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RESUMEN

Estudiamos anaĺıticamente la expansión de una burbuja no radiativa (ali-
mentada por el viento de una estrella masiva) dentro de un medio ambiente con
una estratificación de esfera isotérmica autogravitante no singular. Derivamos la
ecuación de movimiento para el radio externo de la burbuja (usando las suposiciones
del modelo anaĺıtico clásico, pero permitiendo la transición apropiada de fuerte a
débil para el choque externo). La ecuación del modelo tiene un único parámetro
adimensional, que determina si el choque externo se vuelve débil o no. Encontramos
que las burbujas de estrellas O en núcleos moleculares estratificados densos (posible-
mente asociadas con algunas de las regiones HII ultracompactas observadas) están
en el ĺımite de las soluciones de choque fuerte.

ABSTRACT

We study analytically the expansion of a non-radiative bubble (driven by the
wind from a massive star) into an environment with a non-singular, self-gravitating
isothermal sphere density stratification. We derive the equation of motion for
the outer radius of the bubble (using the assumptions of the classical analytic
model for expanding bubbles, but allowing the outer shock to have the appropri-
ate strong/weak shock transition). The model equation has a single dimensionless
parameter that determines whether or not the outer shock becomes weak. We find
that O star bubbles within dense, stratified molecular cloud cores (possibly associ-
ated with some of the observed ultracompact HII regions) are in the “strong shock”
limit.

Key Words: ISM: evolution — ISM: kinematics and dynamics — stars: formation

1. INTRODUCTION

Compact or ultra-compact HII regions observed
at radio wavelengths (see, e.g., the review of Kurtz
2005) are located within dense molecular clouds.
These regions have been modeled as the gasdynamic
expansion of the high-pressure, photoionized gas into
an approximately uniform external medium (Spitzer
1968), or into a stratified medium (Shu et al. 2002;
Franco, Tenorio-Tagle, & Bodenheimer 1990). Also,
the effect of including the wind from the central,
massive star has been included (see, e.g., the review
of Cappriotti & Kozminski 2001).

In two recent papers, Raga, Cantó, & Rodŕıguez
(2012a,b) have modified the “classical” analytic
models of expanding HII regions and of wind-driven

shells (appropriate for compact HII regions with
shell-like morphologies, see, e.g. Carral et al. 2002),
so as to include the effect of the outer shock becom-
ing weak. These models have the feature of attaining
pressure equilibrium with the surrounding environ-
ment, a regime which is reached within only ∼105 yr
by ultra-compact HII regions.

In the present paper, we extend the wind-driven
shell model of Raga et al. (2012b) to the case of
a stratified environment. In particular, we consider
an environment with the density stratification of a
non-singular, self-gravitating isothermal sphere.

The picture behind this choice is that one has a
star which forms through the gravitational collapse
of the central region of a dense, molecular cloud core
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236 RODRÍGUEZ-RAMÍREZ & RAGA

(with an approximate isothermal sphere stratifica-
tion). When the stellar wind “turns on”, it initially
interacts within the material that is still collapsing
towards the center of the cloud core. This regime
has been studied in detail by González-Avilés et al.
(2005).

After a timescale of ∼104 yr, the stellar wind
has expanded enough to start to interact with the
surrounding, still unperturbed region of the molec-
ular cloud core (see, e.g., Garćıa-Segura & Franco
1996; Franco et al. 2007). For modelling this regime,
we assume that the surrounding cloud core has a
non-singular, isothermal sphere density stratifica-
tion, and that the stellar wind goes through a non-
radiative reverse shock, feeding an expanding, hot
bubble. This bubble pushes out a shell of swept-up
environmental material, and the internal region of
this shell is photoionized by the radiation from the
central star (therefore corresponding to the ultra-
compact HII region, see Raga et al. 2012b).

