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RESUMEN

Se propone una nueva fórmula para el potencial gravitatorio en el caso esta-
cionario y con simetŕıa ciĺındrica. Es una generalización de la fórmula de Miyamoto
y Nagai, con una fracción que contiene los términos de esta fórmula en el numerador
y el denominador. El número de parámetros independientes en la fórmula nueva
es cuatro. La fórmula se puede aplicar a sistemas (subsistemas) estelares tanto
débilmente como sustancialmente achatados. Sin embargo, cuando la fórmula nueva
se aplica a un disco exponencial, con iguales masas totales, no se pueden evitar com-
pletamente los valores negativos de la densidad. Esto se refiere especialmente a las
posiciones fuera del plano de simetŕıa.

ABSTRACT

A new formula for the gravitational potential for the case of steady state
and axial symmetry is proposed. It is a generalization of the Miyamoto-Nagai
formula, in that there is a fraction containing the terms of this formula in both
the numerator and denominator. The number of independent parameters in the
new formula is four. The formula can be applied to both weakly flattened and
substantially flattened stellar systems (subsystems). However, in applying the new
formula to an exponential disk, requiring the total mass to be equal, negative density
values cannot be avoided completely. This concerns especially the positions off the
midplane.

Key Words: Galaxy: disk — galaxies: kinematics and dynamics

1. INTRODUCTION

There exist various Milky Way models aimed at
presenting the mass distribution in which the poten-
tial is given analytically. In such models it is usu-
ally assumed that there are three main contributors
to the mass of the Milky Way: the bulge, the disk
and the subsystem composed of the dark matter.
The mass distribution in each of the three subsys-
tems is assumed to be stationary and axially sym-
metric. The bulge is known to be weakly flattened,
the dark subsystem has been usually regarded also
as weakly flattened, so for both spherical symmetry
- a special case of the axial one - has been applica-
ble. In the case of the disk the spherical symmetry
assumption is not acceptable for clear reasons. One
should have found a suitable and sufficiently sim-
ple expression for the disk contribution to the po-
tential. As well known examples the cases of Allen
and Martos (1986) and Allen and Santillan (1991)
may be mentioned. In the former paper the rather

1Astronomical Observatory, Belgrade, Serbia.

cumbersome Ollongren polynomials are used, with
which there were some difficulties (Allen & Santillan
1991), whereas in the latter paper the authors use the
Miyamoto-Nagai formula (1975). This formula has
been used rather often for the purpose of providing
the potential of the disk analytically (e.g. Ninković
1992, Dinescu et al. 1999). However, the present au-
thor (Ninković 2015) has indicated that when apply-
ing the Miyamoto-Nagai formula to an exponential
disk the total mass in the Miyamoto-Nagai formula
and the total mass of the exponential disk are not
equal. In this way it can be understood why in the
Milky Way models where the disk is described by the
Miyamoto-Nagai formula the total mass is unusually
high, about 1.6 times higher than the value normally
expected (e.g. Ninković 1992, Dinescu et al. 1999).
For the purpose of describing a single subsystem, it
is also possible to use a potential consisting of sev-
eral terms, where each term is represented by means
of the Miyamoto-Nagai formula (e.g. Miyamoto and
Nagai 1975); terms with negative mass have been
also introduced (e.g. Smith et al. 2015). Even then
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114 NINKOVIĆ

the total mass in the potential formula has not been
always equal to the total mass of the system (sub-
system) to which the formula is applied (e.g. Milky-
Way thin disk in Smith et al. 2015).

In the present paper a new formula for the gravi-
tational potential is proposed, which is based on the
Miyamoto-Nagai formula. One of its parameters is
the total mass. When this formula is applied to a
stellar system (subsystem), its total mass is required
to be equal to the total mass of the system (sub-
system). This is the same principle as used in the
earlier paper (Ninković 2015), but the formalism is
different.

The next sections of the present paper are orga-
nized in the following way: § 2, entitled Description,
contains the formulae necessary for further work. § 3,
Rotation Curve, is devoted to the resulting rotation
curve(s). § 4, Density, deals with the density cor-
responding to the potential proposed in § 2. In § 5
Application to the Milky Way Disk, there is a discus-
sion concerning the consequences for the Milky Way.
Finally Discussion and Conclusion are presented in
§ 6 and § 7. Since the main text contains the most
important formulae only, it is followed by an Ap-
pendix, in which all relevant formulae are given.

