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RESUMEN

Presentamos un modelo para el equilibrio estad́ıstico de los niveles de H,
considerando recombinaciones a los niveles excitados, excitaciones colisionales par-
tiendo desde el nivel fundamental y transiciones radiativas espontáneas. Este pro-
blema tiene una simple solucion en términos de la “matriz de cascada”, que des-
cribe una cascada de transiciones espontáneas alimentada tanto por recombina-
ciones como por excitaciones colisionales. Las predicciones resultantes de cocientes
de ĺıneas de Balmer muestran una transición entre un régimen de baja temperatura
y uno de alta temperatura (dominados por recombinaciones y por excitaciones co-
lisionales, respectivamente), ambos con sólo una dependencia débil de la tempe-
ratura. Esta clara caracteŕıstica permite una diferenciación observacional directa
entre regiones de ĺıneas de Balmer de recombinación y regiones con ĺıneas excitadas
colisionalmente. Encontramos que para un gas en equilibrio coronal las ĺıneas de
Hα y Hβ se excitan colisionalmente a todas las temperaturas. Para obtener ĺıneas
de Hα y Hβ de recombinación, es necesario tener fracciones de ionización de H sub-
tancialmente mayores que la de equilibrio coronal (por ejemplo, como las presentes
en un gas fotoionizado).

ABSTRACT

We present a model for the statistical equilibrium of the levels of H, consi-
dering recombinations to excited levels, collisional excitations up from the ground
state and spontaneous radiative transitions. This problem has a simple “cascade
matrix” solution, describing a cascade of downwards spontaneous transitions fed
by both recombinations and collisional excitations. The resulting predicted Balmer
line ratios show a transition between a low temperature and a high temperature
regime (dominated by recombinations and by collisional excitations, respectively),
both with only a weak line ratio vs. temperature dependence. This clear character-
istic allows a direct observational identification of regions in which the Balmer lines
are either recombination or collisionally excited transitions. We find that for a gas
in coronal ionization equilibrium the Hα and Hβ lines are collisionally excited for
all temperatures. In order to have recombination Hα and Hβ it is necessary to have
higher ionization fractions of H than the ones obtained from coronal equilibrium
(e.g., such as the ones found in a photoionized gas).

Key Words: Herbig-Haro objects — hydrodynamics — ISM: individual objects
(HH1, HH2) — ISM: kinematics and dynamics — shock waves

1. INTRODUCTION

Seaton (1959a,b) presented calculations of the
recombination cascade of hydrogen (H), conside-
ring the transitions between different principal (i.e.,
energy) quantum numbers n, and assuming an equi-
librium distribution between the angular momentum
levels l corresponding to a given n. The effect of

considering explicitly the different values of l was
studied by Pengelly & Seaton (1964). Brocklehurst
(1970, 1971) calculated the statistical equilibrium for
the (n, l) levels of H, also including redistribution
between the different l values (at constant n) due
to collisions with protons, as well as collisions with
electrons producing transitions between different n
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230 RAGA ET AL.

values. More recent results on the recombination
cascade of hydrogenic ions (including redistribution
between different angular momentum levels through
collisions with protons) are presented by Storey &
Hummer (1995). Even more recently, Storey & Sochi
(2014) analyzed the collisional excitation and recom-
bination of the excited levels of H resulting from non-
thermal electron distribution functions.

Aggarwal (1983) calculated the electron impact
collisional excitation rates for the 1 → 2 and 1 → 3
transitions, and suggested that they could have an
important effect on the prediction of low lying lines
of H. This effect was evalued in more detail by Hum-
mer & Storey (1987). More recently, Stasińska &
Izotov (2001) and Luridiana et al. (2003) calcu-
lated photoionized region models from which they
concluded that for some parameters the collisional
excitations from the n = 1 levels can have an effect
of ≈ 5% in the predicted Balmer line intensities.

