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RESUMEN

En éste trabajo se estudian algunos elementos para lentes gravitacionales por

galaxias como son ecuación de la lente, ángulo de desviación, potencial de

desviación y retardo temporal, modelando la distribución volumétrica de masa

de la lente en forma eĺıptica. La función de distribución volumétrica de masa

en la galaxia deflectora ρ, contiene en su centro un núcleo de radio a, una

densidad volumétrica en su núcleo ρ0 and un parámetro libre de forma b, ( b >

a). Mediante la distribución de densidad volumétrica de masa se encuentran

inicialmente la densidad superficial de masa Σ, (proyectada en el plano de la

lente), para después hallar los elementos de una lente gravitacional los cuales

son totalmente generales y quedan en términos de los parámetros geométricos

a and b, que se han relacionado mediante un factor adimensional n = b
a >

1. Los resultados encontrados se aplican a un sistema de lente por galaxia

particular para hacer un análisis basado en el retardo temporal entre dos

imágenes y ver las condiciones que debe cumplir el parámetro n

ABSTRACT

In this work we study elements for gravitational lenses per galaxies such as

the equation of lens, deviation angle, deflection potential and time delay,

modeling the distribution of the volumetric mass of the lens in elliptical form.

The function of volumetric distribution of mass in the deflecting galaxy ρ

has a nucleus with radius a in its core, form-free parameter b (b > a), and

volumetric density in its nucleus ρ0. Through the distribution of volumetric

mass density ρ, we initially find surface mass density Σ (projected on plane

of the lens), followed by elements of a gravitational lens which are completely

general and expressed in terms of the geometric parameters a and b. These

are related by the adimensional factor n = b
a > 1. Results are applied to a

galaxy-specific lens system to conduct an analysis based on the temporal delay

between two images and to observe the conditions with which parameter n

must comply.
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deflecting potential — time delay

1. INTRODUCTION

In the study of gravitational lenses (GL) volumetric distribution of mass

density of the deflector (ρ), can be projected onto a plane perpendicular to
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the line of vision between the observer and the light source. This plane is

called the lens plane, according to Narayan, R. and Bartelmann, M. (1997).

The lens is considered thin and the volumetric distribution of lens mass is

replaced by a plane on which the surface mass density is (Σ), constituting the

so-called approximation of the thin lens, in accordance with Schneider, P. et

al. (1992).

In general, GL require a few basic elements such as: surface mass density

(Σ), lens equation, deviation angle (α), deflection potential (Ψ) and time delay

(∆t), which comprise basic tools for their application in the study of some

lens systems in astrophysics. These analytical expressions are specified when

applied to a model of mass volume distribution in a particular galaxy.

Some observational data shows that astronomical objects that act as lenses

are modeled in diverse ways, according to Cohen, A. S. and Hewitt, J. N.

(2000). In systems of gravitational lenses per galaxy, we observationally mea-

sure parameters such as: dispersion speed of the material particles that make

up the lens (σp), angular position of the images (θ), red shifts of lens (zL),

source (zS) and time delay (∆t); with these it becomes possible to study and

assume models in said systems.

The distances from the source to the lens and from the lens to the observer

are ∼ 1pc. In this way, systems that constitute the lenses, such as deflecting

galaxy, source and observer, are too far away, which causes light to travel in

free space most of the time, this light only locally becoming deviated when it

passes through the lens. We must therefore model the universe through which

the ray of light should pass; to do this we need to set cosmological parameters,

Used, for example, by the authors Adler et al. (1975), Ciufolini et al. (1995),

Foster et al. (1994), Kenion (1995): vacuum density (Ωv); matter density

(Ωm); softness parameter (α̃) and Hubble constant (H0).

By applying the properties of GL to a specific system, using observational

values and setting cosmological parameters, it is possible to study different

galactic models.

In our case we will assume a model of a galaxy which is elliptical in its

volumetric distribution of mass (ρ), with which we determine the analytical

expressions of GL, used, e.g., by Brainerd et al. (1996) and Golse et al. (2002).