2. DESCRIPTION

As is well known, the potential formula of
Miyamoto and Nagai has the following form:

Φ =
GM

√

R2 +
[

a+
(

b2 + z2
)1/2

]2
, (1)

where G is the universal gravitation constant and
M the total mass of the system (subsystem) gener-
ating the gravitation field; a and b are two constants
with dimension of length, whereas R and z are the
variables on which the potential Φ depends. The
potential given by formula (1) is stationary, because
it does not depend on time explicitly, and axially
symmetric, because it is independent of the third
coordinate in a cylindrical system (the angle).

The extreme cases are: a = 0 and b = 0. Both
were already known at the time the Miyamoto-Nagai
formula was published. All the relevant details can
be found in the paper of Miyamoto and Nagai (1975).
Here it will be only briefly said that a = 0 corre-
sponds to spherical symmetry; otherwise the source
system is flattened. In the extreme case of flatten-
ing (b = 0) the density is infinite in the midplane
(z = 0), outside it is equal to zero.

The term in the denominator of equation (1), as
introduced by Miyamoto and Nagai (1975), will be
referred to as the Miyamoto-Nagai (MN) function. It
has the dimension of length; the expression is given
in the Appendix (equation A14).

According to the modification proposed in the
present paper there will be two MN functions F1

and F2, which will differ in their constants (Fi with
ai and bi, i = 1, 2) . The potential will be given then
as:

Φ = GMF1
αF2

−(α+1) , α > 0 , (2)

where the constant term GM has the same meaning
as in (1).

In what follows an analysis of the modification
(2) will be presented. In the first step the resulting
rotation curve will be the subject, in the second one
the density.

3. ROTATION CURVE

Usually the term “rotation curve” refers to the
circular speed. The circular speed uc is defined
through the first partial derivative of the potential
with respect to R. Except the special case of spheri-
cal symmetry (the constants in equation 2 have val-
ues ai = 0), when circular motion can occur in any
plane containing the center (R = 0, z = 0), in the
more general case (ai 6= 0) circular motion can take
place only in the midplane z = 0. With regard to
equation (2) the circular speed will be given in the
following way:

uc = R
√

Φ
[

(α+ 1)F2
−2 − αF1

−2
]

, z = 0 . (3)

In (3) Φ is the potential (equation 2), and it takes
into account that the first partial derivative of Fi

in R is equal to R/Fi (Appendix - equation A15).
Since z is zero, in either MN function the param-
eters ai and bi participate only through their sum.
In other words the ratio bi/ai is of no importance
for the behavior of the circular speed. Its behavior
will be the same, including the simplest case ai = 0
(i = 1, 2, spherical symmetry). In the case of spher-
ical symmetry one can use the cumulative mass Mr

(r =
√
R2 + z2). The expression for the cumulative

mass is similar to that for the circular speed (3), it
is

Mr = Mr3
F1

α

F2
α+1 [(α+ 1)F2

−2 − αF1
−2] . (4)
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MIYAMOTO-NAGAI POTENTIAL FORMULA 115

Since now both Fi (i = 1, 2) have the simpler form -
√

b2i + r2, the expression within brackets in (4) can
be presented less generally. It takes the following
form:

[(α+ 1)F2
−2 − αF1

−2] =
r2 + (α+ 1)b21 − αb22
(b21 + r2)(b22 + r2)

.

(5)
Expression 5 is important because the cumulative
mass must not be negative. The immediate conse-
quence is that b1/b2 should exceed

√

α/(α+ 1). The
same is valid for the circular speed (equation 3), but
since then ai can be different from zero, the condi-
tion should be rewritten to become

a1 + b1
a2 + b2

>

√

α

α+ 1
. (6)

The circular-speed value, being zero for R = 0,
increases afterwards to attain a maximum. The dis-
tance R = Rm at which the maximum occurs de-
pends on α and on the ratio (a1 + b1)/(a2 + b2).
In general, when this ratio approaches its critical
value (equation 6), the maximum Rm occurs farthest
from the center. How far it lies depends on α. The
smaller α, the smaller the value of Rm expressed in
terms of a2 + b2. As the ratio (a1 + b1)/(a2 + b2)
increases, the maximum is shifted towards the cen-
ter. In this way, for a given α there exists an interval
for the maximum on the rotation curve expressed in
terms of a2 + b2. The interval width depends on
α. The smaller α, the narrower the interval. Fi-
nally, when α tends to zero, the interval width also
tends to zero. This is understandable because α = 0
corresponds to the Miyamoto-Nagai case where, as
is well known, the maximum on the rotation curve
occurs at Rm =

√
2(a + b). When α tends to in-

finity, the lower limit of the interval (corresponding
to (a1 + b1)/(a2 + b2) infinitely large) tends to zero,
whereas the upper limit is about 2(a2+ b2). The up-
per limit corresponds to the lower limit for the ratio
(a1 + b1)/(a2 + b2) (equation 6), which for very high
α is practically equal to one.

