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RESUMEN

(Strömgren 1939) presentó un modelo para la fotoionización de una nebulosa
homogénea, y derivó soluciones anaĺıticas aproximadas de su modelo. El presente
art́ıculo explora el modelo de Strömgren y muestra que es posible construir solu-
ciones anaĺıticas más precisas (aunque por supuesto más complejas). Estas solu-
ciones son interesantes para inicializar simulaciones numéricas y para tener una des-
cripción anaĺıtica adecuada de regiones fotoionizadas con zonas transición HII→HI
“gruesas”.

ABSTRACT

(Strömgren 1939) presented a model for the photoionization of a homogeneous
nebula, and derived approximate analytic solutions to his model. The present pa-
per explores Strömgren’s model, and shows that it is possible to construct more
accurate (though of course more complex) analytic solutions. These new solutions
are interesting for initializing numerical simulations and for obtaining an appro-
priate analytic description of photoionized regions with “thick” HII→HI transition
regions.

Key Words: ISM: HII regions

1. INTRODUCTION

(Strömgren 1939) first derived a “grey”
(i.e., frequency independent) radiative trans-
fer+photoionization equilibrium model for a
photoionized region with uniform density and
temperature. He derived two analytic solutions:

1. an “inner solution” for the ionization stratifica-
tion within the ionized region with the assump-
tion that x = nHII/nH ≈ 1 (where nHII is the
ionized H and nH the total H density),

2. a solution to the HII→HI transition region un-
der the assumption that this region is thin com-
pared to the outer radius of the nebula (so that
the geometrical dilution of the stellar UV pho-
tons can be assumed to be constant across the
transition region).

The first solution gives a correct description for the
internal, almost fully ionized part of an HII region,
while the second solution provides an adequate de-

scription of the transition region, provided that it
is indeed thin compared to the so-called “Strömgren
radius” (RS).

The present paper discusses a new, approximate
analytic solution to Strömgren’s problem, which can
be used for photoionized regions with either thin or
thick HII→HI transition regions. Strömgren’s “inner
solution” is rederived in § 2, in a form appropriate
for an extension to more accurate, approximate an-
alytic solutions. An example of such a solution is
presented in § 3, and a comparison with the exact
(i.e., numerical) solutions is shown in § 4. Finally,
a discussion of the relevance of the new solution is
presented in § 5.

2. STRÖMGREN’S ANALYSIS

In this section, we basically rederive the solu-
tion obtained by (Strömgren 1939). We consider
an isothermal, constant density pure H nebula pho-
toionized by a point source producing S∗ ionizing
photons per unit time. The ionization equilibrium
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resulting from the balance between photoionizations
and recombinations in an arbitrary point of the neb-
ula can be written as:

nH(1 − x)φH = x2n2
HαH , (1)

where x = nHII/nH = ne/nH is the ionization frac-
tion (with nH being the uniform H number density,
and nHII and ne being the ionized H and electron
densities, respectively), αH the recombination coef-
ficient and φH the photoionization rate of H.

This quadratic equation for x can be inverted to
obtain:

x =
1

2A

(√
1 + 4A − 1

)

, (2)

with

A ≡ nHαH

φH
=

1 − x

x2
. (3)

The H photoionization rate is given by

φH =

∫

∞

ν0

4πJν

hν
σν dν =

S∗σH

4πR2
e−τ , (4)

with

τ = nHσH

∫ R

0

(1 − x)dR , (5)

where Jν is the angular average of the specific inten-
sity, σν is the (frequency dependent) H photoioniza-
tion cross section, ν0 is the Lyman limit frequency
and R is the spherical radius. The second equality
in equation (4) is obtained in the “grey approxima-
tion of the ISM” (i.e., setting σν = σH independent
of ν), considering the central star as a point source,
and neglecting the contribution of the diffuse ioniz-
ing photon field.

Following (Strömgren 1939), we now use equa-
tions (3) and (4) to define

f ≡ e−τ =
3r2

Aλ
(6)

in terms of the dimensionless radius

r =
R

RS
with RS ≡

(

3S∗

4πn2
HαH

)1/3

, (7)

and where the dimensionless parameter

λ ≡ RSnHσH (8)

is the ratio between the Strömgren radius RS and
the mean free path of the ionizing photons in the
neutral gas.

Now, from equation (5) we see that f obeys the
differential equation

1

f

df

dr
= −λ(1 − x) , (9)

Fig. 1. The fraction 1 − x(A) of neutral H (where
x = nHII/nH is the HII fraction) as a function of the A
parameter (see equation 3). The exact solution (equation
2) is shown with the solid curve. The linear approxima-
tion to 1−x(A) (equations 10 and 14) is shown with the
thin, dotted line. The other two segments of the three-
power law approximation (equation 14) are shown with
thicker dotted lines.

where x is given as a function of A by equation (2).
This differential equation can be integrated numeri-
cally with the boundary condition f(0) = 1, but no
exact analytic integral has been found.

