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RESUMEN

Partiendo de una ecuación monoparamétrica de cuarto orden para la super-
ficie de un elipsoide (en vez de segundo orden, como en las clásicas figuras ho-
mogéneas), se investiga el equilibrio hidrostático de una masa heterogénea, cuya
versión homogénea -que será la única que abordemos en el presente art́ıculo- guarda
un parecido con un elipsoide de Jacobi, salvo que la nuestra es estática, siendo un
movimiento de vorticidad diferencial el que establece su equilibrio. La serie de Ja-
cobi, que es completa, resulta ser un caso particular de las nuestras, las cuales están
truncadas por el valor del parámetro en la ecuación de la superficie, que asimismo
determina si la velocidad angular crece paulatinamente del ecuador al polo, o vi-
ceversa; o si es entre ellos donde alcanza su valor máximo. El modelo esferoidal
-nuestra versión de un esferoide de Maclaurin- se trata como un caso particular del
elipsoidal.

ABSTRACT

Departing from a mono-parametric fourth-order surface equation for an ellip-
soid (rather than of the second order, as in the classical homogeneous figures), we in-
vestigate the hydrostatic equilibrium of a heterogeneous mass, whose homogeneous
version—which will be the only one considered in the current paper—resembles a
Jacobi ellipsoid, with the proviso that ours is static, its equilibrium being estab-
lished by a differential vorticity motion. The Jacobi series, which is complete, turns
out to be a particular case of ours, which are truncated by the value of the sur-
face equation parameter, that further determines if the angular velocity steadily
increases from the equator to the pole, or vice versa; or if it has a maximum value
between them. The spheroidal model—our version of a Maclaurin spheroid—is
treated as a particular case of the ellipsoidal one.

Key Words: gravitation — hydrodynamics — stars: rotation

1. INTRODUCTION

In past works, we were engaged with the question of equilibrium and stability of an inhomogeneous body,
held together by gravitational attraction, consisting of two confocal, either spheroids or ellipsoids, that we
called the nucleus and the atmosphere with, as in real stars, the nucleus being denser than the atmosphere.
Our aim was to gain some physical insight on what comes about in celestial rotating bodies, imitating them in
a coarse way—our model is composed of an ideal, incompressible fluid—by using analytical descriptions (like
the ellipsoid equation) rather than pure numerical procedures.

We may summarize our past results as follows. For spheroids, no figures result when the nucleus and the
atmosphere rotate with common and constant angular velocity; on the other hand, a series of oblate figures
arises when the nucleus is flatter and rotates faster than the atmosphere (Cisneros et al. 1983). For ellipsoids,
no figures were found in the case of common and constant angular velocity; anyway, these configurations—as we

1Facultad de Ciencias, Universidad Autónoma de San Luis Potośı, Mexico.
2Instituto de F́ısica, Universidad Autónoma de San Luis Potośı, Mexico.
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120 CISNEROS, MARTÍNEZ, & MONTALVO

became aware afterwards—are ruled out by Hamy’s theorem (Hamy 1887; Tassoul 1978); the case of different
angular velocities was rejected beforehand, because the velocity fields of the nucleus and the atmosphere are
likely to interfere destructively with each other.

Admitting Hamy’s theorem, we pursued the ellipsoidal model idea after noticing that, among the members of
the inhomogeneous spheroids series quoted above, there were some having a neutral frequency, which encouraged
us to inquire if, by analogy with the homogeneous figures, tri-axial figures could branch off (bifurcate) from
them.

To this end, a Riemann-type model of class S was employed, in which the nucleus and the atmosphere, while
rotating with a common angular velocity, are endowed with internal currents of different vorticity. Although
this model contributes figures (Cisneros et al. 1993, 2000, 2004), their accuracy is far from matching that of the
classical homogeneous ones; furthermore, none of them can simultaneously be fully ellipsoidal in both nucleus
and atmosphere, unless the last is but a very thin shell, i.e., when the figures are nearly homogeneous. Clearly,
any further pretension of looking for heterogeneous ellipsoidal figures, without sacrificing accuracy, compels us
to take distance from the standard ellipsoid quadratic equation.

2. OUR MODEL

Our new model is constructed on the base of a distorted ellipsoid, whose surface equation is

x2

a2

1

+
y2

a2

2

+
z2

a2

3

+ d
z4

a4

3

= 1, (1)

so that tri-planar symmetry is preserved and the transverse sections are again ellipses; d is a parameter
independent of x, y and z; a1 and a2 are semi-axes, but a3 is the third semi-axis only in the limit d → 0.
The true third semi-axis is zM , i.e., the solution of the equation

z2

a2

3

+ d
z4

a4

3

= 1, (2)

that is,

zM =
a3√
2

√√
1 + 4 d

d
− 1

d
. (3)

Following (Jeans 1919) the distorted ellipsoids will be called ellipsoidal figures, rather than ellipsoids. In
order for the figures to be closed, zM must be a real number, i.e. d is limited to

d ≥ −1

4
. (4)

According to equation (3) a3 can be eliminated from equation (1) in terms of the true semi-axis zM , but this
would be impractical.

