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RESUMEN

La estereoloǵıa permite pasar de las distribuciones en 3D de los volúmenes
en los diagramas de Voronoi a sus secciones transversales en 2D. La suposición
básica es que la estad́ıstica en 3D de los volúmenes de los vaćıos en el Universo
local obedece a una función de distribución de tipo gama. La regla estándar para
pasar de volúmenes en 3D a ćırculos en 2D mediante la estereoloǵıa común produce
una nueva función de densidad de probabilidad para los radios, la cual contiene la
función G de Meijer. También se considera una distribución no Poissoniana para los
volúmenes. El mejor ajuste para la distribución de los radios en 3D del Sloan Digital
Sky Survey Data Release 7 es una distribución no Poissoniana de los volúmenes,
dada por la función de Kiang con argumento cercano a dos.

ABSTRACT

Stereology allows shifting from the 3D distribution of the volumes of Poisso-
nian Voronoi Diagrams to their 2D cross-sections. The basic assumption is that the
3D statistics of the volumes of the voids in the local Universe has a distribution func-
tion of the gamma-type. The standard rule of conversion from 3D volumes to 2D
circles, adopting the standard rules of stereology, produces a new probability density
function of the radii which contains the Meijer G-function. A non-Poissonian distri-
bution of volumes is also considered. The distribution of the 3D radii of the Sloan
Digital Sky Survey Data Release 7 is best fitted by a non-Poissonian distribution
in volumes as given by the Kiang function with argument of about two.

Key Words: galaxies: clusters: general — galaxies: statistics — large-scale struc-
ture of universe — methods: statistical

1. INTRODUCTION

The astronomical analysis of the cellular nature of the large scale structure of our universe started with
the second CFA2 redshift Survey which produced slices showing that the spatial distribution of galaxies is
not random but is organized in filaments which represent the 2D projection of 3D bubbles, see Geller &
Huchra (1989). The organization of astronomical observations continued with the 2dF Galaxy Redshift Survey
(2dFGRS), see Colless et al. (2001), and with the Sloan Digital Sky Survey (SDSS), see York et al. (2000);
Abazajian et al. (2009). These catalogs of slices allow the determination of the size of the voids as approximated
by circles of a given radius. A visual inspection of these slices allows a rough evaluation of the largest void,
which turns to be ≈34/h Mpc. A refined statistics requires a digital version of the radii as given by the catalog
of cosmic voids of SDSS R7 (Pan et al. 2011).

A possible approach to the statistics of these voids is given by the Voronoi tessellation, after the two
historical papers by Voronoi (1907, 1908).

Following the nomenclature introduced by Okabe, Boots, & Sugihara (1992), we call the intersection between
a plane and the Poissonian Voronoi tessellation (PVT) Vp(2, 3). We briefly recall that the first application of
the PVT to astrophysics is due to Kiang (1966). The applications of Voronoi Diagrams to galaxies started with
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210 ZANINETTI

Icke & van de Weygaert (1987), where a sequential clustering process was adopted in order to insert the initial
seeds, and continued with van de Weygaert & Icke (1989), Pierre (1990), Barrow & Coles (1990), Coles (1991),
van de Weygaert (1991a,b), Zaninetti (1991), Ikeuchi & Turner (1991), Subba Rao & Szalay (1992), van de
Weygaert (1994), Goldwirth, da Costa, & van de Weygaert (1995), van de Weygaert (2002, 2003), Zaninetti
(2006). An updated review of 3D Voronoi Diagrams applied to cosmology can be found in van de Weygaert
(2002, 2003). The 3D PVT can also be applied to identify groups of galaxies in the structure of a super-cluster,
see Ebeling & Wiedenmann (1993), Bernardeau & van de Weygaert (1996), Schaap & van de Weygaert (2000),
Marinoni et al. (2002), Melnyk, Elyiv, & Vavilova (2006), van de Weygaert & Schaap (2009), Elyiv, Melnyk,
& Vavilova (2009).

