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RESUMEN

Las regiones HII ultracompactas están en un régimen de balance de presión
aproximado con las nubes moleculares densas circundantes. En este art́ıculo apli-
camos un nuevo formalismo de “cáscara gruesa” al caso de una región HII energizada
tanto por la fotoionización como por el viento de una estrella central. El modelo
resultante lleva a soluciones anaĺıticas y cuasi-anaĺıticas que tienen una transición
a un régimen (ausente en la solución anaĺıtica clásica de una burbuja alimentada
por un viento) en el que la burbuja caliente alimentada por el viento se expande
cuasi-estáticamente, en equilibrio de presión aproximado con el medio ambiente
circundante. Este régimen es relevante para las regiones HII ultracompactas ob-
servadas. Presentamos la evolución temporal del radio y del ancho de la cáscara
fotoionizada en expansión para distintos valores del parámetro adimensional que
determina las caracteŕısticas de la solución.

ABSTRACT

Ultracompact HII regions are in a regime of approximate pressure balance
with the surrounding, dense molecular clouds. In this paper, we apply a newly
developed “thick shell” formalism to the case of an expanding HII region ener-
gized by both the photoionizing radiation and the wind from the central stellar
source. The resulting model leads to analytic and quasi-analytic solutions that
have a transition to a regime (absent in the classical “wind-driven bubble” analytic
solutions) in which the hot, stellar wind bubble expands quasi-statically, in ap-
proximate pressure equilibrium with the surrounding ISM. This regime is relevant
for the observed ultracompact HII regions. We present the time-evolution of the
radius and the thickness of the expanding HII shell for different values of a single,
dimensionless parameter that determines the characteristics of the solution.

Key Words: HII regions — ISM: evolution — ISM: kinematics and dynamics —
stars: formation

1. INTRODUCTION

The problem of the interaction of the stellar wind
from a massive star and a homogeneous, surround-
ing ISM has been studied for several decades (see,
e.g., Pikel’ner 1968; Dyson & de Vries 1972; Falle
1975; and the more recent work of Garćıa-Segura &
Franco 1996). The relevance of this interaction in
the context of expanding HII regions was apparently
first discussed by Dyson (1977).
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3Instituto de Astronomı́a, Universidad Nacional Autó-

noma de México, Mexico.
3Centro de Radioastronomı́a y Astrof́ısica, Universidad

Nacional Autónoma de México, Morelia, Michoacán, Mexico.

The relatively recent observations of ultracom-
pact HII regions, with sizes as small as ∼0.03 pc,
embedded in molecular clouds of densities of up to
∼107 cm−3 (see, e.g., the review of Kurtz 2005)
show that these objects have expanded to reach pres-
sure equilibrium with the surrounding clouds (see,
e.g., de Pree, Rodŕıguez, & Goss 1995; Franco et
al. 2007). Motivated by these observations, Raga,
Cantó, & Rodŕıguez (2012a) have developed a new
“thick shell” model for the expansion of HII regions
(in the absence of a stellar wind). This model leads
to a full analytic solution which has the correct re-
laxation to the final state of pressure equilibrium be-
tween the photoionized region and the surrounding,
neutral gas.
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In the present paper, we apply this “thick shell”
formalism to the case of an expanding HII region
driven by both the ionizing radiation and a wind
from the central star. The new formalism leads to
expansion laws that differ from the “classical” solu-
tion (Dyson 1977), and which are relevant for the
rapidly evolving ultracompact HII regions.

The paper is organized as follows. In § 2, we de-
scribe the general characteristics of the flow. In § 3,
we develop a “thick shell” model in which the pho-
toionized region is assumed to be thin (most of the
width of the thick shell being filled with displaced,
neutral environmental gas). In § 4, we remove the
assumption of a thin photoionized region, and de-
velop the corresponding model. Finally, in § 5 we
discuss the possible applications of our models to
observations of ultracompact HII regions.

