analytic Solution

We propose an approximate analytic solution for
all r given by:

ηa(r) =

{

ηnear(r) ; for r ≤ 1,

ηfar(r) ; for r > 1.
(22)

The top panel of Figure 2 shows the logarithm of
the dimensionless density η versus the logarithm of
radius r for the exact (numerical) solution and the
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approximate near/far field solution of equation (22).
Both solutions are indistinguishable at the resolution
of the figure. The middle panel shows the difference
between the exact (numerical) non-singular solution
and the singular solution, q = η/ηS−1, as a function
of r (see equation 13). Again, the results obtained
with the exact and approximate analytic solutions
are indistinguishable. Only the first oscillation of the
far-field solution appears because the rest are atten-
uated by the factor r−3/2 (see Figure 4 below). The
relative deviation (ηa − η)/η of the analytic approx-
imation ηa from the exact (numerical) non-singular
solution is plotted as a function of r in the bottom
panel of Figure 2. It is clear that the errors in ηa
are smaller than ≈ 0.2% for all r. Because of this,
at the resolution of the top panels of this figure, the
analytic approximation is indistinguishable from the
exact (numerical) solution.

5.4. Mass as a Function of Radius of the

Non-Singular Logatropic Sphere

The mass of the non-singular logatropic sphere
within a radius R is:

M(R) = 4πρcR
3
c m(r) , (23)

where ρc and Rc are related through equation (8)
and the dimensionless mass is given by:

m(r) =

∫ r

0

η(r′)r′2dr′ . (24)

The dimensionless mass can also be obtained from
the dimensionless form of Equation (2):

m(r) = −1

6

r2

η2
dη

dr
, (25)

which is easy to calculate using the analytic di-
mensionless density, ηa(r). The upper panel of
Figure 3 shows the exact (numerical) mass m(r)
and the dotted line shows the analytic mass ma(r)
which are indistinguishable at the resolution of the
plot. The lower panel shows the fractional difference
between the analytic and exact (numerical) mass,
(ma −m)/m. This difference is smaller than 2%.

6. STABILITY TO RADIAL PERTURBATIONS

The radial stability analysis of the isothermal
self-gravitating finite gas sphere was done by Bon-
nor (1956) and Ebert(1957) who showed that there
is a maximum radius for an isothermal sphere to be
stable to gravitational collapse. Bonnor (1956) pro-
posed the criterion for stability of a finite isothermal

Fig. 3. The solid line in the upper panel shows the exact
(numerical) mass m(r) and the dotted line shows the an-
alytic mass ma(r) obtained from equation 25. The lower
panel shows the fractional difference between the ana-
lytic and exact (numerical) masses, (ma −m)/m, where
the modulus is always smaller than 0.02.

self-gravitating gas sphere with radius Re and total
mas M against radial perturbations,

(

dPe

dRe

)

M=const

< 0. (26)

In the case of a logatropic sphere, this criterion be-
comes:

P0

ρe

(

dρe
dRe

)

M=const

< 0, (27)

where ρe = ρ(Re). McLaughlin and Pudritz (1996)
calculated the stability of the logatropic sphere as-
suming that the singular solution was valid at the
external radius re (see their equation 4.6). Here we
calculate this criterion from the exact (numerical)
and analytic solutions (the latter given by equation
22) following Raga et al. (2013b), who calculated
the stability of an isothermal gas sphere to radial
perturbations.
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In dimensional units one can write the logatropic
density at the external radius Re as:

ρe = ρcηe =
C

Rc
η(re), where C =

√

3P0

2πG
, (28)

and the dimensional mass inside a radius Re as:

M(Re) = 4πCR2
cm(re), (29)

where re = Re/Rc, m(r) is given by Equation (24),
and we have used Equation (8) for the core radius
Rc.

One wants to consider radial perturbations of a
sphere at constant mass. First, one differentiates
Equation (29), obtaining:

dM

4πC
=2mRcdRc+R2

cm
′

[

∂re
∂Rc

dRc+
∂re
∂Re

dRe

]

(30)

= Rc

[

2m+Rcm
′
∂re
∂Rc

]

dRc +R2
cm

′
∂re
∂Re

dRe,

(31)

where, from equation (24),

m′ ≡ dm(re)

dre
= r2eηe. (32)

Setting dM = 0 and substituting ∂re/∂Rc =
−re/Rc, ∂re/∂Re = 1/Rc, one obtains:

0 = Rc [2m− rem
′] dRc +Rcm

′dRe. (33)

Therefore, for radial variations at constant mass, one
can write the derivative of the core radius with re-
spect to the external boundary as:

dRc

dRe
=

m′

rem′ − 2m
=

1

re − 2m/m′
. (34)