A different approach to the intersections between bubbles and a plane is given by stereology, which is
the science of the geometrical relationships between structures that exists in three dimensions (3D) and their
images, which are fundamentally two-dimensional (2D). The absence of a probability density function (PDF)
for the main parameters of the PVT area in 2D and the volume in 3D has hindered the development of a PDF
in radii of the Vp(2, 3) problem. The publication with a relative test of a new PDF for the cell of PVT as given
by Ferenc & Néda (2007), allows a simple parametrization of the cell. The integral connected with the Vp(2, 3)
problem can now be expressed in analytical terms rather than numerical. The previous comments can also be
rewritten in the form of some key questions.

• Is it possible to derive the probability density function for the radii of 2D sections in the Poissonian case?

• Is it possible to obtain an analytic expression for the survival function, see equation (29), of the radii of
2D sections in the Poissonian case?

• Is it possible to derive analytic results for the radii of 2D sections in the case of non-Poissonian seeds or
volumes?

• Can we apply the obtained analytic results to the catalog of cosmic voids as given, for example, by the
SDSS R7?

In this paper we analyze in § 2 the two main PDFs adopted in order to model the cells of PVT which
are the old but still widely used Kiang function (Kiang 1966) and the recent Ferenc-Néda function (Ferenc &
Néda 2007). § 3 reviews the probability of a plane intersecting a given sphere, the stereological approach, and
then inserts in the fundamental integral of the stereology the cell’s radius of the new PDF. § 4 contains the
observed statistics of 1054 cosmic voids, a theoretical comparison with the radii of PVT and a comparison of
the observed survival function of 2dFGRS with our survival function as given by the stereology. An example
of non-Poissonian Voronoi Tessellation (NPVT) statistics in the light of the Kiang function is given in § 5.

2. THE DISTRIBUTIONS ADOPTED FOR PVT

We briefly review the PDFs which regulate the main parameters of PVTs: area in 2D, and volume in 3D.

2.1. The Kiang function

The gamma variate H(x; c) (Kiang 1966) is

H(x; c) =
c

Γ(c)
(cx)c−1 exp(−cx) , (1)

where 0 ≤ x < ∞, c > 0, and Γ is the gamma function. The Kiang PDF has a mean of

µ = 1 , (2)

and a variance

σ2 =
1

c
. (3)

In the case of a 1D PVT, c = 2 is an exact analytic result and conversely c is supposed to be 4 or 6 for 2D or
3D PVTs, respectively, the so called Kiang conjecture (Kiang 1966).



©
 C

o
p

y
ri

g
h

t 
2

0
1

2
: 
In

st
it
u

to
 d

e
 A

st
ro

n
o

m
ía

, 
U

n
iv

e
rs

id
a

d
 N

a
c

io
n

a
l A

u
tó

n
o

m
a

 d
e

 M
é

x
ic

o

STATISTICS OF THE VOIDS 211

TABLE 1

VALUES OF χ2 FOR THE CELL NORMALIZED
AREA-DISTRIBUTION FUNCTION IN 2D AND THE CELL

NORMALIZED VOLUME-DISTRIBUTION FUNCTION IN 3Da

Dimension PDF Parameters χ2

2D H(x; c) (equation 1) c = 3.55 83.48

2D f(x; d) (equation 4) d = 2 71.83

3D H(x; c) (equation 1) c = 5.53 93.86

3D f(x; d) (equation 4) d = 3 134.15
aHere Ti are the theoretical frequencies and Oi are the sample frequen-
cies. We have 25 087 Poissonian seeds in 2D, 21 378 Poissonian seeds in
3D, and 40 intervals in the histogram.