3. THE GRAVITATIONAL POTENTIAL OF THE HETEROGENEOUS BODY

The body’s atmosphere total potential at an interior point is composed of two contributions: an interior
one, coming from the whole body, assumed to have a density ρa throughout, and an exterior one, coming from a
hypothetical nucleus of density ρn−ρa, which compensates the mass excess of the former calculation; similarly,
the nucleus total potential is composed of two interior contributions. On the other hand, the confocality
condition, which helped to render straightforward the evaluation of the potential (Lyttleton 1953; Macmillan
1958) in our past models, is no longer useful; in fact, as we shall see in our next paper, the nucleus and
atmosphere of our current heterogeneous model are similar ellipsoidal figures, rather than confocal.

In general, the potential of a continuous mass of density ρ, at a point (x1, x2, x3), is given by (Thornton &
Marion 2008)

V = Gρ

∫

dτ

R
, (5)
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ON THE EQUILIBRIUM OF A DISTORTED HETEROGENEOUS ELLIPSOIDAL MASS 121

where G is the gravitational constant, R =
√

(x − x1)2 + (x − x2)2 + (x − x3)2 and dτ is the volume element.
Also needed are the derivatives of V :

∂V

∂x1

= Gρ

∫

dτ

R3
(x − x1),

∂V

∂x2

= Gρ

∫

dτ

R3
(y − x2),

∂V

∂x3

= Gρ

∫

dτ

R3
(z − x3). (6)

Taking the field point (x1, x2, x3) as the origin of spherical coordinates (R,ϑ, ϕ), where R is the distance from
that point to the source point (x, y, z), and using the relations connecting spherical and rectangular coordinates,
namely,

x = x1 + R sin ϑ cos ϕ, y = x2 + R sinϑ sin ϕ, z = x3 + R cos ϑ, (7)

the potential V and its derivatives become

V =
1

2
ρ

∫

ϑ

∫

ϕ

[R2

2
(ϑ, ϕ) − R2

1
(ϑ, ϕ)] sin ϑdϑdϕ, (8)

∂V

∂x1

= ρ

∫

ϑ

∫

ϕ

[R2(ϑ, ϕ) − R1(ϑ, ϕ)] sin2 ϑ cos ϕdϑ dϕ, (9)

∂V

∂x2

= ρ

∫

ϑ

∫

ϕ

[R2(ϑ, ϕ) − R1(ϑ, ϕ)] sin2 ϑ sin ϕdϑ dϕ, (10)

∂V

∂x3

= ρ

∫

ϑ

∫

ϕ

[R2(ϑ, ϕ) − R1(ϑ, ϕ)] sin ϑ cos ϑ dϑ dϕ. (11)

where we have omitted (as we will do hereinafter) the constant G; here, R2(ϑ, ϕ), and R1(ϑ, ϕ), are the two
positive solutions of the equation

(x1 + R sinϑ cos ϕ)2

a2

1

+
(x2 + R sin ϑ sinϕ)2

a2

2

+
(x3 + R cos ϑ)2

a2

3

+ d
(x3 + R cos ϑ)4

a4

3

= 1. (12)

For an exterior point, R2 and R1 correspond to the body’s surface points (for a given pair (ϑ, ϕ)) where R cuts
it; for an interior point there is only one intersection, so that R1 = 0 and R2 6= 0. Equation (12) must be solved
for each (x1, x2, x3). For an interior point, the limits of ϑ, and ϕ are simply (0, π), and (0, 2π), respectively,
but for an exterior point the limits are more complicated.

3.1. Limits of ϑ and ϕ for exterior points

It should be realized that in going from an exterior point to any point on the body’s surface, the angle ϑ
cannot take any value within the range 0 < ϑ < π, because it is restricted by the limits arising from all the
tangents to the surface that can be drawn from the point, thus generating a cone with vertex at (x1, x2, x3); r
is constrained to vary only inside this cone. The loci of the tangent points (x, y, z) are given by equation (1),
and the relation

(x1 − x)
x

a2

1

+ (x2 − y)
y

a2

2

+ (x3 − z)
z

a2

3

+ 2 d (x3 − z)
z3

a4

3

= 0, (13)

that is, two of the coordinates are determined as a function of the third. For the sake of simplicity, z will be
taken as the independent variable (parameter). Solving the equations, two z-dependent solutions are obtained:

x11 =
a2

1
a2

2
a4

3
x1

(

a4

3
− a2

3
x3z + dz3(−2x3 + z)