In the present paper we apply the “thick shell”
formalism of Raga et al. (2012a,b) to the problem
of a stellar wind bubble expanding within a self-
gravitating, non-singular isothermal sphere density
stratification. The paper is organized as follows. The
approximate form which we use for the environmen-
tal stratification is discussed in § 2. The treatment
we have done of the division of the wind energy be-
tween hot bubble thermal energy and swept-up en-
vironment kinetic energy is discussed in § 3. The
derivation of the equation of motion for the outer
radius of the hot bubble is given in § 4. Approxi-
mate, analytic solutions to the model equation are
derived in § 5. A comparison between the approx-
imate analytic solutions and an “exact” numerical
solution is given in § 6, and a qualitative interpreta-
tion of the results is presented in § 7. An application
to the parameters relevant for a massive star inside
a dense molecular cloud core is given in § 8. Finally,
a summary of the work is presented in § 9.

2. THE ENVIRONMENTAL STRATIFICATION

We consider the time-evolution of a wind-
driven bubble within a non-singular, self-gravitating,
isothermal sphere. In order to obtain an analytic
model, we approximate the non-singular solutions to
the Lane-Emden equation with the analytic density
profile:

ρe(R) =
ρ0

1 + (R/r0)2
, (1)

where

r0 =

√

3c2
0

2πGρ0
(2)

is the core radius, c0 is the isothermal sound speed
and r0 the core radius of the isothermal sphere, G is
the gravitational constant and R is the spherical ra-
dius. While this approximate form gives substantial
errors in the density at large distances (see Natara-
jan & Lynden-Bell 1997), it does have the correct,
∝ R−2 asymptotic dependence for R ≫ r0.

In principle, it would be possible to use the
more complex approximation proposed by Natarajan
& Lynden-Bell (1997) for the density stratification.
However, for a first exploration of the proposed prob-
lem, the simpler density law given by equation (1)
appears to be appropriate.

3. THE ENERGY OF THE BUBBLE

At t = 0, a stellar wind of constant mass loss rate
Ṁ and terminal wind velocity vw is suddenly “turned
on” at the center of the stratified environmental den-
sity distribution given by equation (1). We assume
that the stellar wind goes through a “reverse shock”
with a spherical radius much smaller than the size
of the wind-driven bubble. The hot bubble pushes
out the environmental material, which is piled up
into a thin shell. Following the “classical” derivation
(see, e.g., Dyson & Williams 1980), we assume that
the shock driven into the environment is isothermal,
which is a reasonable approximation in the regime
in which this outer shock has velocities of less than
a few hundred km s−1.

The kinetic energy E injected by the wind is then
converted into thermal energy of the bubble+kinetic
energy of the thin shell:

E =
Ṁv2

wt

2
=

3

2
PV +

Msv
2
s

2
, (3)

where t is the time, Ṁ is the stellar mass loss rate,
vw the terminal wind velocity, P the pressure of the
bubble (assumed to be uniform), Ms the mass within
the thin shell, vs the outward velocity of the thin
shell and V = (4π/3)R3 is the volume of the hot
bubble, with R being its outer radius.

The swept-up mass Ms within the thin shell is
equal to the mass of the environmental density strat-
ification within a radius R:

Ms = 4π

∫ R

0

R′2ρe(R
′) dR′ , (4)

where we have neglected the width of the thin shell,
and ρe(R) is given by equation (1).

We now assume that the shock driven by the ex-
pansion into the environment is a strong, isothermal
shock. Therefore, the compression at the shock is
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EXPANSION OF WIND BUBBLE IN A STRATIFIED CORE 237

very large, and the shock velocity follows the rela-
tion

vs ≈ Ṙ , (5)

where Ṙ is the expansion velocity of the outer radius
of the hot bubble. For an isothermal shock, the post-
shock pressure is given by:

Pps = ρe(R)v2
s , (6)

which is valid for a general (i.e., not necessarily
strong) shock.

Finally, setting Pps = P (i.e., the post-shock
pressure equal to the pressure of the hot bubble),
from equations (3–6) we obtain:

P =
Ṁv2

wt

4πR3
f(R), (7)

with

f(R) =
{

1 + [R − r0 tan−1(R/r0)](r
2
0 + R2)/R3

}−1
.