2.2. Ferenc-Néda function

A new PDF has been recently introduced (Ferenc & Néda 2007), in order to model the normalized
area/volume in 2D/3D PVT

FN(x; d) = C × x3d−1/2 exp (−(3d + 1)x/2) , (4)

where C is a constant,

C =

√
2
√

3 d + 1

2 23/2 d (3 d + 1)
−3/2 d

Γ (3/2 d + 1/2)
, (5)

and d (d = 1, 2, 3) is the dimension of the space under consideration. We will call this function the Ferenc-Néda
PDF; it has a mean of

µ = 1 , (6)

and a variance

σ2 =
2

3d + 1
. (7)

The Ferenc-Néda PDF can be obtained from the Kiang function (Kiang 1966) by the transformation

c =
3d + 1

2
. (8)

2.3. Numerical results

In the following, we will model the PVT in which the seeds are computed through a random process. The
χ2 is computed according to the formula

χ2 =

N
∑

i=1

(Ti − Oi)
2

Ti
, (9)

where N is the number of bins, Ti is the theoretical value, and Oi is the experimental value. A first test of the
PDFs presented in the previous section can be made by analyzing the Voronoi cell normalized area-distribution
in 2D and normalized volume-distribution in 3D, see Table 1.

In this comparison f(x; d) by Ferenc & Néda (2007), the number of free parameters is zero because d = 2
or d = 3 fixes the distribution. In the case of H(x; c) by Kiang (1966), we have one free parameter which is
fixed by the sample.



©
 C

o
p

y
ri

g
h

t 
2

0
1

2
: 
In

st
it
u

to
 d

e
 A

st
ro

n
o

m
ía

, 
U

n
iv

e
rs

id
a

d
 N

a
c

io
n

a
l A

u
tó

n
o

m
a

 d
e

 M
é

x
ic

o

212 ZANINETTI

3. STEREOLOGY

We first briefly review how a PDF f(x) changes to g(y) when a new variable y(x) is introduced. We limit
ourselves to the case in which y(x) is a one-to-one transformation. The rule for transforming a PDF is

g(y) =
f(x)

| dy
dx |

. (10)

Analytic results have shown that sections through D-dimensional Voronoi tessellations are not themselves
D-1 Voronoi tessellations (Møller 1989, 1994; Chiu, Weygaert, & Stoyan 1996). According to Blower et al.
(2002), the probability of a plane intersecting a given sphere is proportional to the sphere’s radius, R. Cross-
sections of radius r may be obtained from any sphere with a radius greater than or equal to r. We may now
write a general expression for the probability of obtaining a cross-section of radius r from the whole distribution
[which is denoted F (R)]:

f(r) =

∫ ∞

r

F (R)R
1

R

r√
R2 − r2

dR , (11)

which is formula (A7) in Blower et al. (2002). That is to say, f(r) is the probability of finding a bubble of
radius R, multiplied by the probability of intersecting this bubble, multiplied by the probability of obtaining a
slice of radius r from this bubble, integrated over the range of R ≥ r. A first example is given by the so-called
monodisperse bubble size distribution (BSD) which are bubbles of constant radius R and therefore

F (R) =
1

R
, (12)

which is defined in the interval [0, R] and

f(r) =
r√

R2 − r2R
, (13)

which is defined in the interval [0, R], see equation (A4) in Blower et al. (2002). The average value of the radius
of the 2D-slices is

r = 1/4Rπ , (14)

the variance is
σ2 = 2/3R2 − 1/16R2π2 , (15)

and finally,
Skewness = −1.151, Kurtosis = 0.493 . (16)

3.1. PVT stereology

In order to find our F (R), we now analyze the distribution in effective radius R of the 3D PVT. We assume
that the volume of each cell, v, is

v =
4

3
πR3 . (17)

In the following, we derive the PDF for the radius and related quantities relative to the Ferenc-Néda function.
The PDF as a function of the radius according to the rule of change of variables (equation 10), is obtained
from equation (4) on inserting d = 3:

F (R) =
400000

243
π5R14e−

20

3
π R3

. (18)