2. THE FLOW CONFIGURATION

We assume that we have the flow configuration
shown in Figure 1:

1. A star has an isotropic wind (of mass loss rate
Ṁ and terminal velocity vw) which is turned on
at t = 0. At a time t > 0 the wind fills the in-
ner, spherical region labeled “I” in the schematic
diagram. The star also emits S∗ photoioniz-
ing photons per unit time (starting at t = 0).
The outer boundary of this region is a spherical
shock, which has a radius much smaller than the
ones of all of the other regions of the flow,

2. The shocked stellar wind produces a hot bubble
of coronal gas (region II, which is non-radiative
for the case of an O/B central star) limited on
the outside by a contact discontinuity which sep-
arates the stellar wind from disturbed environ-
mental material,

3. The hot bubble pushes out a shock wave (the
outer boundary of region III in the schematic
diagram) into the surrounding, neutral environ-
ment (region IV). The shell of displaced envi-
ronmental material has an inner region (region
IIIa) which is photoionized by the S∗ ionizing
photon rate of the central star, and a neutral
outer region (region IIIb).

We first assume that region IIIa (the HII region)
is much thinner than region IIIb (the region filled
with shocked, neutral material, see Figure 1). For
this “thin HII region” case, one can derive a model
resulting in a first order differential equation with
an approximate analytic solution. This model is de-
scribed in § 3.

*I II IIIa IIIb IV

R Rs Rn

HII HI HIcoronal

Fig. 1. Schematic diagram of a wind-driven HII region.
The asterisk indicates the position of the ionizing pho-
ton+stellar wind source. Region I is filled with the ex-
panding stellar wind, ending at an outer shock (thick,
inner circle). Region II is filled with the hot, shocked
wind, and ends in a contact discontinuity (at a radius R).
Region IIIa is the photoionized region (of outer radius
RS). Region IIIb is the perturbed, neutral environment
region, pushed out by the outer shock (of radius Rn),
which travels into the unperturbed environment (region
IV).

We then remove this assumption, and derive a
“thick HII region” model, which results in a differ-
ential equation which we integrate numerically. This
model is described in § 4.

3. THIN HII REGION MODEL

3.1. Derivation of the model equation

As described in § 2, we assume that the stellar
wind goes through a shock, and fills in a large bubble
of hot, coronal gas. The kinetic energy of the wind
feeds the thermal energy of the bubble and the ki-
netic energy of the swept-up material. The resulting
energy equation is:

Ṁv2
w

2
t =

3

2
PV +

1

2
Msv

2
s , (1)

where Ṁ is the mass loss rate and vw the terminal
velocity of the wind, P and V are the pressure and
volume (respectively) of the stellar wind bubble and
Ms and vs are the mass and velocity (respectively)
of the swept-up shell.

Following the classical derivation (see Dyson
1977, and references therein), we use the estimates

P ≈ ρ0Ṙ
2 , Ms ≈

4π

3
R3ρ0 , vs ≈ Ṙ , (2)

where R is the outer radius of the hot bubble (so
that V = 4πR3/3).



©
 C

o
p

y
ri

g
h

t 
2

0
1

2
: 
In

st
it
u

to
 d

e
 A

st
ro

n
o

m
ía

, 
U

n
iv

e
rs

id
a

d
 N

a
c

io
n

a
l A

u
tó

n
o

m
a

 d
e

 M
é

x
ic

o

WIND-DRIVEN COMPACT HII REGIONS 201

Combining equations (1–2), we obtain an energy
conservation equation of the form:

Ṁv2
w

2
t =

8π

3
R3P → P =

3Ṁv2
wt

16πR3
, (3)

for a bubble of uniform pressure P and radius R at
an evolutionary time t.

The relations in equation (2) are strictly valid for
the case in which the swept-up material (regions IIIa
and IIIb in Figure 1) forms a thin shell. However,
we will apply equation (3) for the case in which re-
gion IIIb (of neutral swept-up gas, see Figure 1) is
not thin. This is not likely to result in large errors
because the thermal energy of the shell dominates
over the kinetic energy of the shell by a factor of ≈3.
Therefore, an incorrect estimate of the kinetic en-
ergy of the (no longer thin) shell does not introduce
large errors in the energy equation.