The criterion for stability is dρe/dRe > 0 (see
equation 27). In the logatropic sphere, this deriva-
tive is:

1

C

dρe
dRe

= −η
1

R2
c

dRc

dRe
+

1

Rc

dη

dre

dre
dRe

(35)

=
1

R2
c

(

r2eη
2 + 2mη′

2m− r3eη

)

, (36)

where we have used equation (34) and

dre
dRe

=
1

Rc
− re

Rc

dRc

dRe
. (37)

Substituting m(r) in equation (25), the criterion for
stability of the logatropic sphere against radial per-
turbations is:

R2
c

C

dρe
dRe

=
1
3
η′

2 − η4

reη3 +
1
3
η′

< 0. (38)

The logarithm of the absolute value of this deriva-
tive is shown in Figure 4 where the solid line is ob-
tained with the exact (numerical) solution η(r) and
the dotted-dashed line is obtained with the analytic
solution ηa(r) of equation (22). Both lines almost
coincide. The arrow shows the dimensionless critical
radius for stability:

rcrit = 3.049, (39)

where the derivative becomes negative. This is
the maximum external radius for which one has a
gravitationally stable configuration. In the nota-
tion of McLaughlin & Pudritz (1996), rcrit corre-
sponds to ξcrit = Rcrit/r0 = (2A/3)1/23.049, where
A is their pressure parameter defined in their equa-
tion (4.1), and r0 = (3/2A)1/2Rc is their scale ra-
dius. Our value of the critical radius (or ξcrit) differs
from the value they obtained in their equation (4.6),
ξMP
crit = (2A/9)1/2 exp(1/A− 1/4). This difference is
due to their use of the singular solution (ηS) to eval-
uate the stability criterion, and their constraint of
a constant velocity dispersion at the center of the
sphere. In contrast, we used the exact numerical so-
lution (η) to evaluate the stability criterion, and we
kept an invariant P vs. ρ relation (see equation 1),
leading to a “heating” of the turbulent motions in
the center of the cloud in response to small compres-
sions.

There are other bands of stability with re > rcrit
where the derivative is positive. These bands are
related to the oscillations of η(r) at large radii In
order to visualize the oscillations of η(r) at large
radii, the dotted line in Figure 4 shows r3/2q(r),
where q = η/ηS − 1 is the fractional deviation of
the dimensionless density with respect to the singu-
lar solution of equation (12). Even though one could
have a sphere with a larger radius re > rcrit where
the derivative is positive, Bonnor (1956) argued that
any radial perturbation would eventually reach an
unstable inner region, inducing the overall collapse.

Given the critical radius rcrit, the ratio between
the central density ρc and the density at the cloud
edge in a gravitationally stable logatropic sphere is
given by:

ρc
ρ(rcrit)

=
1

η(rcrit)
=

1

0.192
= 5.2, (40)

which is smaller than the value of 14.7 obtained
for the case of the isothermal sphere. Fur-
thermore, the ratio of the velocity dispersions
at the cloud center and at the cloud edge is
σc/σ(rcrit) = ρ(rcrit)/ρc = 0.192. Also, the Jeans
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Fig. 4. The solid line shows the logarithm of the abso-
lute value of the stability criterion in equation (38) ob-
tained with the exact (numerical) solution η(r), and the
dotted-dashed line shows the derivative calculated with
the analytic solution ηa(r). Note that the cusps extend
to ±∞ when the argument of the logarithm goes through
zero. The dotted line shows r3/2q, where q = η/ηS − 1
is the fractional deviation of the dimensionless density
with respect to the singular solution.

length at the cloud center is λJ = cs
√

π/(Gρc),

where the sound speed is cs = σ =
√

P0/ρc. If
we define the Jeans radius as RJ = λJ/2, then the
ratio of the cloud critical radius to the Jeans radius
is Rcrit/RJ = 2(3.049/π)(3/2)1/2 = 2.38.

7. CONCLUSIONS

We present an approximate analytic solution for
the density of the non-singular self-gravitating loga-
tropic gas sphere that differs by less than 0.2% from
the exact (numerical) solution. The analytic mass
differs by less than 2% from the exact mass. This
analytic function ηa (eq. (22) can be useful for the
study of this type of clouds.

We calculate the gravitational stability of the lo-
gatropic sphere to radial perturbations and find a
maximum external radius Rcrit = 3.049Rc, where
the core radius is expressed in terms of the properties
of the logatropic sphere Rc =

√

3P0/(2πGρ2c). This
value implies a maximum density ratio of the den-
sity at the cloud center to the density at the external
radius, ρc/ρ(rcrit) = 5.2, smaller than the factor of
14.7 which is obtained for the isothermal sphere.
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