The effect of collisional excitations upwards from
the n = 1 levels of H of course can have a dominant
effect in astrophysical shocks. Immediately after the
shock, one has a high temperature region (of ≈ 105 K
for a 100 km s−1 shock) in which H can be partially
neutral, though rapidly becoming collisionally ion-
ized. In this region, the 1 → n electron collision
excitations dominate over the recombinations to the
excited levels of H. This effect was included in the
shock models of Raymond (1979), who added the
contribution of the collisional excitations of the low
lying levels of H to the recombination cascade.

In this paper, we present a simple model for the
statistical equilibrium of the excited levels of H in-
cluding both the recombinations and the upwards
electron collisional excitations from the ground state.
This model can be solved with the traditional “cas-
cade matrix” solution (see, e.g., the book of Os-
terbrock & Ferland 2006), with a cascade of down-
wards spontaneous transitions which is fed both by
recombinations and by collisional excitations from
the ground state.

In § 2, we discuss the statistical equilibrium and
the calculation of line emission coefficients, giving
the results obtained for the Hα emission. In § 3,
we present the results obtained for the Hα/Hβ and
Hβ/Hγ ratios. These results are summarized in § 4.
Finally, the paper has two appendices which give all
the necessary parameters for solving the 5-level H
atom problem, and analytic fits giving the predicted
line intensities and/or line ratios as a function of
temperature and ionization fraction of the gas.

2. THE STATISTICAL EQUILIBRIUM AND
THE EMISSION COEFFICIENTS

Let us consider the statistical equilibrium for the
excited levels of H, under the assumption that they
are populated by recombinations (due to electron
collisions with HII), spontaneous transitions from
higher energy levels and upward collisional excita-
tions from the ground (n = 1) state, and depop-
ulated only by downwards spontaneous transitions.
For the energy level k > 1, we then have:

ne [nHIIαk(T ) + nHIq1,k(T )] +
∑

m>k

nmAmk

= nk

∑

m<k

Akm . (1)

In this equation, αk(T ) is the radiative recombina-
tion coefficient to level k, q1,k(T ) is the electron colli-
sional excitation coefficient for the 1 → k transition,
the Akm are the Einstein spontaneous transition co-
efficients, ne is the electron number density, nHII is
the ionized H number density, and nHI the neutral
H density.

In this equilibrium equation, we neglect the col-
lisional transitions between the excited levels, and
the photo and collisional ionizations from the excited
levels. Furthermore, we assume that the number
density of the n = 1 level is equal to nHI (i.e., that
the vast majority of neutral atoms are in the ground
state). This amounts to a “low density regime” as-
sumption, in which the only active collisional tran-
sitions (as well as the photoionizations) are the ones
starting from the ground state. This is a clearly
valid assumption for the permitted transitions of H
at interstellar medium densities.

The solution to the statistical equilibrium equa-
tions (see equation 1) can be written as:

nk = ne

[

nHIIα
(eff)
k (T ) + nHIq

(eff)
1,k (T )

]

, (2)

with an effective recombination coefficient defined in
the usual way as:

α
(eff)
k (T ) =

∑

m≥k Cmkαm(T )
∑

m<k Akm
, (3)

and an analogously defined effective collisional exci-
tation coefficient:

q
(eff)
k (T ) =

∑

m≥k Cmkq1,m(T )
∑

m<k Akm
, (4)

in terms of the “cascade matrix” Cmk. This matrix
can be calculated recursively by first computing the



©
 C

o
p

y
ri

g
h

t 
2

0
1

5
: 
In

st
it
u

to
 d

e
 A

st
ro

n
o

m
ía

, 
U

n
iv

e
rs

id
a

d
 N

a
c

io
n

a
l A

u
tó

n
o

m
a

 d
e

 M
é

x
ic

o

RECOMBINATION AND COLLISIONALY EXCITED BALMER LINES 231

probability Pkm of having a direct k → m transition:

Pkm =
Akm

∑

l<k Akl
, (5)

and then using these branching ratios to calculate
iteratively the terms of the cascade matrix

Ckm = Ck,m+1Pm+1,m + Pkm , (6)

which give the probability of having a k → m tran-
sition either directly or by a cascade of intermediate
spontaneous transitions. The diagonal elements of
the matrix are given a value of 1 (i.e., Ckk = 1). A
discussion of the cascade matrix formalism can be
found in the book of Osterbrock & Ferland (2006).