We now follow Raga et al. (2012a), and assume
that the outer shock (driven by the swept-up shell
into the undisturbed environment) is isothermal, so
that the postshock velocity vps and pressure Pps are
given by the isothermal Rankine-Hugoniot relations:

vps =
c2
0

vn
, Pps = ρ0v

2
n , (4)

where vn is the shock velocity and ρ0 the ambient
density. In the following, we set Pps = P (where Pps

is the post-shock pressure, see equation 4 and P the
pressure of the hot bubble, see equation 3).

Also, from the standard “shock pushed by a pis-
ton” problem, we have the relation

vn = vps + Ṙ , (5)

where Ṙ is the velocity of the outer edge of the hot
bubble.

Now, combining equations (3–5), we obtain the
differential equation:

dr

dτ
=
( τ

r3

)1/2

−

(

r3

τ

)1/2

, (6)

where r = R/R0 (the dimensionless radius of the
bubble) and τ = t/t0 (dimensionless time), with:

R0 ≡

√

3Ṁv2
w

16πρ0c3
0

, t0 ≡
R0

c0

, (7)

where c0 is the isothermal sound speed of the undis-
turbed environment.

Once a solution r(τ) to equation (6) has been
found, the outer radius Rn of the perturbed, neutral

environment (region IV of Figure 1) can be found by
combining equations (4–5) to obtain

drn

dτ
=
( τ

r3

)1/2

, (8)

where rn = Rn/R0 and r comes from the previously
obtained solution (of equation 6). Equation (8) can
then be integrated to obtain the (dimensional) radius
Rn = R0rn of the spherical shock travelling into the
neutral environment.

For parameters appropriate for a high density,
ultracompact HII powered by a main sequence O7
star we have

R0 = 0.76 pc

(

Ṁ

5 × 10−7 M⊙ yr−1

)1/2

( vw

2500 km s−1

)

(

107 cm−3

n0

)1/2(
1 km s−1

c0

)3/2

,

(9)
where n0 is the number density of atomic nuclei.
From this value of R0 we can calculate the char-
acteristic time t0 = R0/c0 ≈ 7 × 105 yr. Therefore,
ultracompact HII regions (with sizes of ∼0.1 pc and
evolutionary times ∼105 yr) are in a regime with a
dimensionless radius r = R/R0 ∼ 0.1 − 1 and a di-
mensionless time τ = t/t0 ∼ 0.1 − 1.

3.2. Numerical and analytic solutions

Equation (6) can be integrated numerically with
the initial condition r(0) = 0 to obtain the radius
R of the hot bubble as a function of time, and an
integration of equation (8) gives the radius Rn of the
outer shock vs. t. The results of such integrations
are shown in Figure 2.

It is possible to find a series of approximate an-
alytic solutions to equation (6). For τ ≪ 1 the first
term on the right hand side of equation (6) domi-
nates over the second term, and (neglecting the sec-
ond term) one then obtains the integral

r(τ) =

(

5

3

)2/5

τ3/5 , (10)

which is the classical solution for an expanding,
wind-driven bubble (see Dyson 1977).

For τ ≫ 1, the two terms on the right hand side
of equation (6) become very large, reaching an ap-
proximate balance. Setting these two terms equal to
each other, one obtains the solution

r(τ) = τ1/3 . (11)
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Fig. 2. Radius R of the thick shell (thick, solid line) and
Rn of the outer shock (thin, solid line) resulting from a
numerical integration of equations (6) and (8). The radii
are given in units of R0 (see equation 9) and the time in
units of R0/c0 (where c0 is the isothermal sound speed
of the surrounding, neutral environment). The long-dash
line shows the inner analytic solution (equation 10, valid
for R ≪ R0) and the short-dash line the outer analytic
solution (equation 11, valid for R ≫ R0).