)

−√
ra

a8

3
(a2

2
x2

1
+ a2

1
x2

2
)

,

y1 =
a2

2

(

a4

1
a4

3
x2

2

(

a4

3
− a2

3
x3z + dz3(−2x3 + z)

)

+ x1

√
ra

)

a2

1
a8

3
(a2

2
x2

1
x2 + a2

1
x3

2
)

,

x12 =
a2

1
a2

2
a4

3
x1

(

a4

3
− a2

3
x3z + dz3(−2x3 + z)

)

+
√

ra

a8

3
(a2

2
x2

1
+ a2

1
x2

2
)

,

y2 =
a2

2

(

a4

1
a4

3
x2

2

(

a4

3
− a2

3
x3z + dz3(−2x3 + z)

)

− x1

√
ra

)

a2

1
a8

3
(a2

2
x2

1
x2 + a2

1
x3

2
)

,
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122 CISNEROS, MARTÍNEZ, & MONTALVO

where the radicand ra is given by

ra = −a4

1
a8

3
x2

2

[

a2

2
a4

3
x2

1

(

−a4

3
+ a2

3
z2 + dz4

)

+ a2

1

[

a4

3
x2

2

(

−a4

3
+ a2

3
z2 + dz4

)

+a2

2

(

a4

3
− a2

3
x3z + dz3(−2x3 + z)

)2
]]

. (14)

For some very special (singular) situations, the solution may differ from the above, but this point will not
concern us. We require real solutions in order to have physically meaningful results, and so ra ≥ 0. The ra limit
for having real roots is ra = 0, thereby resulting two extremes values, let us call them za and zb, that must lie
in the range (−zM , zM ). With the points (x11, y1, z), one half of the tangent curve can be built if z is let to run
from za to zb, while the other half comes from the points (x12, y2, z). Letting z vary in its allowed range, the
angles ϑ and ϕ change from a minimum value to a maximum, which can be found with the expressions

ϕ = arctan
y1 − x2

x11 − x1

, ϑ = arccos
z − x3

R
, (15)

R =
√

(x1 − x11)2 + (x2 − y1)2 + (x3 − z)2,

and

ϕ = arctan
y2 − x2

x12 − x1

, ϑ = arccos
z − x3

R′
, (16)

R′ =
√

(x1 − x12)2 + (x2 − y2)2 + (x3 − z)2.

According to these equations, the spherical angles are functions of z: ϑ = ϑ(z) and ϕ = ϕ(z), so that after
eliminating z we have

ϑ = ϑ(ϕ). (17)

It is found that for each ϕ there are two ϑ values: ϑ1 and ϑ2. Therefore, the integration limits of the integrals
(8)-(11) for exterior points are:

ϑ = (ϑ1(ϕ), ϑ2(ϕ)), ϕ = (ϕa, ϕb), (18)

where ϕa and ϕb are the maximum and minimum values that ϕ can take.

4. THE EQUILIBRIUM EQUATIONS AND A NORMALIZATION

Each fluid particle of our model, while subjected to the whole body’s gravitational field, moves about the
z-axis with a certain velocity v; thence its equation of motion is

d

dt

(

V +
p

ρ
+

1

2
v2

)

=
∂

∂t

(

V +
p

ρ

)

, (19)

where p is the pressure at the point. Our concern is aimed at a steady state and so the right-hand side of this
equation is zero, that is,

V +
p

ρ
+

1

2
v2 = cte.; (20)

i.e., Bernoulli’s theorem (Dryden 1956), which holds for any streamline, will be the governing ‘equilibrium’
equation of our body.

The dimensions of the masses under study are typically of order 109 m; it is possible to avoid dealing with
such inconvenient quantities if the semi-axes are normalized—as will be implicit hereinafter—taking a1 as a
scale factor. For the surface coordinates we write

x = a1 x′, y = a1 y′, z = a1 z′, (21)
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for the reference point
x1 = a1 x′

1
, x2 = a1 x′

2
, x3 = a1 x′

3
, (22)

and for the potential and its derivatives

V = a2

1
ρ V ′,

∂V

∂x1

= a1ρ
∂V ′

∂x′

1

,
∂V

∂x2

= a1ρ
∂V ′

∂x′

2

,
∂V

∂x3

= a1ρ
∂V ′

∂x′

3

, (23)

The normalized surface equation takes the form

x2 +
y2

e2

2

+
z2

e2

3

+ d
z4

e4

3

= 1, (24)

where e2 = a2/a1, and e3 = a3/a1; for economy of writing the normalized variables will be renamed as the
original ones.