Once the effective recombination and collisional
excitation coefficients have been obtained, one can
calculate the emission coefficients for the k → m
transition as:

jkm =
ne

4π
[nHIIǫ

r
km(T ) + nHIǫ

c
km(T )] , (7)

where

ǫrkm(T ) = α
(eff)
k (T )AkmEkm ,

and

ǫckm(T ) = q
(eff)
1,k (T )AkmEkm ,

(with Ekm being the energy of the k → m transi-
tion).

We should note that in the above derivation we
have considered the energy levels of H to have equi-
librium populations for their angular momentum lev-
els (i.e., that for a given n, the angular momen-
tum levels l have relative populations proportional
to their statistical weights 4l + 2). As shown in the
classical paper of Brocklehurst (1971), more detailed
models for the population of the levels of H (consi-
dering the transitions between the different angular
momenta due to collisions with protons) give small
deviations (of order ∼ 2%) in the predictions of the
ratios between the lower lying Balmer line intensi-
ties. We do not consider these effects in the present
paper.

With the Einstein coefficients Akm, the colli-
sional excitation coefficients q1,m(T ) and the recom-
bination coefficients αm(T ) we can calculate the ef-
fective recombination and collisional excitation coef-
ficients α

(eff)
m (T ) and q

(eff)
m (T ) (given by equations

3 and 4, and the recombination and collisional enegy
rates (ǫrkm and ǫckm, see equation 7). As described

Fig. 1. Contributions to the Hα emission coefficients
of the recombination cascade (ǫrHα) and the collisional
excitation cascade (ǫcHα) as a function of temperature,
for the “case B” (left) and “case A” (right) approxima-
tions (see the discussion in § 2). The solid lines give the
numerical results from the cascade calculations, and the
dashed lines give the analytic fits to the “case B” results,
described in Appendix B (left frame).

in detail in Appendix A, we have done this calcula-
tion for the n = 1 → 5 levels of H, considering “case
A” (i.e., with optically thin lines) and “case B” (in
which the Lyman transitions are optically thick).

In Figure 1, we show the recombination and colli-
sional energy rates ǫrHα and ǫcHα (see equation 7) as a
function of temperature for “case B” (left, optically
thick Lyman lines) and “case A” (right, optically
thin Lyman lines). For the “case B” coefficients,
we have also calculated analytic fits, which are de-
scribed in Appendix B (dashed lines in the left panel
of Figure 1). It is clear that for temperatures below
≈ 104K the recombination energy rate is dominant,
but for larger temperatures the collisional excitation
energy rate dominates by many orders of magnitude.
Because of this, even if the product nenHI is very
small (i.e., because H is mostly ionized), the colli-
sional excitation contribution to the Hα emission be-
comes dominant at high enough temperatures. This
effect is discussed in more detail in the following Sec-
tion.

3. THE Hα/Hβ AND Hβ/Hγ LINE RATIOS

We now assume that most of the free electrons
come from the HII, and set ne = nHII = xnH and
nHI = (1 − x)nH , where nH is the total H density.
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232 RAGA ET AL.

Fig. 2. Case B (i.e. optically thick Lyman lines) Hα/Hβ
(top) and Hβ/Hγ ratios (bottom) as a function of tem-
perature and H ionization fraction (x = nHII/nH) calcu-
lated with the emission coefficients given by equation 8.
The line ratios are shown with labeled contours and with
linear greyscales given by the bars on the right.