Here we follow Hjorth et al. (1997) and Molina et al. (2006), who propose a

distribution of volumetric mass density useful for models of elliptical galaxies

acting as gravitational lenses.

2. LENS ELEMENTS AND ELLIPTIC MODEL IN THE GALAXY

DEFLECTOR

2.1. Lens elements

In GL literature, the approximation of a flat lens is characterized by a

surface mass density given by the projection operator, according to Miranda,

C., Molina, U and Viloria, P. (2014),
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Fig. 1. Illustration of a gravitational lens system. The angular separations of the

source and the image from the optic axis as seen by the observer are β and θ, re-

spectively. The angular diameter distances between the observer and the source, the

observer and the lens, and the lens and the source are DS , DL and DLS , respectively,

by Narayan et al. (1997)

Σ(~R) =

∫
ρ(~R, z)dz (1)

where ~R is a radius vector in the lens plane as shown in Figure 1, and ρ

is the volumetric distribution of the lens mass. The radius vector R, called

impact parameter, can be written R = ξ0x. The quantity ξ0 is known as

scale parameter or scale factor, and is defined according to the lens model

being used. In our case it is defined below in equation (10). According to

Schneider et al., 1992 (p. 231), matter within the disc of radius around the

mass contributes to the deflection of the ray of light, and matter outside of

this disc (x′ < x ) does not contribute importantly to deflection, in such a

way that the skew angle follows the expression,

α(x) =
2

x

∫
x′κ(x′)dx′ (2)

when x′ < x. The quantity κ defined as κ(x) = Σ(x)
Σcr

is the so-called conver-

gence which indicates the existence of a minimal or critical surface density

for the GL phenomenon to occur, in accordance with Narayan et al. (1997)

and Schneider et al. (1992). We define surface density of critical mass as:

Σcr = c2DS

4.π.G.DLDLS
, where DS , DL and DLS , are the angular diameter dis-

tances between observer-source, observer-lens and lens-source, respectively, as

shown in figure 1.

The deflection potential of the lens is according to Narayan et al. (1997),
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ψ =
1

π

∫
κ(x′) ln |x− x′| dx′2 (3)

The time delay ∆t between two light beams detected by an observer is

given by Molina et al. (2006) and Narayan et al. (1997),

∆t =
(1 + zL)

c

ξ2
0DS

DLDLS
(
1

2
[α2

2 − α2
1]− [ψ2 − ψ1]) (4)

where zL is the redshift of the deflecting galaxy, DL is the angular diameter

distance of observer-lens, DS is the angular diameter distance of observer-

source, DLS is the angular diameter distance of lens-source.

The expression (4), contains the geometric delay described in equation (2),

and the gravitational potential given by equation (3).

Furthermore, the relationship between source position (β), positions of

images ( θ = ξ
DL

) and deflection angle can be written in accordance with

equation (2.15a) in Schneider et al., 1992 (p.31) as,

β =
ξ0
DL

x− DLS

DS
α(x) (5)

which is called the lens equation. Equations (2), (3), (4) and (5) make up

the group of basic elements for a GL study.

2.2. Elliptical galaxy model deflector

For our study, we modeled the distribution of lens mass as an elliptical

galaxy, following Hjorth and Kneib (1997), who proposed a distribution of

volumetric density which is useful for elliptical galaxy models acting as gravi-

tational lenses. With these distributions we find the analytical expressions of

GL. This volumetric distribution of mass is,

ρ(r) =
ρ0

(1 + r2

a2 )(1 + r2

b2 )
(6)