The average radius is
R = 0.6065 , (19)

and the variance is
σ2(R) = 0.00853 . (20)
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STATISTICS OF THE VOIDS 213

TABLE 2

THE PARAMETERS OF f(r), EQUATION (22),
RELATIVE TO THE PVT CASE

Parameter Value

Mean 0.4874

Variance 0.02475

Mode 0.553

Skewness −0.5229

Kurtosis −0.1115

TABLE 3

PARAMETERS OF f(x, b), EQUATION (27),
RELATIVE TO THE PVT CASE

Parameter b = 2.051 b = 34

Mean 1. 16.57 Mpc

Variance 0.104 28.62 Mpc2

Mode 1.134 18.80 Mpc

The introduction of the scale factor, b, with the new variable R = R′/b transforms equation (18) into

F (R′, b) =
400000π5R′14e−

20

3

π R′3

b3

243 b15
. (21)

We now have F (R) as given by equation (18) and the fundamental integral (equation 11), as derived in
Ferraro & Zaninetti (2011), is

f(r) = 2/3K
6
√

3
3
√

10 3
√

πrG4,1
3,5

(

100

9
π2r6

∣

∣

∣

5/6,1/6,1/2

7/3,2/3,1/3,0, 17

6

)

with 0 ≤ r ≤ 1 , (22)

where K is a constant,

K = 1.6485 , (23)

and the Meijer G-function is defined as in Meijer (1936, 1941); Olver et al. (2010). Details on the real or
complex parameters of the Meijer G-function are given in the Appendix. Table 2 shows the average value,
variance, mode, skewness, and kurtosis of the already derived f(r).

Asymptotic series are

f(r) ∼ 2.7855 r when r → 0 , (24)

and

f(r) ∼ −0.006 (r − 1) + 0.136 (r − 1)
2

when r → 1 . (25)

The distribution function (DF) is

DF (r) =
1

90
K 35/6102/3G4,2

4,6

(

100

9
π2r6

∣

∣

∣

1,7/6,1/2,5/6

8/3,1,2/3,1/3, 19

6
,0

)

1
3
√

π
when 0 ≤ r ≤ 1. (26)

The PDF is defined in the interval 0 ≤ r ≤ 1. In order to make a comparison with a normalized sample which
has a unit mean or an astronomical sample which has the mean expressed in Mpc, a transformation of scale
should be introduced. The change of variable is r = x/b and the resulting PDF is

f(x, b) =
2

3
K

6
√

3
3
√

10 3
√

πxG4,1
3,5

(

100

9

π2x6

b6

∣

∣

∣

5/6,1/6,1/2

7/3,2/3,1/3,0, 17

6

)

(
1

b
)2 when 0 ≤ r ≤ b. (27)

As an example, Table 3 shows the statistical parameters for two different values of b. The skewness and
kurtosis do not change with a transformation of scale.

We briefly recall that a PDF f(x) is the first derivative of a distribution function (DF) F (x) with respect
to x. When the DF is unknown but the PDF known, we have

F (x) =

∫ x

0

f(x)dx . (28)
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214 ZANINETTI

Fig. 1. PVT diagram Vp(2, 3) when 789 2D cells generated by 15000 3D seeds are considered.

The survival function (SF) S(x) is

S(x) = 1 − F (x) , (29)

and represents the probability that the variate takes a value greater than x. The SF with the scaling parameter
b is

SF (x, b) = 1 − 0.01831 35/6102/3G4,2
4,6

(

100

9

x6π2

b6

∣

∣

∣

1,7/6,1/2,5/6

8/3,1,2/3,1/3, 19

6
,0

)

1
3
√

π
, with 0 ≤ r ≤ b . (30)

A first application can be a comparison between the real distribution of radii of Vp(2, 3), see Figure 1, and
the already obtained rescaled PDF f(x, b). The fit with the rescaled f(x, b) is shown in Figure 2 and Table 4
shows the χ2 of three different fitting functions.