Then, from equation (7) we obtain the line emission
coefficients as:

jkm =
xn2

H

4π
[xǫrkm(T ) + (1− x)ǫckm(T )] . (8)

Therefore, the observed ratios of optically thin lines
from a homogeneous region (which are proportional
to the ratios of the corresponding emission coeffi-
cients) are only a function of the temperature T and
the H ionization fraction x (since the dependence on
the H density nH cancels out as all emission coeffi-
cients are proportional to n2

H , see equation 8).
In Figures 2 and 3 we show the resulting Hα/Hβ

and Hβ/Hγ ratios as function of T and x for the
“case B” (Figure 2) and “case A” (Figure 3) ap-
proximations (see § 2 and Appendix A). It is clear
that at temperatures smaller than ≈ 104K, we ob-
tain an almost constant value for the line ratios (as
has been shown repeated times for the H recombi-

Fig. 3. Case A (i.e. optically thin Lyman lines) Hα/Hβ
(top) and Hβ/Hγ ratios (bottom) as a function of tem-
perature and H ionization fraction (x = nHII/nH) calcu-
lated with the emission coefficients given by equation 8.
The line ratios are shown with labeled contours and with
linear greyscales given by the bars on the right.

nation lines, see e.g. Brocklehurst 1971), a region
around T ≈ 104K in which the line ratios show a
relatively strong dependence on both x and T , and
a high temperature regime in which the line ratios
again are almost constant.

This behavior is also shown in Figures 4 (case B)
and 5 (case A), in which the line ratios are shown as a
function of temperature for three fixed values of the
ionization fraction of H (x = 10−3, 0.5 and 0.999). It
is clear that the line ratios have a “low temperature
regime” (dominated by the recombination cascade)
and a “high temperature regime” (dominated by the
collisional excitation cascade) in which the line ratios
are independent of the H ionization fraction x. In the
transition between these two regimes, the line ratios
depend on both T and x.

In the low temperature regime, the temperature
dependence of the line ratios is weak, reflecting the
weak (and similar) temperature dependencies of the
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RECOMBINATION AND COLLISIONALY EXCITED BALMER LINES 233

Fig. 4. Case B Hα/Hβ (top) and Hβ/Hγ ratios (bottom)
as a function of temperature for three different values of
the H ionization fraction: x = nHII/nH = 0.999 (long
dashes), 0.5 (solid line), and 0.001 (short dashes).

recombination coefficients to the excited levels of H.
In the high temperature regime, the temperature de-
pendence of the line ratios is also small. This is be-
cause the populations of the excited levelsm through
collisional excitations are dominated by the direct
excitation to level m. Therefore, the temperature
dependence of the nm/nk ratio (which determines
the ratios of lines starting from the pair of levels) is
given by a term of the form:

nm

nk
∝ e−(Em−Ek)/kBT , (9)

where we have neglected the (weak) temperature de-
pendence of the collisional excitation coefficients (see
Appendix A). It is clear that for T ≫ (Em−Ek)/kB
(where kB is Boltzmann’s constant) the line ratios
basically become independent of T . These temper-
atures are (E4 − E3)/kB = 7681 K for the Hα/Hβ
ratio and (E5 − E4)/kB = 3551 K for the Hβ/Hγ
ratio. In Appendix B we give approximate analytic
forms for calculating the case B Hα/Hβ and Hβ/Hγ
ratios.

Fig. 5. Case A Hα/Hβ (top) and Hβ/Hγ ratios (bottom)
as a function of temperature for three different values of
the H ionization fraction: x = nHII/nH = 0.999 (long
dashes), 0.5 (solid line), and 0.001 (short dashes).

From Figures 2-5 we see that for ionization frac-
tions x → 1, the line ratios preserve their recombi-
nation cascade values up to increasing values of the
temperature. This result is intuitively clear, since
for x = 1 (i.e., for a neutral fraction 1 − x = 0) no
collisional excitations (up from the n = 1 level) take
place. This is seen in equation (8), from which for
x = 1 we obtain jkm ∝ ǫrkm(T ).