The model of deflecting galaxy contains a central nucleus with radius a,

a free-form parameter acting as scale b (b > a ), and a volumetric density

of fixed mass in the nucleus ρ0. Introducing the volumetric density given in

equation (6), in the projection operator defined in equation (1) and making

the change of variable, z2 = r2 −R2 (see Fig. 1), we obtain the surface mass

density of the lens. The distance z is typically much smaller than the distances

between observer and lens and between lens and source, so after developing

the integrals the surface mass density of the lens takes the following form,

Σ(n,R) =

∑
0 n

2a

n2 − 1
[

1√
a2 +R2

− 1√
n2a2 +R2

] (7)

where n = b
a > 1 is the adimensional parameter and Σ0 = πρ0a is the

surface density contained in the nucleus.
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To find the analytical expressions of the deviation angle and the deflection

potential, first we change R = ξ0x, in equation (7), in such a way that the

surface density of the flat lens is,

Σ(n, x) =

∑
0 n

2a

(n2 − 1)ξ0
[

1√
A2 + x2

− 1√
n2A2 + x2

] (8)

where A = a
ξ0

a new parameter. The convergence factor κ = Σ
Σcr

(defined

above), now has the form,

κ(n, x) =
1

2
[

1√
A2 + x2

− 1√
n2A2 + x2

] (9)

where we choose a scale factor such as,

ξ0 =
8πGDLDLSΣ0n

2a

c2DS(n2 − 1)
(10)

The scale factor is set by the dispersion speed of the components of the

deflecting galaxy σp (this is explained in the following paragraphs). We ob-

serve that the scale factor is expressed in terms of the central radius a, and

the adimensional parameter n = b
a > 1. We see that when the adimensional

parameter approaches one, that is, n ≈ 1, the scale factor becomes infinite,

which prompts one to think that it would be preferable choose a scale that

depends only on the radius of the nucleus a.

In the time delay expressed in equation (4), we see the arbitrary scale

factor ξ0, which we choose for the distribution of elliptical mass as shown in

equation (10). The central volumetric density ρ0 is not a quantity that is

observationally measurable in a gravitational lens system, but it is possible to

establish it by knowing the rate of dispersion σp of the matter components of

the deflecting galaxy. To do this, through the expression proposed by Hjorth

and Kneib (1997),

σ2
p =

2G

Σ(R)

∫ ∞
R

M(r)

r2
ρ(r)

√
r2 −R2dr (11)

it is possible to obtain the dispersion rate.

In this expression (11) we see that if the dispersion velocity of the matter

components of the deflecting galaxy is known, the central volumetric density

can be set, and with this, the scale factor (10) is also set.

2.3. Deviation angle

Expressed in terms of impact parameter R = ξ0x and using the conver-

gence factor in equation (9), the deviation angle (2) takes the form,

α(n,R) =
(n− 1)a

R
+

√
1 +

a2

R2
−
√

1 +
n2a2

R2
(12)

which is given in terms of central radius a and adimensional parameter n =
b
a > 1. We observe that if it is the case that this parameter is approximate

to one, that is, n ≈ 1 and selecting a set scale, the deviation angle becomes

α(R) ≈ 0.
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2.4. Deflection Potential

We find the deflection potential of the lens that we are considering by re-

placing equation (9) in equation (3) and writing in terms of impact parameter

R = ξ0x, we obtain,

ψ(n, R) = a
ξ0

[(n− 1) + ln 2a
ξ0
− n ln 2na

ξ0
+
√

1 + R2

a2 −
√
n2 + R2

a2 (13)

− ln
a(1+

√
1+ R2

a2 )

ξ0
+ n ln

a(n+
√
n2+ R2

a2 )

ξ0
]

given that n > 1. We note that if this adimensional parameter approxi-

mates one, that is, n ≈ 1, and if we select a set scale, the deflection potential

becomes zero, ψ(R) ≈ 0.

2.5. Time delay

Differentiating the square of the deviation angle for two images, α2
2 − α2

1

and subsequently differentiating the deflection potential ψ2 − ψ1, and then

replacing these two differentiations in equation (4), we get the time delay as,

∆t =
(1 + zL)ξ2

0DS

cDLDLS
[
h(n, a)

2
− ag(n, a)

ξ0
] (14)

Equation (13) allows us to determine the time delay between two images,

where a the radius of the nucleus of lens mass distribution is and n is the

adimensional parameter.

Furthermore, we have defined two new functions: h(n, a) and g(n, a), de-

fined below, depend on how the nucleus radius a is set and and on how much

these two new functions vary from the adimensional parameter n.