Formula (1) has been frequently used as a suit-
able approximation for an exponential disk (e.g.
Ninković 1992). The rotation curve of the expo-
nential disk was calculated by Freeman (1970). In
his paper a plot of circular speed versus distance
in the midplane is given. It is interesting to com-
pare the circular speed obtained here (equation 3)
with the curve obtained by Freeman (1970). The
comparison is given in Figure 1. Since the units for
R (abscissa) and uc (ordinate) must be the same
for both curves, the curve obtained on the basis of

Fig. 1. Rotation curve uc(R)(uc unit is
√

GM/Rd),
black thick line from Freeman (1970), dashed curve
Keplerian curve for the same mass, also taken from
Freeman’s paper, green line as obtained here, α = 1,
a2 + b2 = 2.04Rd, a1 + b1 = 3.7Rd, blue line from
Ninković 2015 (parameter values −a + b = 2.1Rd,
γ1 = −0.1, their meaning look for in equation (7)
of that paper), red line according to expression (1),
a+ b = (2.1/

√
2)Rd; all curves are for the same total

mass M. The color figure can be viewed online.

(3) also corresponds to the exponential-disk scale Rd

along the axis of abscissae and to
√

GM/Rd along
the ordinate axis. Here the total mass M is the
same as that of the exponential disk, whereas the
ratio (a2 + b2)/Rd should be established from the
comparison. The ratio (a1 + b1)/(a2 + b2) is estab-
lished simultaneously. Both ratios depend on α. The
two curves are required to have a common point at
the maximum (Figure 1), hence the same Rm and
uc(Rm). Such a fit can be achieved for any α. How-
ever, when α tends to zero, the ratio (a2 + b2)/Rd

tends to about 1.5, whereas (a1+ b1)/(a2+ b2) tends
to infinity. On the other hand, when α tends to infin-
ity, the ratio (a2 + b2)/Rd exceeds two and the ratio
((a1 + b1)/(a2 + b2)) tends to unity. Thus any satis-
factory fit (corresponding to a particular value of α)
of the rotation curve on the basis of (3) to the curve
presented in Freeman’s (1970) paper is obtained if
both (a2+ b2)/Rd and (a1+ b1)/(a2+ b2) are greater
than 1. In the case of the former ratio this can
be expected, since the fitting of the curve given by
Freeman (1970) by the model based on equation (1)
yields a + b of about 1.5Rd. As for the latter ratio
[(a1 + b1)/(a2 + b2)], it can be said that the values
yielded by the fits, for α ≥ 1.5, are approximately
equal to [(α+ 1)/α]0.8.
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116 NINKOVIĆ

4. DENSITY

Now the density generating the potential given by
(2) will be calculated. As is well known, the density
ρ is related to the potential Φ through the Poisson
equation

∂2Φ

∂R2
+

1

R

∂Φ

∂R
+

∂2Π

∂z2
= −4πGρ . (7)

In equation (7) the axial symmetry is taken into ac-
count, i.e. the angle term is omitted because the
potential is independent of this coordinate. The rel-
evant expressions for the potential derivatives can be
found in the Appendix.

It has been already mentioned (§ 3) that the ratio
(a1 + b1)/(a2 + b2) should obey condition (6); oth-
erwise in the central parts the density will be nega-
tive. In such cases the density increases in the central
parts to attain zero, then it continues to increase so
that its maximum occurs away from the center. This
trend persists even when condition (6) is fulfilled.
If the highest density is required just at the center,
then the lower limit for the ratio (a1+b1)/(a2+b2) as
specified by (6) is too small. A larger value of this ra-
tio is needed. Only then, the density will be not only
everywhere non-negative, but its highest value will
occur just at the center, and it will be lower at any
other position. For instance, let α = 1, a1 = a2 = 0
(spherical symmetry), then the density will satisfy
both conditions (to be everywhere non-negative and
to attain its highest value at the center) only if the
ratio b1/b2 exceeds about 0.85. Therefore, this value
(about 0.85) appears as an effective lower limit for
the ratio b1/b2, though the value following from (6)
is smaller (about 0.71).