The equilibrium equation (20), which we write more explicitly farther on as equation (26), was found
impossible to satisfy for a constant angular velocity, so this kind of motion had to be discarded. It seemed wise
to replace it by an internal motion of non-uniform vorticity; the figures of our interest are therefore static, as
seen from an inertial frame of reference. A moving fluid particle will describe an ellipse perpendicular to the
z-axis, with the ellipse staying fixed in space, its axes pointing permanently along fixed directions.

Now, according to Dedekind, the vorticity ζ of the ellipsoid internal motion is related to the rotation angular
velocity ω of the congruent Jacobi ellipsoid by (Chandrasekhar 1969)

ω = −ζ
e2

1 + e2

2

, or ζ = −ω
1 + e2

2

e2

, (25)

ω = (0, 0, ω), ζ = (0, 0, ζ),

where ω and ζ are vectors along the z-axis: ω = (0, 0, ω), and ζ = (0, 0, ζ). Hereinafter, the term “angular
velocity” will be used as synonymous to vorticity.

5. THE HOMOGENEOUS ELLIPSOIDAL MASS

So far, some of our considerations have been addressed to an inhomogeneous body; we wish, however, to
adjourn this more general model for a future paper, and explore here only the case when no atmosphere is
present; for, as we shall see, our homogeneous figures have some novel features which contrast with Jacobi’s
(or Dedekind’s). The velocity of a rotating fluid particle is v = ω(−y, x, 0).

5.1. The equilibrium equations

Since the body is self-gravitating, the pressure must vanish at each point on its bounding surface, so that
equation (20) becomes

ρ V +
1

2
ρω2(x2

1
+ x2

2
) = const.;

or, in terms of the normalized semi-axes

V + Ω(x2

1
+ x2

2
) = k, Ω =

ω2

2a1ρG
, (26)

(x1, x2, x3) are the coordinates of a surface point where the potential has to be evaluated, in order to satisfy this
boundary condition. As we have pointed out, equation (26) cannot be satisfied for a constant angular velocity,
contrasting with Jacobi’s figures, for which the angular velocity is constant at all body’s surface points, for a
given pair of eccentricities. We will assume that the angular velocity (vorticity) depends on the coordinates of
the point, the dependence being restricted only by the continuity equation div v = 0; that is,

∂ω

∂x2

1

=
∂ω

∂x2

2

,
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from which we infer that

ω = ω(r, x3), and Ω = Ω(r, x3), r = x2

1
+ x2

2
. (27)

By totally differentiating equation (26) and using the surface equation (equation 24), there result the following
two expressions

2
(

1 − e2

2

)

Ω + 2
(

1 − e2

2

)

r
∂Ω

∂r
+ b1 − e2

2
b2 = 0, (28)

−2Ω − 2r
∂Ω

∂r
+

e2

3
r

d3e2

2
x3

∂Ω

∂x3

− b2 +
e2

3

d3e2

2

b3 = 0, (29)

where we have written

b1 =
1

x1

∂V

∂x1

, b2 =
1

x2

∂V

∂x2

, b3 =
1

x3

∂V

∂x3

, d3 = 1 +
2dx2

3

e2

3

.

For the special case in which d = 0 and bi and Ω are constants, equations (28) and (29) become

2(1 − e2

2
)Ω + b1 − e2

2
b2 = 0, −2Ω − b2 +

e2

3

e2

2

b3 = 0, (30)

which are the classical equilibrium conditions for Jacobi’s figures.
At the pole (r = 0) the equilibrium conditions (26), (28) and (29) become

k = Vp, (31)

2(1 − e2

2
)Ωp + b1p − e2

2
b2p = 0, (32)

−2Ωp − b2p +
e2

3

d3e2

2

b3p = 0, x3 = zM , (33)

where the subindex p refers to quantities pertaining to the pole.

5.2. Results

In this paper we are exclusively concerned about the existence of equilibrium figures; the question of stability,
particulary about the possible presence of bifurcation points, i.e., the occurring of neutral frequencies, will be
deferred to a next paper.