Function h(n, a) is defined in the form,

h(n, a) = (n2 − n+ 1)( a
2

R2
2
− a2

R2
1
) (15)

+(n− 1)[
√

a2

R2
2

+ a4

R4
2
−
√

a2

R2
2

+ n2a4

R4
2

]

+(n− 1)[
√

a2

R2
1

+ n2a4

R4
1
−
√

a2

R2
1

+ a4

R4
1
]

−
√

1 + a2

R2
2

+ n2( a
2

R2
2

+ a4

R4
2
)

+
√

1 + a2

R2
1

+ n2( a
2

R2
1

+ a4

R4
1
)

Similarly, g(n, a) is defined as,
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g(n, a) =

√
1 +

R2
2

a2 −
√

1 +
R2

1

a2 (16)

+

√
n2 +

R2
1

a2 −
√
n2 +

R2
2

a2

+ ln

∣∣∣∣∣∣ 1+

√
1+

R2
1

a2

1+

√
1+

R2
2

a2

∣∣∣∣∣∣
+n ln

∣∣∣∣∣∣n+

√
n2+

R2
2

a2

1+

√
n2+

R2
1

a2

∣∣∣∣∣∣

h(n, a) and g(n, a), are normalized so that when they are introduced into

the time delay equation (14), their units are expressed in seconds.

2.6. Lens Equation

By substituting the deflection angle (12) in equation (5), we get,

β = R
DL
− DLS

DS

(n−1)a
R (17)

−DLS

DS
[
√

1 + a2

R2 −
√

1 + n2a2

R2 ]

This formula represents the equation of the lens in the elliptical lens model

we propose, which is a function of the impact parameter and adimensional

parameter n.

3. APPLICATION OF THE PROPOSED GRAVITATIONAL LENS

MODEL TO GALACTIC LENS B0218 + 357

The expressions articulated in the previous section are completely general

and can be applied to any gravitational lens system. In our case, by way of

example, we choose to apply them to the B0218 + 357 lens system, to analyze

the effectiveness of the results we obtain.

Some researchers, such as, notably, Wucknitz et al. (2004) who, in their

work Models for the Lens and Source of B0218 + 357 determine the Hubble

constant H0, and discuss different models for the B0218 + 357 galactic lens.

In addition to this, in order to obtain an estimate of the Hubble constant,

A.D. Biggs et al. (1999) model the B0218 + 357 system using the lens model

described by Kormann et al. (1994) as a Singular Isothermal Ellipsoid (SIE)

mass. More information on the morphology of the received images can be

found in the work of C. Spingola et al. (2015). Observational data for the



8 MOLINA, VILORIA & STEFFANELL

B0218 + 357 lens system deposited in the CASTLES Survey, according to

Cohen, A. S., and Hewitt, J. N., (2000) is summarized in table 1 below:

the dispersion speed σp, the angular positions of two images θ1 and θ2, the

redshifts for lens zL and the source zS ; and the difference in time delay between

the two images ∆t, as follows:
Table 1. Data observed in B0218 +357 lens system

σp θ1 θ2 zL zS ∆t

150km/s 40mas 290mas 0.68 0.94 10.5±0.2days

For our case, we choose cosmological parameters within the range of values

most accepted in literature; we thus rely on the work of several authors, and

among these point especially to: Kessler et al. (2009), Boughn and Crittenden

(2001), Bartelmann et al. (1997), Weinberg (1972), Grogin et al. (1996) and

others. The parameters we choose for our elliptical lens model are: Hubble

Constant, H0 = 76km/spc , Vacuum density Ωv = 0.7, matter density Ωd = 0.3,

and softness parameter α̃ = 0.5. This softness parameter of matter in the

universe is smoothly distributed (that is, it is not bound up in galaxies), note

Dyer and Roeder (1973), see also P. Schneider et al. (1992) (p.138) and Xi

Yang et al. (2013).