Nevertheless, in the literature there exist mod-
els with a central hole (e.g. Einasto & Haud 1989),
in which the density is equal to zero at the center.
Bearing this in mind the example mentioned in the

preceding paragraph (b1/b2 ratio as low as
√
2
−1

for
α = 1) can be meaningful.

The examination of the simplest case of spherical
symmetry (a1 = a2 = 0) allows one to establish an
upper limit for the ratio (b1/b2). If this ratio exceeds
√

(α+ 1)/α, then the density will have negative val-
ues in the periphery. More precisely, the cumulative
mass (expression 4) will attain a maximum, after
which it will begin to decrease.

The ratio (a1 + b1)/(a2 + b2) for given α is de-
termined through fitting an assumed rotation curve.
Unlike the special case of spherical symmetry, when
one has a1 = a2 = 0, in the general case the ra-
tios b1/a1 and b2/a2 may differ, but one cannot ex-
pect solutions with physical meaning, such as, for

instance, b1 ≈ 0, a2 ≈ 0. If extremely flattened sys-
tems (subsystems) are the subject, then it is clear
that necessarily ai ≫ bi, i = 1, 2. If it is also re-
quired that the density decrease monotonously and
that its highest value occur at the center, then gen-
erally it may be accepted that b1/a1 = b2/a2. These
ratios may be subjected to further variations, to as-
sume finally different values, but this would be only
an adjustment.

When significantly flattened systems (subsys-
tems) are under study, then the density decreases
very rapidly off the plane z = 0, to attain zero at
a finite distance from that plane. Beyond this dis-
tance it is difficult to obtain the density values every-
where equal to zero by using an analytical potential
with algebraic functions developed for the purpose
of finding a suitable approximation. Therefore, neg-
ative density values are inevitable, but their moduli
are very low (Figure 2). In the plane z = 0 negative
densities are also possible, but it is easier to avoid
them. The optional parameter α is influential here;
by increasing its value it is possible to shift upwards
the distance from z = 0 where the density attains
zero. The complete removal of negative densities can
take place in infinity only, α → ∞.

The isodensity surfaces for positive density values
are disky, i.e. they are inside the equivalent spheroid
(Figure 3). This is the same situation as for the
classical Miyamoto-Nagai model.

5. APPLICATION TO THE MILKY WAY DISK

Since the exponential disk is known to follow
generally the decreasing trend of the volume den-
sity (e.g. Cuddeford 1993), then in the applica-
tion of (2) it will be required that b1/a1 = b2/a2.
An example may be the application to the disk
of the Milky Way. The following values are as-
sumed: Md = 5.1× 1010M⊙ for the total mass,
R⊙ = 8.5 kpc and Rd = 2.8 kpc. This
mass value is substituted in equation 2, i.e. (3).
The parameter α is optional; let it be α = 1.
Then one will have a2 + b2 = 2.04Rd = 5.7 kpc,
a1 + b1 = 3.7Rd = 10.4 kpc. The values of the fac-
tors, 3.7 and 2.04, come from the fit presented in Fig-
ure 1 (green line), which corresponds to α = 1. Now
using equations 2 and 3 one can calculate the circu-
lar speed for any value of R (distance to the rotation
axis). For instance, at R = 5.7 kpc and R = 8.5 kpc
the circular speed will be equal to 179.5 km s−1

and 169.7 km s−1, respectively. The former value
is practically the one where the circular speed max-
imum is expected. If the classical Miyamoto-Nagai
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MIYAMOTO-NAGAI POTENTIAL FORMULA 117

Fig. 2. Density dependence on z for R = 0; α = 1,
bi/ai = 0.105, (a1 + b1)/(a2 + b2) = 3.7/2.04 (see Fig-
ure 1). The units are: Rd and M/Rd

3.

formula (equation 1 in the present paper) were ap-
plied, but with the same total mass, the correspond-
ing results would be: uc(5.7) = 145.7 km s−1,
uc(8.5) = 139.9 km s−1. In this case a + b (equa-
tion 1) must be

√
2 times smaller than the distance

at which the circular speed is maximal. As already
said, the only way out, if using equation 1, is to
substitute for the total mass another value, which
exceeds the assumed one (5.1 × 1010 M⊙). This is
clearly shown in Figure 1.