We may characterize one of our figures of fixed d by the quantities e2, zM (or e3) and the angular velocity
distribution Ω(r, x3). The standard procedure for obtaining Jacobi’s figures is to fix e2 and then use equa-
tions (30) to settle e3 and Ω. In our case, we can determine e3 by fixing e2 in equation (32), but this yields
only Ωp, the additional required quantity being the whole angular velocity Ω(r, x3), which can be evaluated
by an approximation method. We assume that, along a path (streamline) followed by a particle, the angular
velocity is a linear function of r, say, Ω = αx + αyr, where αx, and αy, are constants which can change from
path to path (i.e., for different x3 values), so that

Ω(r, x3) = αx(x3) + αy(x3) r. (34)

Because of the implied tri-planar symmetry, the equilibrium equation for constant x3, namely

Vp − V = αx r + αy r2,

need to be solved only in the positive quadrant, for which a fitting procedure involving ten points will be
employed. Each quarter of a meridian (i.e., the interval [0, zM ]) is divided into ten equidistant points, plus two



©
 C

o
p

y
ri

g
h

t 
2

0
1

5
: 
In

st
it
u

to
 d

e
 A

st
ro

n
o

m
ía

, 
U

n
iv

e
rs

id
a

d
 N

a
c

io
n

a
l A

u
tó

n
o

m
a

 d
e

 M
é

x
ic

o

ON THE EQUILIBRIUM OF A DISTORTED HETEROGENEOUS ELLIPSOIDAL MASS 125

TABLE 1

SEMI-AXES (a1 = 1) e2, zm, POLAR ANGULAR VELOCITY Ωp,
AND POLAR POTENTIAL Vp, FOR d = 1/8

e2 e3 zM Ωp Vp

0.99 0.6574037 0.623314 0.6107413 3.394020

0.95 0.6437333 0.610414 0.6101262 3.255665

0.90 0.6257421 0.593354 0.6080722 3.080440

0.80 0.5864383 0.556084 0.5987912 2.722499

0.70 0.5420833 0.514025 0.5807111 2.355015

0.60 0.4918012 0.466346 0.5509603 1.979067

0.50 0.4345488 0.412057 0.5058888 1.596755

0.40 0.3691012 0.349997 0.4410814 1.212036

0.30 0.2940654 0.278845 0.3518685 0.832397

0.20 0.2079810 0.197216 0.2355074 0.472689

0.10 0.1096994 0.104021 0.0993468 0.165242

0.05 0.0560198 0.053120 0.0359555 0.053368

backing points at the extremes, and the constants αx and αy are then evaluated for each path. Unfortunately
the results so obtained contain an additional constant which is not small enough (especially near the equator),
by which we mean quantities of order 10−7; this is because V was determined with an accuracy no less than
10−7. Therefore, equation (34) must be revised, for which purpose we set

Ω(r, x3) = αx(x3) + αy(x3) r +
αs(x3)

r
, with αs(zM ) = 0, (35)

so that Bernoulli’s equation now reads

Vp − V = αs + αx r + αy r2, (36)

and the constants αx, αy and αs can be evaluated in a similar fashion. Except near the equator, the new
precision turns out to be much better than with αs = 0. Once the α parameters for each path of a specific
figure have been evaluated, the corresponding angular velocity distribution follows.

Notice that for every d value there corresponds a series, each characterized by the various possible semi-axes,
and the corresponding angular velocity distributions. As is well-known, for d = 0 the Jacobi series follows,
which admits only a pair of axes for any angular velocity value.

We may obtain one of our series by fixing e2 in equations (32) and (33) and solving them for e3 and Ωp, thus
determining the possible semi-axes. Table 1 gives data for d = 1/8. Table 1 shows that beginning at 0.6107
where the largest polar angular velocity occurs (and where the figure is nearly spheroidal), the semi-axes e2

and zM continuously decrease with decreasing Ωp, just as observed in Jacobi’s ellipsoids. From e2 ≃ zM = 0.1
on, the situation reverses and we have zM ∼

> e2 (not observed in Jacobi’s figures); this last behavior will later
be discussed. Next, the figure’s angular velocity distribution must be determined, for which we proceed as
explained above. Table 2 summarizes the results for e2 = 0.5 (seventh row of Table 1), and Figure 1 is the
corresponding plot of Ω vs. r.

According to Figure 1 the path’s angular velocity with x3 = const. decreases from the major axis (r large)
to the e2-axis (smaller r). In addition, a global tendency of the angular velocity to decrease from the pole to
the equator can be inferred, since αx and αy themselves decrease.

Since Table 2 is not particularly suitable for practical situations, we will try to describe our results with
somewhat more clarity by empirically establishing analytical expressions. Due to our limited computation
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126 CISNEROS, MARTÍNEZ, & MONTALVO

Fig. 1. Angular velocity distribution in an ellipsoidal fig-
ure with d = 1/8, e2 = 0.5 and zM = 0.4121. Each curve
gives the angular velocity as a function of r for a trajec-
tory z = x3 = const.. The bottom curve corresponds to
one fourth of the equator, and the topmost (thick point)
to the pole.

Fig. 2. The limiting d-curve points are characterized by
the property zM = e2. The forbidden region corresponds
to figures with zM > e2. The curve is plotted using a
logarithmic scale for d.