In order to obtain an approximate numerical in-
tegral, one expands the term in parentheses on the
right hand side of equation (2) to second order in A,
obtaining:

1 − x(A) ≈ A . (10)

This Taylor series expansion is compared with the
exact form of 1 − x(A) (obtained from equation 2)
in Figure 1.

We now write A in terms of f and r using equa-
tion (6) and insert the result into equations (10) and
(9) obtaining the differential equation

dfS

dr
= −3r2 , (11)

which can be directly integrated with the boundary
condition fS(0) = 1 to obtain the approximate solu-
tion

fS(r) = 1 − r3 . (12)

If one now combines this result with equations (6)
and (2) one finally obtains an approximate form for
the ionization fraction as a function of dimensionless
radius:

xS(r) =
λ(1 − r3)

6r2

[
√

1 +
12r2

λ(1 − r3)
− 1

]

. (13)
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IONIZATION STRUCTURE OF A STRÖMGREN SPHERE 61

This solution is compared with an “exact” numerical
integration of equations (9) and (2) for three values
of the dimensionless parameter λ = 10, 100 and 1000
in Figure 2. Regardless of the value of λ, xS(r) goes
to zero at r = 1 (i.e., at R = RS , the Strömgren
radius).

The approximate solution fS(r) (equation 12) for
the structure of a photoionized sphere was obtained
by (Strömgren 1939), who noted that inside an HII
region we can set x ≈ 1 in the right hand side of
equation (1), leading to the approximate differen-
tial equation (11). (Strömgren 1939) then proceeded
to find a second approximate solution by setting
R = RS in the denominator of the right hand side
of equation (4) and then deriving an approximate
form of x(r) for radii around the Strömgren radius.
This solution is appropriate for the thin transition
between ionized and neutral regions that occurs for
λ ≫ 1, but is not completely satisfactory because
the natural boundary condition at the origin (i.e.,
f(0) = 1) cannot be applied (see, e.g., the discussion
in the book of Dyson & Williams 1980).

3. NEW APPROXIMATE SOLUTION

In the derivation of Strömgren’s solution given
in § 2, we show the way to obtain more accurate
analytic approximations to the structure of a pho-
toionized sphere. We have the differential equation
(9) with the right hand side 1−x(A) given by equa-
tion (2). Then, using equation (6) we substitute
A = 3r2/(λf) and obtain a differential equation with
f and r as variables, which has to be integrated to
obtain f(r) (with the boundary condition f(0) = 1).
Unfortunately, given the complex form of x(A) (see
equation 2), the resulting differential equation does
not have an analytic integral.

A process that can be used to find approximate
solutions to the problem is to replace 1−x(A) (on the
right hand side of equation 9) by approximate forms
which do lead to an analytically integrable differen-
tial equation. In § 2 we set 1 − x(A) ≈ A (corre-
sponding to the first order Taylor series expansion
of equation 10), leading to the approximate analytic
solution of (Strömgren 1939).

We now propose the following three-segment ap-
proximation for the 1 − x(A) function:

1 − x(A) = A ; A < A1

= aAb ; A1 ≤ A ≤ A2

= 1 ; A > A2 , (14)

Fig. 2. The ionization fraction x = nHII/nH as a func-
tion of dimensionless radius r = R/R + S (where RS is
the Strömgren radius, see equation 7) for three values
of the dimensionless parameter (see equation 8) λ = 10
(top), λ = 100 (center) and λ = 1000 (bottom). Note
that in the central and bottom frames the graphs do not
extend to the position of the central star (i.e., to r = 0).
The solid curves correspond to the exact (i.e., numerical)
solution, the short dash curves to Strömgren’s solution
(see § 2) and the long dash curves to the new, three-
segment approximate analytic solution (see § 3).
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with A1 = 0.07, A2 = 5.887, a = 0.345 and
b = 0.600. This approximation is compared with
the value of 1 − x(A) obtained using the exact form
for x(A) (given by equation 2) in Figure 1.

With the approximate form for 1−x(A) given by
equation (14), equation (9) can be integrated ana-
lytically to obtain:

f(r) = 1 − r3 , (15)

for r ≤ r1,

f(r) =

[

f b
1 − 3babλ1−b

2b + 1

(

r2b+1 − r2b+1
1

)

]1/b

, (16)

for r1 < r ≤ r2, with f1 = 1 − r3
1,

f(r) = f2e
λ(r2−r) , (17)

for r2 < r. In equations (15-16) the a and b constants
have the values given by equation (14). In equation
(17), f2 is the value given by equation (16) when
evaluated in r = r2.

The switch between equations (15) and (16) oc-
curs at a dimensionless radius

r1 =

(

1 +
1

λA1

)

−1

, (18)

where the value of A1 is given in the text follow-
ing equation (14). This relation is obtained from a
second-order Taylor series expansion around r1 = 1.