The PDF fA of the areas of Vp(2, 3) can be obtained from f(r) by means of the transformation (Ferraro &
Zaninetti 2011),

fA(A) = f(r)

(

A

π

)1/2
π−1/2

2
A−1/2 , (31)

that is,

fA(A) = 0.549
6
√

3
3
√

10G 4,1
3,5

(

100

9

A3

π

∣

∣

∣

5/6,1/6,1/2

7/3,2/3,1/3,0, 17

6

)

π−2/3 . (32)

The already derived fA(A) has average value, variance, mode, skewness and kurtosis as shown in Table 5.
Since, for r close to 0, f(r) ∼ r from equation (32) it follows that fA(0) 6= 0, in particular fA(0) = 0.443

and Figure 3 shows the graph of fA.
The previous figure shows that sections through 3-dimensional Voronoi tessellations are not themselves 2-

dimensional Voronoi tessellations because fA(0) has a finite value rather than 0, as does the 2D area distribution;
this fact can be considered a numerical demonstration in agreement with Chiu et al. (1996). The distribution
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TABLE 4

THE VALUES OF χ2 FOR THE CELL
NORMALIZED AREA-DISTRIBUTION

OF Vp(2, 3)a

PDF Parameters χ2

H(x; c) (equation 1) c = 5.8 250.8

f(x; d) (equation 4) d = 3.53 250.8

f(x; b) (equation 27) b = 2.0514 127
aThe number of 2D cells is 789, the 3D seeds are 15000
and the number of bins in the histogram is 30.

TABLE 5

PARAMETERS OF fA(A), EQUATION (32),
RELATIVE TO THE PVT CASE

Parameter Value

Mean 0.824

Variance 0.204

Mode 0.858

Skewness 0.278

Kurtosis −0.337

Fig. 2. Histogram (step-diagram) of PVT Vp(2, 3) when 789 2D cells, generated by 15000 3D seeds, are considered. The
superposition of the f(x, b), equation (27), is displayed.

function FA is given by

FA = 0.018 35/6102/3G4,2
4,6

(

100

9

A3

π

∣

∣

∣

1,7/6,1/2,5/6

8/3,1,2/3,1/3, 19

6
,0

)

1
3
√

π
. (33)

Consider a three-dimensional Poisson-Voronoi diagram and suppose it intersects a randomly oriented plane γ:
the resulting cross sections are polygons.

A comparison between FA and the area of the irregular polygons is shown in Figure 4. In this case the
number of seeds is 300000 and we processed 100168 irregular polygons obtained by adding together results
of cuts by 41 triples of mutually perpendicular planes. The maximum distance between the two curves is
dmax = 0.039.

As concerns the linear dimension, in our approximation the two-dimensional cells were considered circles
and thus, for consistency, the radius r of an irregular polygon was defined as

r =

(

A

π

)1/2

, (34)

that is, r is the radius of a circle with the same area, A, as the polygon. The assumption of sphericity can be
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Fig. 3. The PDF fA, equation (32), as a function of A (full line) and FN(x; d), equation (4), when d = 2 (dotted line).

Fig. 4. Comparison between data (empty circles) and theoretical curve (continuous line) of the distribution of areas of
the planar cross sections.

considered an axiom of the theory here presented, but for a more realistic situation the stereological results
will be far more complex.

4. STATISTICS OF THE VOIDS

This section first processes 1024 observed cosmic voids and then derives the same results from the stereo-
logical point of view.