TABLE 2

ANGULAR VELOCITY PARAMETERS Ω = αx + αy r + αs/r AS FUNCTION OF CONTOUR LEVEL,
x3, FOR e2 = 0.5 (7TH ROW OF TABLE 1)a

x3 αx αy αs

0.0374559 0.5125501 0.0038054 -0.0325523

0.0749119 0.5123801 0.0037891 -0.0309362

0.1123678 0.5120970 0.0037621 -0.0283352

0.1498238 0.5117015 0.0037250 -0.0248876

0.1872797 0.5111943 0.0036781 -0.0207866

0.2247357 0.5105765 0.0036222 -0.0162794

0.2621916 0.5098497 0.0035580 -0.0116667

0.2996476 0.5090153 0.0034864 -0.0073021

0.3371035 0.5080754 0.0034083 -0.0035906

0.3745595 0.5070323 0.0033245 -0.0009880
aThe error in k (equation (26)), due to the approximation in Ω, is less than about 10−6.

facilities, we tried not to spend too much time seeking an optimal fit. We found that the parameters αx, αy

and αs as given by

αx = αx0 + αx1 x2

3
, αy = αy0 + αy1 x2

3
, αs = αs0 zs + αs1 z2

s , (37)

with

zs =

(

1 − x2

3

e2

3

− d
x4

3

e4

3

)

(zM − x3) , (38)

reproduce the angular velocity with an uncertainty at about the fifth decimal place (for larger d the uncer-
tainty can be in the second decimal place). In this way, the angular velocity distribution based on Table 2 is
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TABLE 3

PARAMETERS OF THE ANGULAR VELOCITY Ω = αx0 + αx1 x2

3 + (αy0 + αy1 x2

3) r + (αs0 zs + αs1 z2

s)/r,
AS A FUNCTION OF e2 AND zM

e2 zM αx0 αx1 αy0 αy1 αs0 αs1

0.99 0.623314 0.619643 -0.023107 0.002463 -0.001061 -0.207990 0.136757

0.95 0.610353 0.619016 -0.024067 0.002562 -0.001148 -0.203685 0.136770

0.90 0.593294 0.616919 -0.025348 0.002692 -0.001272 -0.198056 0.136812

0.80 0.556029 0.607437 -0.028204 0.002967 -0.001581 -0.185878 0.137003

0.70 0.513974 0.588967 -0.031512 0.003256 -0.002004 -0.172291 0.137377

0.60 0.466299 0.558587 -0.035347 0.003546 -0.002601 -0.157013 0.137996

0.50 0.412015 0.512595 -0.039771 0.003804 -0.003483 -0.139678 0.138936

0.40 0.349962 0.446541 -0.044795 0.003963 -0.004861 -0.119798 0.140297

0.30 0.278817 0.355768 -0.050245 0.003892 -0.007211 -0.096719 0.142188

0.20 0.197196 0.237672 -0.055378 0.003340 -0.011841 -0.069582 0.144671

0.10 0.104011 0.099982 -0.057267 0.001921 -0.024017 -0.037413 0.147578

0.05 0.053115 0.036114 -0.052974 0.000846 -0.041463 -0.019265 0.148972

approximately described by

Ω = (0.51260 − 0.03977 x2

3
) + (0.00380 − 0.00348 x2

3
) r +

-0.13968 zs + 0.13894 z2

s

r
. (39)

With this angular velocity expression the complete set of figures based on Table 1 can be obtained, which
we list in Table 3.

5.3. The forbidden ellipsoidal figures

Our ellipsoidal figures have semi-axes 1, e2 and zM , the last being for a fixed e2 a measure of the flattening:
as zM decreases the figures become more flattened. According to our calculations, in equilibrium conditions
the parameter d in the figure’s equation determines zM . Fixing e2 at some intermediate value, say, 0.5, we now
inquire about the effect on zM as d increases, starting at its minimum value −1/4, thus constructing Table 4.
The d range can be split into two segments: from d = −1/4 to d = 1.37576 corresponding to figures with
zM ≤ e2 (or figures of high flattening); and for d > 1.37576, which characterize figures with zM ≥ e2 (or figures
of low flattening). In this last case zM is not the smallest axis, but e2. The segment −1/4 < d < 1.37576
can further be divided from −1/4 to 0 and from 0 to 1.37576, the first (second) comprises figures more (less)
flattened than Jacobi’s ellipsoids. The figures with e2 as the smallest axis are not physically acceptable because
by equation (36) Ω (∼ ω2) must necessarily be negative, since near the e2-axis we have V > Vp. This region in
the d-e2 plane is therefore forbidden for our figures.