(8)
Equation (7) gives us the pressure P of the hot bub-
ble as a function of t and R (the evolutionary time
and the outer radius of the bubble, respectively).

Even though this relation has been obtained as-
suming that the isothermal shock driven into the
undisturbed environment is strong, we will assume
that it is also approximately valid in the regime in
which the shock is no longer strong. This inconsis-
tency in the derivation of the model equation is at
the heart of the “thick shell formalism” of Raga et
al. (2012a,b).

4. THE MODEL EQUATION

We now consider that the outer boundary R of
the hot bubble acts like a plane piston which pushes
out a shock wave into the surrounding environment.
Using the fact that the velocity of the post-shock ma-
terial relative to an isothermal shock is vps = c2

0/vs,

and that the velocity of the shock is vs = Ṙ + vps

(where Ṙ = dR/dt is the velocity of the piston), we
obtain the relation

dR

dt
= vs −

c2
0

vs
, (9)

from which one can recover equation (5) for the
strong shock, vs ≫ c0 case. Combining this equation
with equations (6–7), we then obtain a differential
equation for the outer radius R of the hot bubble:

dr

dτ
= στ1/2f1/2(r)

(

1 + r2

r3

)1/2

− 1

στ1/2f1/2(r)

(

r3

1 + r2

)1/2

, (10)

with

f(r) =

[

1 + (r − tan−1 r)

(

1 + r2

r3

)]−1

, (11)

where r ≡ R/r0, τ ≡ tc0/r0 and

σ ≡

√

Ṁv2
w

4πρ0r2
0c

3
0

. (12)

Let us note that the f(r) is only a weak function
of r, with f(0) = 3/4 and f(∞) = 1/2. In the fol-
lowing section we will use this fact in order to derive
an approximate analytic solution of equation (10).

If one specifies a value for the dimensionless pa-
rameter σ (given by equation 12), equation (10) can
be integrated numerically in a straightforward way
with the boundary condition r → 0 for τ → 0.
Results of such an integration (carried out with a
fourth-order Runge-Kutta algorithm) are shown for
σ = 10, 3, 1, 0.5, 0.1 and 0.05 in Figure 1. We also
derive approximate analytic solutions to our model
(equation 10), which are described in the following
section. The resulting time-evolutions are discussed
in § 6.

5. ANALYTIC SOLUTIONS

5.1. The σ ≫ 1 case

For σ ≫ 1, we keep only the first term on the
right hand side of equation (10), so that we have:

dr

dτ
= στ1/2f1/2(r)

(

1 + r2

r3

)1/2

. (13)

This equation of motion for the outer radius of the
hot bubble corresponds to a case in which the shock
driven into the surrounding ISM is always strong.

With the boundary condition r → 0 for τ → 0,
this equation can be integrated formally to obtain:

2

3
στ ′3/2

∣

∣

∣

∣

τ

τ0

=

[

f−1/2(r′)

∫
(

r′3

1 + r′2

)1/2

dr′

]∣

∣

∣

∣

∣

r

r0

.

(14)
To derive this equation, we take out f(r) from the

radial integral, since f(r) is a weak function of r (see
§ 2). Even with this simplification, the radial integral
of equation (14) does not have an analytic solution.
We therefore derive an approximate solution, which
is calculated as follows.

Let us call h(r) the integrand of equation (14).
We then consider three Taylor series expansions:

i. Writing h(r) = r3/2(1 + r2)−1/2, an expansion
of (1 + r2)−1/2 to first order in r2 around r = 0
gives:

h0(r) = r3/2 − 1

2
r7/2 , (15)
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Fig. 1. Numerical solutions (solid lines), high σ analytic solutions (dashed lines) and low σ analytic solutions (dotted
lines) for the radius of the expanding bubble as a function of time. The panels are labeled with the values of σ for which
the solutions were calculated.

ii. An expansion of h(r) to second order in r − 1
around r = 1 gives:

h1(r) =
1

4
√

2

(

6r − r2 − 1
)

, (16)

iii. Writing h(r) = r1/2(1+1/r2)−1/2, an expansion
of (1 + 1/r2)−1/2 to first order in 1/r2 around
1/r = 0 gives:

h∞(r) = r1/2 − 1

2
r−3/2 . (17)

We note that these expansions of the integrand sat-
isfy h0(1/2) = h1(1/2) and h1(2) = h∞(2).