4.1. Observed statistics

The distribution of the effective radius and the radius of the maximum enclosed sphere between galaxies of
the Sloan Digital Sky Survey Data Release 7 (SDSS DR7) has been reported in Pan et al. (2011). This catalog
contains 1054 voids: Table 6 shows the basic statistical parameters of the effective radius, and Table 7, the
radius of the maximum enclosed sphere.
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TABLE 6

THE STATISTICAL PARAMETERS OF
THE EFFECTIVE RADIUS IN SDSS DR7

Parameter Value

Elements 1024

Mean 18.23 h−1 Mpc

Variance 23.32 h−2 Mpc2

Standard deviation 4.82 h−1 Mpc

Skewness 0.51

Kurtosis 0.038

Maximum value 34.12 h−1 Mpc

Minimum value 9.9 h−1 Mpc

TABLE 7

THE STATISTICAL PARAMETERS OF THE
RADIUS OF THE MAXIMAL ENCLOSED

SPHERE IN SDSS DR7

Parameter Value

Elements 1054

Mean 12.95 h−1 Mpc

Variance 6.99 h−2 Mpc2

Standard deviation 2.64 h−1 Mpc

Skewness 1.47

Kurtosis 2.401

Maximum value 25.69 h−1 Mpc

Minimum value 10 h−1 Mpc

Fig. 5. Histogram (step-diagram) of the effective radius in SDSS DR7 with a superposition of the PDF of radius of the
PVT spheres, F (R, b), as represented by equation (21). The number of bins is 30, and b=30.05 Mpc.

4.2. PVT statistics

Figure 5 shows a superposition of the effective radius of the voids in the SDSS DR7 with the curve of
the theoretical PDF of the radii, F (R, b), as given by equation (21). Table 8 shows the theoretical statistical
parameters.

Table 9 shows the values of χ2 for the main PDFs here considered. The statistics of the voids can also
be visualized through the SF, see an application to the 2dFGRS as given by Patiri et al. (2006); von Benda-
Beckmann & Müller (2008).

The statistics of the voids between galaxies have been also analyzed in von Benda-Beckmann & Müller
(2008) with the following self-similar SF denoted by SSS,

SSS = e
−

“

R
s1λ

”p1
−

“

R
s2λ

”p2

, (35)
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TABLE 8

THE STATISTICAL PARAMETERS OF THE
THEORETICAL RADIUS OF THE PVT

SPHERES AS REPRESENTED BY
EQUATION (21) WHEN b=30.05 Mpc

Parameter Value

Mean 18.23 h−1 Mpc

Variance 7.70 h−2 Mpc2

Standard deviation 2.77 h−1 Mpc

Mode 18.49 h−1 Mpc

Skewness 0.0142

Kurtosis −0.0514

TABLE 9

VALUES OF χ2 FOR THE EFFECTIVE
RADIUS IN SDSS DR7a

PDF Parameters χ2

H(x; c), (eq. 1) c = 14.24 53

f(x; d), (eq. 4) d = 9.1 53

f(x, b), (eq. 27) b = 2.051 182

F (R, b), (eq. 21) b = 1.648 407

FK(R, b, c), (eq. 36) b = 31.33 c = 1.76 66.121

aValues for different distributions when the number of
bins is 30. In this comparison, the averaged value of the
astronomical radii is one.

Fig. 6. The survival function, SSS, for the self-similar distribution of radius of N/S1, N/S2, N/S3 and N/S4, as reported
in Figure 4 of von Benda-Beckmann & Müller (2008) (full red lines), as represented by equation (35). The survival
function, SF (x, b), of the radius of the distribution which involves the Meijer G-function for Vp(2, 3) as represented by
equation (30) when b = 12 Mpc, b = 14 Mpc, b = 17 Mpc, and b = 19 Mpc (dashed green lines). The color figure can
be viewed online.

where λ is the mean separation between galaxies, s1 and s2 are two length factors, and p1 and p2 two powers.
A final comparison between the four samples of void size statistics as represented in Figure 4 of von Benda-
Beckmann & Müller (2008) and our survival function of the radius for Vp(2, 3) as given by equation (30) is
shown in Figure 6.

More details as well the PDF of the self-similar distribution can be found in Zaninetti (2010).