We now derive the relation d = d(e2) for which zM = e2. For this purpose, we build a table similar to
Table 1 varying e2 and determining d and Ωp instead of e3 and Ωp. These results are summarized in Table 5,
and Figure 2 is a logarithmic plot of d vs. e2. Figure 2 shows the limiting d-curve that separates the region of
allowed equilibrium figures (zM < e2) from that of physically impossible ones (zM > e2; shaded area); for a
given d and e2, a series of figures starting upwards at this e2 value can be obtained. Thus, as d increases, so
does e2, and the series becomes narrower. The Jacobi series, which corresponds to d = 0 and starts at e2 = 0
is accordingly the widest series.

One interesting aspect of the frontier figures is that the angular velocity vanishes at point (0, e2, 0) on the
equator, i.e. the particle is momentarily at rest there. For example, for the limiting figure with e2 = 0.5, and
d = 1.3757, the angular velocity distribution is as shown in Figure 3. In Figure 3, each contour represents Ω
as a function of the squared distance r to the rotation axis; the lower one corresponds to the equator (x3 = 0),
for which Ω = 0 at r = 0.25.
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128 CISNEROS, MARTÍNEZ, & MONTALVO

Fig. 3. Ω-distribution on the frontier figure surface with
e2 = 0.5 and d = 1.3757. Each curve corresponds to a level
x3 = const., the lower refers to the 4th of the equator. This
curve has Ω = 0 at r = 0.25.

Fig. 4. Ω-distribution on the surface of the figure with
e2 = 0.5 and d = −1/8.

TABLE 4

SEMI-AXIS zM AND ANGULAR
VELOCITY Ωp AT THE POLEa

d e3 zM Ωp

-0.24 0.121315 0.156617 0.267996

-0.20 0.223374 0.262592 0.384846

-0.10 0.325414 0.345463 0.457815

0.10 0.425481 0.407237 0.502733

0.20 0.459227 0.424407 0.513867

0.30 0.487629 0.437618 0.522053

0.40 0.512306 0.448249 0.528403

0.50 0.534218 0.457076 0.528403

0.60 0.553989 0.464578 0.537754

0.70 0.572047 0.471067 0.541337

0.80 0.588699 0.476762 0.544420

0.90 0.604175 0.481819 0.547111

1.00 0.618649 0.486352 0.549485

1.37576 0.666157 0.500001 0.556423

2.00 0.729067 0.515528 0.563938

7.00 0.999921 0.559622 0.583197

aThe values are given as a function of d, for e2 = 0.5.
e3 is included as a byproduct.

TABLE 5

SEMI-AXIS e2, d AND THE ANGULAR
VELOCITY Ωp AT THE POLEa

e2 e3 d Ωp

0.90 6.2003630 220.49916 0.7200396

0.80 1.9499815 29.354738 0.6984864

0.70 1.2614507 7.2978365 0.6659624

0.60 0.9048244 2.8974497 0.6196744

0.50 0.6661618 1.3757080 0.5564224

0.40 0.4856688 0.6990221 0.4728749

0.30 0.3388724 0.3520459 0.3664056

0.20 0.2134747 0.1586715 0.2374685

0.10 0.1022864 0.0483855 0.0969456

aFor completeness e3 is included.

The reason for obtaining models with Ω < 0 is because, contrary to what ordinarily occurs, the maximum
of the potential does not occur at the pole, but right on the e2-axis, at the point (0, e2, 0). We might attempt
to rescue forbidden models if the constant k in equation (26) is taken as the maximum potential, instead of Vp;
in this way, negative values of Vmax − V would be avoided and hence Ω ≥ 0; however, this would imply Ω = ∞
at the pole, since αs = Vmax − Vp.
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TABLE 6

SEMI-AXIS zM AND PARAMETERS OF THE APPROXIMATE ANGULAR VELOCITY
Ω = Ω0 + Ω1x

2

3
+ Ω2x

4

3
+ Ω3x

6

3

a

Ω = Ω0 + Ω1 x2

3
+ Ω2x

4

3
+ Ω3x

6

3

zM Ωp Ω0 Ω1 Ω2 Ω3

0.623314 0.6107413 0.619642 -0.023106 0.002462 -0.001060

0.610414 0.6101262 0.619015 -0.024067 0.002562 -0.001148

0.593354 0.6080722 0.616918 -0.025347 0.002691 -0.001272

0.556084 0.5987912 0.607437 -0.028203 0.002966 -0.001580

0.514025 0.5807111 0.588967 -0.031512 0.003256 -0.002003

0.466346 0.5509603 0.558587 -0.035346 0.003546 -0.002601

0.412057 0.5058888 0.512595 -0.039771 0.003804 -0.003482

0.349997 0.4410814 0.446540 -0.044794 0.003963 -0.004861

0.278845 0.3518685 0.355768 -0.050244 0.003891 -0.007211

0.197216 0.2355074 0.237672 -0.055377 0.003339 -0.011841

0.104021 0.0993468 0.099981 -0.057267 0.001921 -0.024016

0.053120 0.0359555 0.036113 -0.052974 0.000845 -0.041463
aThe values given correspond to the spheroidal figures of the series with d = 1/8; the pole’s angular velocity Ωp

is included (second column).