In order to quantify this effect, we calculate the
neutral fraction 1−xc (as a function of T ) for which
the Hα emission has equal contributions from colli-
sional excitations and from the recombination cas-
cade. We find this neutral fraction by setting the
two terms within the square brackets of equation 8
equal to each other, from which we obtain:

1− xc =
1

1 + ǫc(Hα)/ǫr(Hα)
. (10)

From our 5-level H atom calculation, we compute
the 1− xc neutral fraction (at which the recombina-
tion cascade and collisional excitation contributions
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Fig. 6. The solid line shows the neutral H fraction 1−xc

(above which the contribution of collisional excitation to
the Hα emission dominates over the recombination cas-
cade) as a function of T . Indistinguishable 1− xc vs. T
curves are obtained from cases A and B. The dashed line
shows the neutral H fraction given by the coronal ion-
ization equilibrium condition. The coronal equilibrium
neutral fraction is higher than 1−xc at all temperatures.

to Hα are equal) as a function of temperature, and
show the results in Figure 6.

This figure can be interpreted as follows. For neu-
tral fractions larger than 1− xc, the Hα emission is
dominated by the collisional excitation contribution.
Therefore, for temperatures T < 104 K, in order to
have an important contribution from collisional exci-
tations one needs to have neutral fractions very close
to 1 (so that the recombination cascade term of equa-
tion 8 becomes very low). However, for T > 104 K
the collisional excitation contribution becomes dom-
inant for monotonically decreasing 1−xc values (see
Figure 6).

Interestingly, if we compare the temperature de-
pendence of the neutral fraction corresponding to
coronal ionization equilibrium (i.e., the ionization
state determined from the equilibrium between col-
lisional ionizations and radiative recombinations of
H), we see that coronal equilibrium gives higher neu-
tral fractions at all temperatures. Therefore, the Hα
emission of a gas in coronal ionization equilibrium is
dominated by the collisional excitation contribution
at all temperatures.

4. DISCUSSION

We have derived a simple model of a spontaneous
transition cascade fed by both recombinations and
electron impact excitations upwards from the ground
level of H. With this model, the level populations and
the line emission coefficients can be written in terms

of the usual “effective recombination coefficients”
(equation 3) and of equivalently defined “effective
collisional excitation coefficients” (equation 4).

We calculated the recombination and the colli-
sional contributions to the emission coefficients of
the Hα, Hβ and Hγ lines as a function of tem-
perature and H ionization fraction x = nHII/nH

and found that the Balmer line ratios have a tran-
sition from a “low temperature” to a “high tem-
perature” regime, with approximately temperature-
independent ratios in both regimes. The low tempe-
rature regime of course corresponds to the recombi-
nation cascade, which is known to produce line ratios
with only a weak temperature dependence. The high
temperature regime corresponds to collisionally ex-
cited H lines in the regime in which kT is much larger
than the energy difference between the upper levels
giving rise to the pair of lines in the ratio (for which
the line ratio again shows only a weak dependence
on temperature).

The details of the transition between the low and
the high temperature regimes of the line ratios de-
pend on the ionization fraction x of the gas (see Fig-
ures 2 and 3). For low values of x, the Hα/Hβ and
Hβ/Hγ line ratios show strong peaks as a function
of temperature, before settling onto the high tem-
perature regime values. These peaks disappear for
values x ≈ 1, and a monotonic transition between
the low and high temperature line ratio regimes is
then obtained (see Figures 4 and 5).

The existence of this clear transition between a
low and a high temperature regime (in which the H
level populations are dominated by recombinations
and by collisional excitations, respectively) has inter-
esting implications for observations of shock waves.
For example, in high angular resolution observations
of Herbig-Haro (HH) objects one might detect both
the Balmer line emission of the hot, immediate post-
shock region (with temperatures in excess of ≈ 105K,
where one would see the effect of the collisional exci-
tations) and of the cooler (≈ 103 → 104K) recombi-
nation region (dominated by the recombination cas-
cade). The first region would be characterized by an
Hα/Hβ ratio of≈ 4 (see the high temperature regime
of this ratio in Figure 4), and the second region by
the recombination Hα/Hβ ≈ 2.8 value (see the low
temperature regime in Figure 4 or, e.g., Pengelly &
Seaton 1964). This effect is seen in the new Hα and
Hβ images of HH 1 and 2 of Raga et al. (2015).