If accepted, the value of about 170 km s−1 ob-
tained in the preceding paragraph (provided that the
circular speed at the Sun is 220 km s−1) will result
in a disk contribution to the square of the circular
speed of about 60%. Any discussion of this value
involves many factors both qualitative and quanti-
tative. More precisely, one should identify the other
subsystems and estimate the fraction of each sub-
system. In addition, the dependence on R of the
fractions of other subsystems can be useful, because
then it will be possible to estimate the gradient or, as
usually done, the ratio A/|B| (A and B are the Oort
constants). As a very preliminary result it may be
concluded that a disk fraction of about 60% would
yield an A/|B| ratio equal to 1.0 or slightly exceeding
1.0.

Since it is required that b1/a1 = b2/a2, and the
sums a1 + b1 and a2 + b2 are already known, we
still have to determine the values of bi. This will
be done by requiring the density at R = R⊙, z = 0
to be equal to 0.08 M⊙ pc−3. The formulae given
in the Appendix then enable us to determine the
ratios bi/ai, i.e. ai, bi; one obtains: a1 = 9.5 kpc,
b1 = 0.9 kpc, a2 = 5.2 kpc, b2 = 0.5 kpc.

Fig. 3. Projected isodensity surfaces; each of them is
presented with its comparison spheroid (the same color);
α = 1, bi/ai = 0.105, (a1 + b1)/(a2 + b2) = 3.7/2.04 (see
Figure 1). The color figure can be viewed online.

6. DISCUSSION

In Figure 1 there is also a curve corresponding to
the formula proposed in Ninković 2015. As can be
expected, the two formulae (the one proposed here,
equation 2 - and that from Ninković 2015) yield al-
most identical values for the circular speed for the
same total mass and scale of the disk. However,
these formulae are intrinsically different. Unlike the
present one, wherein one has a fraction with two
Miyamoto-Nagai terms, the potential formula from
Ninković 2015 contains an additional term in the de-
nominator. This term is a sum of two functions,
each one a single-argument function (R or z), and
it is subtracted from the Miyamoto-Nagai term; the
numerator contains the product GM only. For the
rotation curve only the term depending on R is of
importance. Its form is:

f1(R) =

(

1 +
R2

R2
d

)γ1

. (8)

This term is added to the function f2(z) of anal-
ogous form (f2(z) equal to 1 in midplane) and the
sum is multiplied by 1

2Rd. The exponent γ1 must
be less than 0.5. The best fits are achieved when
it is slightly less than zero (-0.1, -0.3, as written in
Ninković 2015). The meaning of the additional term
in the denominator is that f1(R) and f2(z) are cor-
rective functions, which should improve the fit. In
principle, a satisfactory fit might be achieved if both
f1(R) and f2(z) were equal to 1, i.e. if the con-
stant Rd were subtracted from the Miyamoto-Nagai
term in the denominator and if it were assumed that
a + b = 2Rd. It is important to mention that the
potential formula proposed in Ninković (2015) has
a limited use, i.e. it is applicable to flattened sys-
tems, as indicated in the title of the paper. The
only common characteristic is the following princi-
ple: if either of the two formulae is applied to a stel-
lar system (subsystem), then the total mass of the
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system (subsystem) is substituted in the formula, as
was done in the example of the preceding section.
The total number of parameters is six in both cases:
M, a, b, Rd, γ1 and γ2 (Ninković 2015), i.e. M, α,
a1, b1, a2 and b2 (here). However, as already said,
these parameters are not completely independent. In
the former case the number of parameters is, practi-
cally, reduced to three (M, a, b). In the latter case
it would be also three (M, a1, b1), but provided
that b1/a1 = b2/a2. In principle, this equality is ac-
ceptable, but not obligatory. As said above, there
is a possibility of further varying either of the two
ratios - b1/a1 and b2/a2. This can be an advan-
tage for the approach proposed here in comparison
to that presented in Ninković 2015. The compari-
son concerns flattened systems (subsystems) only. If
weakly flattened ones are taken into account, there
is no comparison, the present approach is the only
one acceptable.

In the application of potential (2) to the disk of
the Milky Way at first one specifies the optional pa-
rameter α and assumes values for the disk total mass
and scale length. Then the rotation curve fit, as pre-
sented in Figure 1 for the case α = 1 (green curve),
yields the two sums a1 + b1 and a2 + b2 expressed
in terms of the disk scale length. Taking into ac-
count the mass assumed for the disk (provided that
the circular speed at the Sun is known) it is possi-
ble to calculate the contribution of the disk to the
square of the local circular speed and to give a pre-
liminary estimate for the ratio A/|B| (A and B are
the Oort constants). For reasonable values of, say,
5.1×1010M⊙, 2.8 kpc and 220 km s−1 the disk frac-
tion to the circular speed squared would be about
60% and the ratio A/|B| would be about 1 or slightly
larger. The ratios bi/ai, if put equal to each other,
can be determined after assuming a value for the disk
density at the Sun. For instance, if 0.08 M⊙ pc−3 is
assumed, bi/ai will be about 0.095.