So, in order to solve the radial integral of equa-
tion (14) we set h(r) = h0(r) for 0 ≤ r < 1/2,
h(r) = h1(r) for 1/2 ≤ r < 2 and h(r) = h∞(r)
for 2 ≤ r. The resulting integrals have trivial ana-
lytic solutions, giving a solution for the dimension-
less time τ as a function of the dimensionless radius

r (of the hot bubble) of the form:

τ
(0)
0 (r) =

[

3

2σ
I0(r)

]2/3

, for r ≤ 1/2 , (18)

τ
(0)
1 (r) =

[

τ
3/2
0 ( 1

2 ) +
3

2σ

(

I1(r) − I1(
1
2 )
)

]2/3

, (19)

for 1/2 < r ≤ 2 ,

τ (0)
∞ (r) =

[

τ
3/2
1 (2) +

3

2σ
(I∞(r) − I∞(2))

]2/3

,

(20)
for 2 ≤ r , with

I
(0)
0 (r) ≡

(

2

5
r5/2 − 1

9
r9/2

)

f−1/2(r) , (21)

I
(0)
1 (r) ≡ 1

4
√

2

(

−r + 3r2 − r3

3

)

f−1/2(r) , (22)

I(0)
∞ (r) ≡

(

2

3
r3/2 + r−1/2

)

f−1/2(r) . (23)
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5.2. The σ ≪ 1 case

In the σ ≪ 1 limit, as the evolutionary time
increases the second term on the right hand side
of equation (10) becomes comparable to the first
term (which diverges at τ = 0). From then on, the
time evolution of the hot bubble enters a quasi-static
regime, in which it expands in approximate pres-
sure equilibrium with the surrounding environment
as more material is fed into the bubble by the stel-
lar wind. This quasistatic regime is always found at
large evolutionary times in the expansion of a wind-
driven bubble into a uniform environment (see Raga
et al. 2012b).

From the approximate balance between the two
terms on the right of equation (10), one obtains:

τ(r) =
1

σ2

[

r(1 + 2r2)

1 + r2
− arctan r

]

. (24)

5.3. The σ ∼ 1 case.

In order to model the transition between the
strong and weak shock regimes, we calculate a per-
turbative solution to equation (10). This is done
considering the second term on the right hand side
of equation (10), as a small perturbation of the left
term. We first re-write equation (10) in the form

dτ

dr
=

µ

τ1/2f1/2(r)

(

r3

1 + r2

)1/2

+
λ

τ3/2f3/2(r)

(

r3

1 + r2

)3/2

, (25)

where we have defined the parameters µ ≡ 1/σ, and
λ ≡ 1/σ3. Note that λ < µ for σ > 1. We then
assume that the solution has the form τ = τ (0) +
λτ (1) + ... + λnτ (n), with n its perturbative degree.
We calculate only the first order approximation, so
that we have:

τ(r) = τ (0)(r) + λτ (1)(r) . (26)

From equations (26) and (25) we then obtain the
system of differential equations:

dτ (0)

dr
=

µ

τ (0)1/2
f1/2(r)

(

r3

1 + r2

)1/2

, (27)

dτ (1)

dr
= q(r) − p(r)τ (1) , (28)

with

p(r) ≡ µ

2f1/2(r) τ (0)3/2

(

r3

1 + r2

)1/2

, (29)

q(r) ≡ 1

f3/2(r) τ (0)3/2

(

r3

1 + r2

)3/2

. (30)

Equation (27) is the strong shock model and its so-
lution is given in § 5.1. This solution is used to solve
equation (28), giving:

τ (1)(r) =
1

η(r)

∫ r

r0

η(r′)q(r′)dr′ , (31)

where η(r) is the integrating factor of equation (28):

η(r) = exp

{
∫

p(r) dr

}

. (32)