According to Dyer, C. C. (1973) and Wucknitz et al. (2004), by using, for

the B0218 + 357 galactic lens system, the previous cosmological parameters

and the following values: cross section DLDLS

DS
, observer-lens distance DL,

impact parameters of the two images R1 and R2, we obtain: DLDLS

DS
= 2·25×

107pc, DL = 1·364× 109pc, R1 = 264·58pc and R2 = 1918·21pc.

With these quantities, we can find the elements of the proposed lens model.

3.1. Scale factor, surface mass density of the lens, deviation angle and

deflection potential.

Because there are two images in the B0218 + 357 lens system, the previous

calculations on the two impact parameters R1 = 264·58pc and R2 = 1918·21pc

allow us to set the radius of the nucleus in the range of values of these two

parameters (R1 and R2). In this work, we give the radius of the nucleus ap-

proximately the value of the minor impact parameter, expressing the radius

of the nucleus approximately as a = 264pc, which corresponds to the impact

parameter with least deviation. To facilitate analysis we define the adimen-

sional quantity λ as λ = R
a > 1; by setting the nucleus radius and varying the

impact parameter according to this nucleus radius, we can also set the surface

density in the nucleus as the approximate value of Σ0 = 58.62kg/m2.

Furthermore, the scale factor in equation (10), is in terms of the adimen-

sional parameter n, that is,

ξ0 = (200·16pc)
n2

(n2 − 1)
(18)

being pc = 3.086× 1016m. The surface mass density of the lens, expressed in

equation (8) is then found to be,
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Σ(n, λ) =
58·62n2

n2 − 1
[

1√
1 + λ2

− 1√
n2 + λ2

]kg/m2 (19)

where for this particular lens, the impact parameter satisfies the condition

1 ≤ λ ≤ 7.25 and n > 1. When the value of n is fixed, expression (19) allows

us to estimate the surface mass density of the lens as a function of λ, in the

given interval.

After making the replacements required by our proposed system, the de-

viation angle represented in equation (12), takes the form,

α(n, λ) =
n− 1

λ
+

√
1 +

1

λ2
−
√

1 +
n2

λ2
(20)

in which we know that 1 ≤ λ ≤ 7.25 and n > 1.

At the same time, the deflection potential expressed in equation (13), takes

the new form,

ψ(n, λ) = a
ξ0

[(n− 1) + ln 2a
ξ0
− n ln 2na

ξ0
(21)

+
√

1 + λ2 −
√
n2 + λ2

− ln a(1+
√

1+λ2)
ξ0

+n ln a(n+
√
n2+λ2)
ξ0

]

which depends upon the scale factor represented in equation (18) and the

following conditions: 1 ≤ λ ≤ 7.25 and n > 1.

3.2. Time Delay Model

By using the values obtained from the B0218 + 357 lens system, we reduce

the time delay stated in equation (14) is reduced to,

∆t = (5·68days) n2

(n2−1)2 [h(n)
2 (22)

− 1·32(n2−1)g(n)
n2 ]

Quantities h and g, and equations (15) and (16), depend only upon the

adimensional parameter n. This allows us to establish values for the time

delay. We take advantage of the fact that the time delay between the two

images is measured observationally, as shown in table 1 (10.5 days), and a

series of different values of n are explored in equation (22), until observed

value is reached. The time delay of equation (22), for some values of n, is as

follows:
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Table 2. Time delay values, for some values of n, in the B0218

+357 lens system, according to equation (22).

n 2 2.1 2.2

∆t(days) 9.67 10.3 10.9

When we compare the observational time delay ∆t = 10.5 ± 0.2days, as

shown in table 1, with equation (22), we see that for the B0218 + 357 lens

system, the adimensional parameter has a range of certainty of 2 ≤ n ≤ 2.2.

We can appreciate the most approximate value to n = 2.1 in table 2.

Establishing the value of parameter n allowed us to estimate the geometric

parameters of the elliptical lens, a and b, and afterwards find the numerical

values for the other basic elements such as the surface density of the lens, the

deviation angle, the scale factor and the deflection potential, as indicated in

the following section.