The figures for negative d (from 0 to −1/4), have the following peculiarity. As was previously remarked,
figures with negative d are more flattened than those with d > 0; in addition, the angular velocity distribution
becomes, in a certain sense, reversed, since Ω increases from the pole to the equator—rather than the opposite—;
Figure 4 is a plot of Ω vs. r, for d = −1/8 and e2 = 0.5 (to be compared with Figure 1).

6. THE SPHEROIDAL FIGURES

For the special case e2 = 1, the path of a fluid particle will be a circle of radius
√

r, and we have spheroidal
figures. The surface equation of the distorted spheroid is

x2

1
+ x2

2
+

x2

3

e2

3

+ d
x4

3

e4

3

= 1, or r +
x2

3

e2

3

+ d
x4

3

e4

3

= 1. (40)

By symmetry, the potential will depend only on r (= x2

1
+ x2

2
) and x3: V = V (r, x3). The angular velocity

along a path of fixed x3 will now be constant, and the equilibrium equations (28) and (29) reduce to

−2Ω − 2r
∂Ω

∂r
+

e2

3
r

d3x3

∂Ω

∂x3

− b1 +
e2

3

d3

b3 = 0, (41)

where

d3 = 1 +
2dx2

3

e2

3

;

assuming the r dependence like in equation (34), with αy as stated in equation (37), Ω becomes a sixth-order
even polynomial in x3. Let us take

Ω = Ω0 + Ω1x
2

3
+ Ω2x

4

3
+ Ω3x

6

3
, (42)

where Ω0, . . . ,Ω3 are constants. The pole’s angular velocity is determined by

−b1p +
e2

3

d3

b3p − 2Ωp = 0,
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Fig. 5. Limiting d-curve that separates the region of Ω-
distribution with a maximum at the pole from that with
a maximum between pole and equator.

Fig. 6. d-curve in the range of negative values that sepa-
rates spheroidal figures with Ω > 0 from those with Ω < 0
(shaded area).

and Bernoulli’s equation becomes

V + r (Ω0 + Ω1x
2

3
+ Ω2x

4

3
+ Ω3x

6

3
) = Vp. (43)

The determination of the Ω-constants can be achieved similarly as for the ellipsoidal figures, using again a
quarter of a meridian. We calculate V at each point, and determine them by fitting equation (41) now with 16
supporting points; these results are summarized in Table 6.

TABLE 7

e3, zM , d

e3 zM d

0.201936 0.191486 0.1250

0.225870 0.205603 0.2500

0.262716 0.224803 0.5000

0.291115 0.237719 0.7500

0.314471 0.247248 1.0000

0.351958 0.260707 1.5000

0.381815 0.270015 2.0000

0.042854 0.282426 3.0000

TABLE 8

SEMI-AXIS (a1 = 1, e2 = 1) zM , e3, d

e3 zM d

0.100836 0.138297 -0.2490

0.137018 0.185648 -0.2480

0.278700 0.359500 -0.2400

0.307095 0.392615 -0.2375

0.412897 0.508969 -0.2250

0.488477 0.586509 -0.2125

0.548787 0.645138 -0.2000

0.599570 0.692323 -0.1875

0.643739 0.731777 -0.1750

0.683007 0.765636 -0.1625

0.718474 0.795253 -0.1500

0.737333 0.810635 -0.1428

0.750894 0.822539 -0.1375

0.780809 0.845142 -0.1250

0.904208 0.936105 -0.0625
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For positive d, there are no restrictions as to the existence of spheroidal figures. However, the angular
velocity distribution behaves according to two different patterns: in one, the maximum of Ω occurs somewhere
between the equator and the pole; while in the other, it appears right at the pole; these results are summarized
in Table 7, and Figure 5 is a plot of d vs. e3, showing the boundary curve separating these two patterns. For
a given d, for example d = 1, there is a value of e3 (≈ 0.3), below which the first pattern shows up and above
which the other pattern occurs.

6.1. The forbidden spheroidal figures

For negative d, there result figures with Ω < 0, that must be discarded. Figure 6 is a plot of −d vs. e3,
showing the curve that separates the region of forbidden figures (shaded area) from the permitted ones. For a
given d value, for example d = −0.2, there corresponds a e3 value (≈ 0.6) below which figures exist, but are
physically impossible otherwise.
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