In order to find analytic solutions, we have di-
vided the radial domain as we have done in § 5.1,
obtaining:

τ
(1)
0 (r) =

2σ

3
I
(1)
0 (r) , (33)

τ
(1)
1 (r) =

2σ

3

I
(1)
1 (r) − I

(1)
1 (1/2)

[

A1 + I
(0)
1 (r)f1/2(r)

]1/3
, (34)

τ (1)
∞ (r) =

2σ

3

I
(1)
∞ (r) − I

(1)
∞ (2)

[

A∞ + I
(0)
∞ (r)f1/2(r)

]1/3
, (35)

with

I
(1)
0 (r) ≡ 15

23
r3f−1(r) , (36)

I
(1)
1 (r) ≡ − 2

33
r3 +

12

11
r2 − 64

77
r , (37)

I(1)
∞ (r) ≡

[

(3/2)−1/3r3/2 − (3/2)2/3A∞ ln r

−1

2
(3/2)5/3A∞r−2

]

f−1(r) , (38)

A1 ≡
[

2σ

3
τ

3/2
0 (1/2) − I

(0)
1 (1/2)

]

f1/2(r) , (39)

A∞ ≡
[

2σ

3
τ

3/2
1 (2) − I(0)

∞ (2)

]

f1/2(r) . (40)

We build our final solution τ0,1,∞ by employing equa-
tion (26) within each radial domain. In Figure 2 we
show the r vs. τ solutions obtained with this pertur-
bative method, and compare them with a numerical
integration of the full model equation (equation 10).
We show the solutions for σ = 2, 1, and 0.1, which
are described in more detail in the following section.



©
 C

o
p

y
ri

g
h

t 
2

0
1

2
: 
In

st
it
u

to
 d

e
 A

st
ro

n
o

m
ía

, 
U

n
iv

e
rs

id
a

d
 N

a
c

io
n

a
l A

u
tó

n
o

m
a

 d
e

 M
é

x
ic

o
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Fig. 2. Numerical solutions (solid lines), perturbative
analytic solutions (dashed lines) and low σ analytic solu-
tions (dotted lines) for the radius of the expanding bub-
ble as a function of time. The panels are labeled with
the values of σ for which the solutions were calculated.

6. COMPARISON BETWEEN THE ANALYTIC
AND NUMERICAL SOLUTIONS

In Figure 1, we show the hot bubble radius as a
function of time obtained for different σ values from:

i. Solid lines → a numerical integration of equa-
tion (10),

ii. Dashed lines → the large σ analytic solution
(equations 18–20),

iii. Dotted lines → the small σ analytic solution
(equation 24).

From this figure, it is clear that for σ = 10
(top left frame) the large σ analytic solution (equa-
tions 18–20) basically coincides with the full, numer-
ical solution. Also, we see that for σ = 0.05 the nu-
merical solution coincides with the small σ analytic
solution (equation 24) except during its very early
evolution (with τ, r < 0.1).

We also see that for σ = 1, both analytic solu-
tions fail to reproduce the full (i.e., numerical) inte-
gral of the equation of motion (equation 10). How-
ever, for σ = 3 the large σ analytic solution does not
differ in a substantial way from the full solution, and
for σ = 0.5 the small σ solution reproduces well the
full solution (except for early evolutionary times).
Therefore, there is only a limited parameter range
0.5 < σ < 3 for which we do not have an analytic
solution that describes (in an approximate way) the
behavior of the full solution for the expansion of the
hot bubble as a function of time.

In Figure 2 we show a comparison between the
numerical solutions to the full model equation (equa-
tion 10) and the high σ analytic, perturbative solu-
tion of § 5.3. From this figure, we see that the per-
turbative solution works well for σ ≥ 1. However,
for σ < 1, the perturbative solution is a good ap-
proximation to the full (numerical) solution only for
t ≪ 1. In spite of this, it gives an improvement for
the small σ regime, because neither the zero order
solution nor the balance solution reproduce the full
numerical solution at early evolutionary times (as
one can see from Figure 1).