Our results might also be applicable for observa-
tions of Balmer dominated, non-radiative shocks (in
which the Balmer line emission is due to collisional
excitation in the immediate post-shock region, see,
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e.g., the reviews of Raymond 2001 and Heng 2010).
With high signal-to-noise observations of the Hα,
Hβ and Hγ lines, it would be possible to use the
predictions of the high temperature regime Hα/Hβ
and Hβ/Hγ line ratios (see the T > 105K region of
Figure 4 and the interpolations given by equations
B18-B19) to obtain a simultaneous determination of
the extinction and of the average temperature of the
emitting gas.

Very interestingly, we find that for a gas in coro-
nal ionization equilibrium (i.e., the equilibrium re-
sulting from the balance between collisional ioniza-
tions and radiative recombinations of H) the Hα emi-
ssion is dominated by the collisional excitation con-
tribution (see Figure 6). In order for the recom-
bination cascade to have a dominant contribution
to the Hα emission one needs a gas with consid-
erably higher ionization fraction (i.e., lower neutral
fraction) than the coronal equilibrium value. This
situation is found, e.g., in photoionized regions (in
which high ionizations are found even for relatively
low temperature values as a result of the high pho-
toionization rate) and in recombination regions of
shock waves (in which the recombining gas relaxes
toward, but never reaches, coronal equilibrium). On
the other hand, the immediate post-shock collisional
ionization regions have neutral fractions higher than
coronal equilibrium, so that they have an Hα emi-
ssion which is clearly dominated by the collisional
excitation contribution.

Finally, the work presented in this paper gives a
straightforward method for calculating the Balmer
line emission from shock wave models. This can be
done by solving the recombination+collisional exci-
tation cascade model (for which all parameters are
given in Appendix A) or by using the analytic fits
which have been obtained for the case B emission
coefficients and line ratios (see Appendix B).

We acknowledge support from CONACyT grants
101356, 101975 and 167611, DGAPA-UNAM grants
IN105312 and IG100214. We an acknowledge anony-
mous referee for comments which led to the results
presented in Figure 6.

APPENDICES
A. COEFFICIENTS FOR THE

RECOMBINATION AND COLLISIONAL
EXCITATION CASCADE

In this Appendix we give the atomic parame-
ters and coefficients used to calculate the statisti-
cal equilibrium for the n = 3 → 5 levels of H (see

equations 2-6). We have taken the Einstein A co-
efficients and the collision strengths Ω by appropri-
ately grouping the parameters given in the Chianti
database (Dere et al. 1997; Landi et al. 2006). To
describe the temperature dependencies of the colli-
sion strengths of the 1 → k transitions we calculated
least squares polynomials of the form

Ω1,k(T ) =
5

∑

p=0

apt
k , (A11)

with t = log10(T/10
4K) in the T = 103 → 108K

temperature range. The values of the ak coefficients
for the transitions to levels k = 2 → 5 (as well as the
A coefficients) are given in Table 1.

The q1,k collisional excitation coefficients were
then calculated with the standard relation

q1,k(T ) =
8.629× 10−6

2T 1/2
Ω1,k(T )e

−E1,k/kBT , (A12)

with T in K, and where we considered that the sta-
tistical weight of the ground state is g1 = 2.

We calculated the recombination coefficients αk

to the excited levels of H following Seaton (1959a),
and we then calculated least squares fits of the form

log10 αk =
4

∑

p=0

bpt
k , (A13)

with t = log10(T/10
4K), in the T = 103 → 106K

temperature range. The coefficients for the polino-
mials interpolating the αk(T ) are given in Table 2
for k = 1 → 5.

With these coefficients we calculated the recom-
bination cascade and the collisionally excited cas-
cades described in § 2. The “case A” calculation was
done with the Einstein A coefficients given in Table
1, and the “case B” calculation was done setting to
zero the A coefficients of the Lyman transitions (i.e.,
setting Ak,1 = 0 for all k).