The switch between equations (16) and (17) oc-
curs at a dimensionless radius r2, which is the root
of the equation:

p1r
2b+1
2 + p2r

2b
2 + p3 = 0 , (19)

with

p1 =
3babλ1−b

2b + 1
; p2 =

3ba

λb
;

p3 = −f b
1 − 3babλ1−b

2b + 1
r2b+1
1 . (20)

An approximate, analytic expression for r2 can be
obtained by setting

r2 = 1 + η , (21)

and then expanding equation (19) to second order in
η to obtain:

αη2 + βη + γ = 0 , (22)

with

α = (2b+1)bp1 + b(b− 1)p2 ; β = (2b+1)p1 +2bp2 ;

γ = p1 + p2 + p3 . (23)

Using the “+ sign root” of equation (22), we can
then obtain r2 from equation (19).

4. RESULTS

We now take the 3-segment, approximate solu-
tion of equations (15-17) and substitute into equa-
tions (6) and (2) to obtain the ionization fraction x
as a function of dimensionless radius r. The result-
ing form of x(r) is compared with the exact (i.e.,
numerical) solution for values of the dimensionless
parameter λ = 10, 100 and 1000 in Figure 2.

The analytic solutions clearly follow quite closely
the exact solutions for the λ = 10 and 100 cases (top
two panels of Figure 2). For the case with λ = 1000
(bottom frame of Figure 2), the analytic solution
shows a x = 1 → 0 transition with a spatial structure
similar to the one of the exact solution, but with a
spatial offset of ∼ 0.005 in the dimensionless radial
coordinate.

The errors in the x(r) stratifications obtained
with the approximate form for 1 − x(A) which we
have chosen (see equation 14) are typical of well cho-
sen 3-power law segment approximations. In order
to obtain significantly more accurate analytic solu-
tions for x(r), it is necessary to go to 4-power law
segment approximations for 1−x(A). It is, however,
not clear that the increase in the complexity of the
resulting analytic solutions is worthwhile.

5. DISCUSSION

Given the century-old flavor of this work, a dis-
cussion of its relevance appears to be appropriate.
Firstly, the newly derived approximate analytical so-
lution for the ionization structure of an HII region is
satisfying in itself, in that it gives a more accurate de-
scription than the solution of Strömgren (1939). In
the world of detailed numerical simulations of pho-
toionized flows (see, e.g., Tremblin et al. 2012), such
analytic solutions are useful both for initializing the
simulations and for checking whether or not the sim-
ulations are giving accurate results.

For HII regions photoionized by stellar photon
sources, the structure of the transition between ion-
ized and neutral gas at the Strömgren radius is of
course a rather minor point. This is because the di-
mensionless parameter λ (see equation 8) has values

λ = 1330

(

S∗

1049s−1

)1/3
( nH

1 cm−3

)1/3
(

σH

σν0

)

,

(24)
where we have used typical parameters for a galac-
tic HII region. For a photoionizing spectrum emit-
ted by stellar sources, the value of the frequency-
independent σH that has to be used is σH ≈ σν0

(where σν0
= 6.30×10−18cm2 is the photoionization

cross section of H at the Lyman limit). This is due
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to the fact that the stellar UV spectrum falls expo-
nentially for frequencies close to the Lyman limit, so
that the relevant absorption cross section σH (used
in a grey model) has to be ≈ σν0

(as σν falls only as
ν−3). For this case, the last term in parentheses on
the right hand side of equation (24) is of order unity,
and we then have λ ∼ 1000.

Therefore, for a galactic HII region we have ion-
ization fraction distributions similar to the λ = 1000
solution shown in the bottom panel of Figure 2. As
noted by Strömgren (1939) and many papers in the
intervening years, this result implies that the transi-
tion region (from fully ionized to neutral H) is very
thin compared to the outer radius of the nebula. Be-
cause of this a “Strömgren sphere” description (in
which the transition from HII to HI is unresolved) is
appropriate.

On the other hand, for photoionized regions ex-
cited by sources with a power law photon distribu-
tion, a dominant part of the photoionizations is done
by photons with ν ≫ ν0, and one then has σH ≪ σν0

.
This leads to much smaller values for the dimension-
less parameter λ, resulting in transition regions with
widths comparable to the Strömgren radius.

Because of this, the predicted spectra of pho-
toionized regions in active galaxies can be dominated
by the HII→HI transition region (see, e.g., Halpern
& Steiner 1983 and Binette 1985). These spectra
qualitatively resemble shock wave spectra (which are
also produced in a transition region from ionized to
neutral gas). For such low λ photoionization regions,
our new solution gives the first available analytic de-
scription of the resulting ionization stratification.

A. C. Raga: Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apdo. Postal 70-543,
C. P. 04510, México, D. F., México (raga@nucleares.unam.mx).

The analytic approach described in this paper
could be extended to more complex problems. One
possibility would be to explore the ionization fraction
in a constant pressure nebula (in which the density is
position-dependent). A second possibility would be
to consider the problem of a dusty HII region (see,
e.g., Draine 2011), for which an analytic solution
based on (Strömgren’s 1939) x ≈ 1 approximation
(see § 1) has been derived by (Petrosian et al. 1972).
This dusty region problem would be interesting in
the context of dust in narrow line regions of active
galactic nuclei (see, e.g., Binette et al. 1993).
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grants 61547, 101356, 101975 and 167611 and the
DGAPA-UNAM grants IN105312 and IG100214.
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