In summary, the perturbative analytic solution
reproduces very well the numerical solution for
σ ≥ 1. For σ ≤ 1 a good analytic solution can be
constructed by choosing the minimum value of r (at
a given τ) between the perturbative and the balance
solutions (therefore, choosing the perturbative solu-
tion for small values of τ , and the balance solution
for large τ , as can be seen from the bottom panel of
Figure 2).

7. INTERPRETATION OF THE SOLUTIONS

The evolution of the expanding bubble has two
regimes:

i. For R < r0 (where R is the outer radius of the
bubble and r0 is the core radius of the envi-
ronmental stratification, see equation 2) the ex-
pansion is similar to the one of a wind-driven
bubble within a constant density environment.
This evolution has been described in detail by
Raga et al. (2012b),



©
 C

o
p

y
ri

g
h

t 
2

0
1

2
: 
In

st
it
u

to
 d

e
 A

st
ro

n
o

m
ía

, 
U

n
iv

e
rs

id
a

d
 N

a
c

io
n

a
l A

u
tó

n
o

m
a

 d
e

 M
é

x
ic

o

EXPANSION OF WIND BUBBLE IN A STRATIFIED CORE 241

ii. For R > r0, the bubble expands into an envi-
ronment with a stratification that approaches a
ρ ∝ R−2 law.

This second regime was studied analytically by
Dyson (1989), and our large σ solution (equa-
tions 18–20) coincide with Dyson’s solutions at large
evolutionary times (Dyson 1989 did not explore the
weak shock regime).

Our new solutions can be understood in a qual-
itative way as follows. Raga et al. (2012b, their
equation 7) showed that the shock pushed out by a
wind-driven bubble expanding into a uniform envi-
ronment becomes weak when it reaches a radius

R0 =

√

3Ṁv2
w

16πρ0c3
0

. (41)

Combining this equation with the definition of σ
(equation 12), we obtain that σ =

√

4/3R0/r0

(where r0 is the core radius of the environmental
stratification, given by equation 2). Therefore, for
low values of σ, the expanding bubble slows down
to produce a weak outer shock within the approx-
imately constant density core of the environmental
stratification, and the shock remains weak during all
of the subsequent evolution.

Conversely, for large values of σ, the expanding
bubble reaches the ρ ∝ r−2 region (of the environ-
mental density stratification) with a strong outer
shock, and then the shock remains strong during the
rest of the expansion.

From equation (20), we see that in the asymp-
totic regime of large evolutionary times, the high σ
solution gives a constant expansion velocity:

v∞ = σ2/3c0 . (42)

For the σ ≪ 1 regime, the expansion also reaches an
asymptotic expansion velocity. Taking the r → ∞
limit in equation (24), we see that the asymptotic
velocity now is:

v∞ =
σ2

2
c0 . (43)

The assumption we have made of uniform pressure
within the hot bubble is only valid if v∞ ≪ vw, so
that in order to apply our model to specific cases
one should check whether or not this condition is
met (using the equations 42 or 43 depending on the
value of σ).

8. THE VALUES OF THE σ PARAMETER

If we combine equation (2) for the core radius
and equation (12), we obtain:

σ =

√

GṀv2
w

6c5
0

= 112.7

(

Ṁ

2 × 10−6 M⊙ yr−1

)1/2

×
( vw

3000 km s−1

)

(

1 km s−1

c0

)5/2

, (44)

where the second equality gives the value of σ for the
parameters of an O4 star. If we consider the wind
parameters for an O7 star (Ṁ ≈ 4.5×10−7 M⊙ yr−1

and vw ≈ 2500 km s−1, see Sternberg, Hoffman, &
Pauldrach 2003), we obtain σ ≈ 45.

If we use the new mass loss rate estimates of
Marcolino et al. (2009), for an O9 star we have
Ṁ ≈ 2 × 10−9 M⊙ yr−1 and vw ≈ 2000 km s−1.
With these parameters, from equation (44) we ob-
tain σ ≈ 2.4.