B. ANALYTIC FITS FOR THE “CASE B”
EMISSION

In this Appendix we present analytic fits to the
temperature dependence of the “case B” recombina-
tion and collisional excitation contributions to the
Hα emission and to the temperature dependence of
the Hα/Hβ and Hβ/Hγ ratios of the “case B” re-
combination and collisional contributions:

ǫr(Hα) =
4.85× 10−23

T 0.568 + 3.85× 10−5T 1.5
, (B14)
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TABLE 1

EINSTEIN A COEFFICIENTS AND FITS FOR THE COLLISION STRENGTHS

transition Aa [s−1] a0 a1 a2 a3 a4 a5

1 → 2 4.695× 108 0.7925 0.9385 −1.5361 2.2035 −0.5345 0.0409

1 → 3 5.567× 107 0.2500 0.2461 −0.3297 0.3892 −0.0928 0.0071

1 → 4 1.279× 107 0.1125 0.1370 −0.1152 0.1209 −0.0276 0.0020

1 → 5 4.128× 106 0.0773 0.0678 −0.0945 0.0796 −0.0177 0.0013

aAlso: A32 = 4.410× 107s−1, A42 = 8.419× 106s−1, A43 = 8.986× 106s−1, A52 = 2.530× 106s−1, A53 = 2.201× 106s−1

and A54 = 2.699× 106s−1.

TABLE 2

FITS FOR THE RECOMBINATION COEFFICIENTS

levels b0 b1 b2 b3 b4

1 −12.8049 −0.5323 −0.0344 −0.0305 −0.0017

2 −13.1119 −0.6294 −0.0998 −0.0327 0.0001

3 −13.3377 −0.7161 −0.1435 −0.0386 0.0077

4 −13.5225 −0.7928 −0.1749 −0.0412 0.0154

5 −13.6820 −0.8629 −0.1957 −0.0375 0.0199

to better than 3% in the 103 → 106K temperature
range,

ǫc(Hα) =
3.57× 10−17

T 0.5
e−140360/T

×

(

1 +
7.8

1 + 5× 105/T

)

, (B15)

to better than 8% in the 104 → 106K temperature
range,

ǫr(Hα)

ǫr(Hβ)
= 2.674 +

1.383

1 + (9× 104/T )0.8
, (B16)

to better than 1% in the 103 → 106K temperature
range,

ǫr(Hβ)

ǫr(Hγ)
= 1.984 +

0.96

1 + (9× 104/T )0.64
, (B17)

to better than 0.7% in the 103 → 106K temperature
range,

ǫc(Hα)

ǫc(Hβ)
= 3.35e−7681/T +

1.05

(1 + 4.5× 104/T )4
,

(B18)
to better than 0.7% in the 104 → 106K temperature
range, and

ǫc(Hβ)

ǫc(Hγ)
= 3.35e−3551/T +

1.26

(1 + 104/T )3
, (B19)

to better than 0.8% in the 104 → 106K temperature
range.

In these interpolation fomulae, T is the tempe-
rature in K. The fits to the recombination and col-
lisionally excited Hα emission (equations B14-B15)
are shown in Figure 1.
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Stasińska, G., Izotov, Y. 2001, A&A, 378, 817
Storey, P. J., Sochi, T. 2014, MNRAS, in press



©
 C

o
p

y
ri

g
h

t 
2

0
1

5
: 
In

st
it
u

to
 d

e
 A

st
ro

n
o

m
ía

, 
U

n
iv

e
rs

id
a

d
 N

a
c

io
n

a
l A

u
tó

n
o

m
a

 d
e

 M
é

x
ic

o

RECOMBINATION AND COLLISIONALY EXCITED BALMER LINES 237

A. Castellanos-Ramı́rez, A. Esquivel, A. C. Raga, A. Rodŕıguez-González, P. F. Velázquez: Instituto de Ciencias
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