5. NPVT STATISTICS

An example of non-NPVT is represented by a distribution in volume which follows a Kiang function as
given by equation (1). The case of PVT volumes indicates c = 5, see equation (8), or c = 6, the so called Kiang
conjecture; we will take c as a variable. The resulting distribution in radius once the scaling parameter b is
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Fig. 7. Histogram (step-diagram) of the effective radius in the SDSS DR7 with a superposition of the PDF of radius
of the NPVT spheres, FK(R, b, c), as represented by equation (36). The number of bins is 30, b = 31.33 Mpc, and
c = 1.768.

introduced is

FK(R, b, c) =
4 c

(

4/3 cπ R3

b3

)c−1

e−4/3 cπ R3

b3 π R2

Γ (c) b3
. (36)

The average radius is

R =
3
√

2 3
√

3bΓ (1/3 + c)

2 3
√

c 3
√

πΓ (c)
, (37)

and the variance is

σ2(R) =
−32/322/3b2

(

−Γ (2/3 + c) Γ (c) + (Γ (1/3 + c))
2
)

4 c2/3π2/3 (Γ (c))
2

. (38)

The skewness is

γ =
(Γ (c))

3
c − 3Γ (c) Γ (1/3 + c) Γ (2/3 + c) + 2 (Γ (1/3 + c))

3

(

Γ (2/3 + c) Γ (c) − (Γ (1/3 + c))
2
)3/2

, (39)

and the kurtosis is given by a complicated analytic expression. Figure 7 shows a superposition of the effective
radii of the voids in SDSS DR7 with the curve of the theoretical PDF in the radius, FK(R, b, c), as represented
by equation (36). Table 9 shows the values of χ2. Table 10 shows the theoretical statistical parameters.

The result of the integration of the fundamental equation (11) inserting c = 2 gives the following PDF for
the radius of the cuts

f(r)NPVTK = 3.4148
6
√

3 3
√

πr22/3G4,0
2,4

(

16

9
π2r6

∣

∣

∣

1/6,1/2

4/3,2/3,1/3,0

)

, when 0 ≤ r ≤ 1 . (40)

The statistics of NPVT cuts with c = 2 are shown in Table 11.
On introducing the scaling parameter b, the PDF which describes the radius of the cut becomes

f(x, b)NPVTK = 3.4148
6
√

3 3
√

πx22/3G4,0
2,4

(

16

9

π2x6

b6

∣

∣

∣

1/6,1/2

4/3,2/3,1/3,0

)

b−2 , with 0 ≤ r ≤ b . (41)
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TABLE 10

THE STATISTICAL PARAMETERS OF THE
THEORETICALRADIUS OF THE NPVT

SPHERES AS REPRESENTED BY
EQUATION (36) WHEN b = 31.33 Mpc

AND c = 1.768

Parameter Value

Mean 18.23 h−1 Mpc

Variance 23.31 h−2 Mpc2

Standard deviation 4.82 h−1 Mpc

Skewness 0.072

Kurtosis −0.162

TABLE 11

NPVT PARAMETERS OF
f(r)NPVTK, EQUATION (40)

Parameter Value

Mean 0.488

Variance 0.0323

Mode 0.517

Skewness −0.114

Kurtosis 2.614

Fig. 8. Histogram (step-diagram) of the simulated effective radius of SDSS DR7 with a superposition of the PDF of
radius of the PVT spheres as represented by equation (36). The artificial sample has a minimum value of 10/h Mpc,
the number of bins is 30, b = 31.5/h Mpc, and c = 1.3.