Therefore, for the case of an O star driving a
wind into a molecular cloud core with a non-singular,
self-gravitating isothermal sphere stratification, the
resulting hot bubble is always in the “strong outer
shock” regime. This is the regime described by our
“high σ” analytic solution (equations 18–20).

Finally, if we insert σ ∼ 100 and c0 ∼ 1 km s−1 in
equation (42), we obtain v∞ ∼ 20 km s−1, so that the
bubble of an O star (with vw ∼ 1000 km s−1) inside
a self-gravitating sphere expands at velocities ∼1 to
2 orders of magnitude lower than the wind veloc-
ity. Therefore, the approximation of uniform pres-
sure across the bubble (necessary for deriving our
model) is valid for late enough evolutionary times.

9. CONCLUSIONS

We have developed an analytic model for the
expansion of a wind bubble blown by a massive
star embedded within an environment with a non-
singular, self-gravitating sphere. The model is based
on the classical assumption that the wind goes
through a “reverse shock” close to the source, that
the shocked gas produces a hot bubble of uniform
pressure, and that the environment pushed by the
bubble is swept up into a thin shell (see, e.g., the
book of Dyson & Williams 1980). Our assumptions
differ from the classical model in that we allow for the
(isothermal) outer shock to have the general jump
relations (deviating from the strong shock regime).

We derive a model equation which depends on
a dimensionless parameter σ (see equation 12). For
σ ≫ 1, the bubble pushes out a strong shock during
all of the expansion. For σ ≪ 1, the outer shock
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rapidly becomes weak, and the subsequent evolu-
tion of the bubble is in a regime of approximate
pressure balance with the surrounding environment
(the expansion being maintained by the injection of
new material by the stellar wind). We find approx-
imate analytic solutions for both the high and low
σ regimes, and give numerical integrations of the
model equation for σ ∼ 1. Additionally, we derive a
more complex analytic solution appropriate for the
σ ∼ 1 regime (see § 5.3).

If we insert parameters appropriate for an O star
(Ṁ ∼ 10−6 M⊙ yr−1, vw ∼ 3000 km s−1) within a
molecular cloud core (with isothermal sound speed
c0 ∼ 1 km s−1), we obtain σ ∼ 100. Therefore,
the expansion clearly lies in the regime in which the
outer shock is always strong.

For example, if we consider a density of H nuclei
of ≈107 cm−3 for the central core of the molecu-
lar clump (in which the wind source is embedded),
from equation (2) we obtain a r0 = 6× 1016 cm core
radius. The wind bubble would then expand follow-
ing a R ∝ t5/3 law (see equation 18) until a time
t ∼ r0/c0 ≈ 2 × 104 yr (corresponding to a dimen-
sionless time τ = 1, see Figure 1). For t > r0/c0,
the expansion enters a linear regime, with a con-
stant velocity approximately v∞ ≈ 20 km s−1 (see
equation 42).

In this way, our model can be used to obtain the
expansion velocity of wind-driven shells. Such pre-
dictions could be used to interpret future radio or
millimetric observations of either the radial veloc-
ity (through H recombination line measurements) or
proper motion (from maps at different epochs) mea-
surements of the expansion of compact HII regions.

Finally, we find that the “low σ” regime (in
which the wind bubble expands in an approximate
bubble/environment pressure equilibrium, see equa-
tion 24) is not applicable to the case of massive stars
embedded in stratified molecular cloud cores. This

J. C. Rodŕıguez-Ramı́rez and A. C. Raga: Instituto de Ciencias Nucleares, Universidad Nacional Autónoma
de México, Apdo. Postal 70-543, 04510 D. F., México (juan.rodriguez, raga@nucleares.unam.mx)

regime might be relevant for other astrophysical sit-
uations (e.g., to the case of the winds from massive
stars embedded in a pre-existing, coronal gas bub-
ble).

We acknowledge support from Conacyt grants
61547, 101356 and 101975.
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G. 2002, ApJ, 580, 969
Spitzer, L. 1968, Diffuse Matter in Space (New York:

Interscience)
Sternberg, A., Hoffman, T. L., & Pauldrach, A. W. A.

2003, ApJ, 599, 1333