7. CONCLUSION

In the present paper a formula (equation 2) is
proposed, which serves for the purpose of calculating
the gravitational potential of a stellar system (sub-
system) for the case of steady state and axial sym-
metry, provided that the mass of the system (subsys-
tem) is equal to the mass in (2). It has the following
properties:

(i) Its special case is the Miyamoto-Nagai formula
F1 = F2 in (2);

(ii) As a consequence of the requirement for the den-
sity to be nowhere negative, with negative gra-

dient components (except at the center where
it has a maximum) the ratio of the sums from
the numerator and denominator, respectively,
(a1+b1)/(a2+b2) will be limited. In the case of
spherical symmetry the lower limit is less than
1, the upper limit is equal to

√

(α+ 1)/α;

(iii) In general it is expected that b1/a1 ≈ b2/a2;

(iv) The limits from (ii), valid for spherical symme-
try, are closer to unity for flattening (ai 6= 0,
i = 1, 2). This effect is particularly strong when
bi ≪ ai (significantly flattened system);

(v) In the presence of substantial flattening, if (iii)
is exactly fulfilled, negative density values due
to exceeding the limits from (iv) occur off the
midplane only;

(vi) A fit to the exponential disk by comparing the
rotation curves requires a1+b1 to be larger than
a2+ b2. If α ≤ 1.5, the ratio (a1 + b1)/(a2 + b2)
yielding a good fit is approximately equal to
[(α+ 1)/α]0.8;

(vii) Generally, there is a divergence between re-
quirements concerning the fit to the exponen-
tial disk (vi) and those concerning the density
(ii) and (iv); convergence is obtained only when
α → ∞;

(viii) When the potential proposed here (equation 2)
is applied to the Milky Way disk with speci-
fied values for the total mass, scale length and
density at the Sun, acceptable values are ob-
tained for the disk fraction of the circular speed
squared at the Sun, for the ratio of the Oort
constants moduli and for the disk flattening.
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bian Ministry of Education, Science and Technologi-
cal Development (Project No 176011 “Dynamics and
Kinematics of Celestial Bodies and Systems”). The
author wishes to thank an anonymous referee for
valuable suggestions which contributed to a better
presentation of the results.

A. APPENDIX

The variable part of equation (2) from the main text
is here denoted by Q:

Q = F1
αF2

−(α+1) (A9)

Its partial derivatives, w = R or w = z, are:
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∂Q

∂w
= αF1

α−1F ′

1F2
−(α+1) − F1

α(α+ 1)F2
−(α+2)F ′

2

(A10)

∂2Q

∂w2
=α

[

(α− 1)F1
α−2F ′

1
2
F2

−(α+1)+

F1
α−1F ′′

1 F2
−(α+1)−

F1
α−1F ′

1(α+ 1)F2
−(α+2)F ′

2

]

−

(α+ 1)
[

αF1
α−1F ′

1F2
−(α+2)F ′

2−

F1
α(α+ 2)F2

−(α+3)F ′

2
2
+

F1
αF2

−(α+2)F ′′

2

]

.

(A11)

Here

F ′

i ≡
∂Fi

∂w
, (A12)

F ′′

i ≡ ∂2Fi

∂w2
, i = 1, 2. (A13)

The Miyamoto-Nagai function Fi and its derivatives
are:

Fi =

[

R2 +
(

ai +

√

z2 + bi
2
)2

]1/2

(A14)

∂Fi

∂R
=

R

Fi
(A15)

Slobodan Ninković: Astronomical Observatory, Volgina 7, 11060 Belgrade, Serbia (sninkovic@aob.rs).

∂2Fi

∂R2 =
Fi − R2

Fi

F 2
i

(A16)

qi = ai +

√

z2 + bi
2 (A17)

∂Fi

∂z
=

qi
Fi

∂qi
∂z

(A18)

∂2Fi

∂z2
=

qizFi − qiz(qi
2/Fi)

F 2
i

qiz+

qi
Fi

qizz (A19)

qiz ≡ ∂qi
∂z

=
z

√

bi
2 + z2

(A20)

qizz ≡ ∂2qi
∂z2

=
bi

2

(bi
2 + z2)3/2

(A21)
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