The SF of the second NPVT case, SFNPVTK, with the scaling parameter b, is

SF (x, b)NPVTK = 1 − 0.2845 35/6 3
√

2G4,1
3,5

(

16

9

π2x6

b6

∣

∣

∣

1,1/2,5/6

5/3,1,2/3,1/3,0

)

1
3
√

π
, with 0 ≤ r ≤ b . (42)

A careful exploration of the distribution in effective radius of SDSS DR7 reveals that the detected voids have
radius ≥10/h Mpc. This observational fact demands the generation of random numbers in the distribution of
radii of the 3D cells as given by equation (36) with a minimum value of 10/h Mpc. The artificial sample is
generated through a numerical computation of the inverse function (Brandt 1998) and displayed in Figure 8;
the sample statistics are shown in Table 12.
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TABLE 12

STATISTICAL PARAMETERS OF THE ARTIFICIALLY
GENERATED RADIUS WITH A LOWER BOUND

OF 10/h Mpc, c = 1.3 AND b = 31.5/h Mpc

Parameter Value

Mean 18.69 h−1 Mpc

Variance 22.74 h−2 Mpc2

Standard deviation 4.76 h−1 Mpc

Skewness 0.33

Kurtosis −0.623

Maximum value 31.27 h−1 Mpc

Minimum value 10 h−1 Mpc

6. CONCLUSIONS

PVT Statistics. The approach as given by the stereology to the PDF of the radii of the circles which
result from the intersection between a plane and a randomly disposed spheres of radius R is actually limited
to the case of mono-disperse spheres of radius R and to a power law with radius ∝ R−α (Blower et al. 2002).
Here adopting the same type of demonstration we simply substitute into equation 11 a new distribution for the
generalized radii, (R), of PVT. The resulting distribution of the radii, (r), of the circles of intersection involves
the Meijer G-function. A first test on this new PDF for the radii was performed on the 2dFGRS catalog and
the theoretical Vp(2, 3) cells were compared with other fitting functions, see Figure 6.

NPVT Statistics. Among the infinite number of 3D seeds which are non-Poissonian, we selected a
distribution in volume which follows a Kiang function as given by equation (1) with c ≈ 2.

A careful comparison with the measured effective radii permits us to say that the NPVT case here considered
is a good model because it can reproduce the 3D average radius and the variance, see Table 10. The model for
the effective radius of the voids as given by the Kiang distribution of volumes with c variable can also be used
to generate an artificial sample of the effective radius of the voids, see Figure 8 and Table 12.

I would like to thank the anonymous referee for constructive comments on the text and Mario Ferraro for
positive discussions on the Voronoi Diagrams.

APPENDIX. THE MEIJER G-FUNCTION

In general the Meijer G-function is defined by the following Mellin-Barnes type integral on the complex
plane,

ccGm,n
p,q (z) ≡ Gm,n

p,q






z

∣

∣

∣

∣

∣

∣

∣

c(ai)
p
1

(bj)
q
1






≡ Gm,n

p,q






z

∣

∣

∣

∣

∣

∣

∣

a1, . . . , ap

b1, . . . , bq






=

1

2πi

∫

L

m
∏

j=1

Γ(bj + s)

n
∏

j=1

Γ(1 − aj − s)

p
∏

j=n+1

Γ(aj + s)

q
∏

j=m+1

Γ(1 − bj − s)

z−sds ,

(43)
where the contour of integration L is arranged to lie between the poles of Γ(ai + s) and the poles of Γ(bj + s).
The G-function is defined under the following hypothesis.

• 0 ≤ m ≤ q, 0 ≤ n ≤ p, and p ≤ q − 1;

• z 6= 0;

• no pair of bj , j distinct, j =, 2, . . . ,m differ by an integer or zero;
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• the parameters ai ∈ C and bj ∈ C are such that no pole of Γ(bj + s), j = 1, 2, . . . ,m coincides with any
pole of Γ(ai + s), i = 1, 2, . . . , n;

• ai − bj 6= 1, 2, 3, . . . for i = 1, 2, . . . , n and j = 1, 2, . . . ,m; and

• if p = q, then the definition makes sense only for |z| < 1 (Meijer 1936, 1941; Ho, James, & Lau 2007;
Olver et al. 2010).
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