3.3. Estimation of deviation angle, deflection potential and lens equation.

Given that for the B0218 + 357 lens system, the approximate radius of

the nucleus is, the adimensional parameter is a = 264pc, the cross section is
DLDLS

DS
and the observer-lens distance is DL, we can estimate the deviation

angle, deflection potential and the lens equation in this model:

1. Using as our premise equation (19), taking into account that the value

of the adimensional parameter is n = 2.1, the surface density diminishes as the

impact parameter increases, and because this is in the interval 1 ≤ λ ≤ 7.25,

the surface mass density of the lens for the proposed system is estimated in

the range of 0.32kg/m2 ≤ Σ ≤ 32kg/m2.

2. In accordance with the equation (20), and taking into account that the

parameter λ is in the range 1 ≤ λ ≤ 7.25, we deduce that deviation angle

oscillates between 120mas and 220mas.

3. In accordance with equation (18), and with the values of adimensional

parameter n, represented in section 3.1, we can establish an approximate

value of the scale factor, that is, ξ0 = 260pc. Furthermore, as the values of

parameter λ oscillate between 1 ≤ λ ≤ 7.25, then the values of the deflection

potential, according to equation (21), oscillate between 150mas and 930mas.

4. CONCLUSIONS

This work is based on a volumetric mass distribution which describes a fast

relaxation scenario, similar to a model of an SIS isothermal sphere, according

to Kenion, I. R. (1995), where the mass of the lens is considered spherically

symmetric. The model of elliptical density contains a central nucleus with

radius a, mass density ρ0 in the central nucleus and free-form parameter a, a

mass density in the central core ρ0 and also a free shape parameter b (b > a).

From this volumetric mass distribution we find new analytical expressions of

the lens elements. These new elements are equations for: lens surface density,
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deviation angle, deflection potential and time delay. These expressions depend

upon the impact parameter of the images and on geometric lens elements a

and b, related by the adimensional parameter n = b
a > 1.

The analytical expressions of the surface mass density of the lens, deviation

angle, deflection potential and time delay used in this work to describe our

proposed model can be used to analyze any other system of galaxy lens. Our

equations are quite general and for their application to study a specific lens

system only require the observational measurements indicated in Table 1.

To implement the results of section (2), one basically needs a system of

lenses per galaxy whose mass density distribution fits the elliptical model we

describe in this paper, the analytical expressions found here being a good point

of departure for further research. In this work the proposed gravitational lens

model is applied specifically to the B0218 + 357 lens system, using observa-

tional values shown in Table 1. To do this, we have used the cosmological

parameters most widely accepted in literature, used, e.g., by authors Bartel-

mann, M., at al. (1997), Boughn et al. (2001), Foster et al. (1994), Kessler

et al. (2009), Schneider et al. (1992),such as the Hubble constant, vacuum

density, matter density and softness parameter contained in the angular dia-

metric distances of observer-lens, observer-source and lens-source. This allows

us to find the approximate radius of the nucleus of the deflecting galaxy, the

angular diametrical distances, the scale factor synthesized in equation (18),

and afterwards, adjust the adimensional parameter n.

The adimensional parameter n is adjusted through the time delay repre-

sented in equation (22), and compared to the observed time delay ∆tobs =

10.5days, shown in Table 1. To do this, it was necessary to write the impact

parameter R, in terms of the nucleus radius ; in the form of λ = R
a ≥ 1.

Because the impact parameter is expressed in terms of the radius of the

nucleus, we were able, once we have set cosmological parameters, determine

the theoretical time delay given in equation (22), depending only on the adi-

mensional parameter n. Thus, when we compare the theoretical time delay

given in equation (22), with the observationally measured time delay in ta-

ble 1, we find that the range of values of the adimensional parameter n is

2 ≤ n ≤ 2.2.

Finally, as evidenced in section (3.3), by adopting the approximate value

n = 2.1 for the adimensional parameter and the interval for the impact param-

eter 1 ≤ λ ≤ 7.25, we were able to estimate numerical values for the surface

density of the lens, deviation angle, scale factor and deflection potential in

our proposed system.
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