It can be straightforwardly shown that this solu-
tion corresponds to a bubble in pressure equilibrium
with the surrounding environment, expanding quasi-
statically as more material is progressively injected
by the stellar wind.

In Figure 2 we see that (as expected) the nu-
merical integration of equation (6) gives a radius
that approaches the low τ (equation 10) and high
τ (equation 11) solutions in the appropriate limits.
It is possible, however, to obtain approximate ana-
lytic solutions that reproduce the numerical solution
for all values of τ .

To find these approximate solutions, we first
rewrite equation (6) in the form:

dy

dx
=

3
(

x2 − y2
)

y2/3
, (12)

with x = τ1/2 and y = r3/2. This equation can be
straightforwardly solved to obtain x as a function of
dx/dy and y, and the resulting relation can then be
used to do successive iterations of the form:

xn+1 =

√

y2 +
y2/3

3(dxn/dy)
, (13)

to obtain increasingly more accurate approximations
to the y(x) solution of equation (12).

Let us call x0(y) the first approximation to the
solution of equation (12). One possibility is to set

x0(y) equal the large τ solution (equation 11), which
in terms of the x, y variables takes the form

x0(y) = y . (14)

Inserting this relation in equation (13), we obtain
the first iteration:

x1(y) =

√

y2 +
1

3
y2/3 . (15)

Reinserting x1(y) in equation (13) we then obtain
the second iteration:

x2(y) =

√

√

√

√

y2 +
3y
√

y2 + 1
3
y2/3

1 + 9y4/3
. (16)

It is possible to proceed with further iterations, but
the resulting x(y) relations are very extended.

A second possibility is to use the small τ solution
(equation 10) as the first guess. The iterations then
proceed as follows:

x0(y) =

(

3

5

)1/3

y5/9 , (17)

x1(y) =

√

y2 +

(

3

5

)2/3

y10/9 , (18)

x2(y) =

√

√

√

√

√y2 +
y2/3

√

y2 +
(

3
5

)2/3
y10/9

3
[

y + 1
3

(

5
3

)1/3
y1/9

] . (19)

The two “second iteration” solutions (equations 16
and 19) are shown (together with the results from a
numerical integration of equation 6) in the top panel
of Figure 3.

In order to evaluate the accuracy of our two “sec-
ond iteration” solutions (equations 16 and 19), we
first calculate the corresponding τ vs. r relations,
and then calculate the relative error in the radius

ǫ(τ) =

∣

∣

∣

∣

re(τ) − r2(τ)

re(τ)

∣

∣

∣

∣

, (20)

where re(τ) is the “exact” solution (obtained from a
an accurate numerical integration of equation 6) and
r2(τ) is one of the two “second iteration” approxi-
mate solutions (equations 16 and 19).

The two corresponding relative errors are plotted
as a function of time in the bottom panel of Figure 3.
From this graph we see that the approximate solu-
tion given by equation (16) has a maximum devia-
tion from the exact solution of ∼10%, and that the
more complex approximate solution given by equa-
tion (19) has a maximum deviation of ∼5%.
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WIND-DRIVEN COMPACT HII REGIONS 203

Fig. 3. Top panel: radius of the hot bubble as a func-
tion of time obtained from the “exact” (i.e., numerical)
solution of equation 6 (solid line) and the radii obtained
from the two approximate analytic solutions (short dash:
equation 16; long dash: equation 19). Lower panel: rel-
ative deviations (see equation 20) of equation 16 (short
dash) and equation 19 (long dash) from the “exact” so-
lution.

4. THICK HII REGION MODEL

4.1. Derivation of the model equation

We now develop a model similar to that of § 3.1,
but relaxing the condition that the photoionized re-
gion (region IIIa in Figure 1) is narrow. If we assume
photoionization equilibrium (correct for all HII re-
gions, as discussed in detail by Raga et al. 2012a),

the outer radius RS of the photoionized region obeys
the relation:

S∗ =
4π

3
n2

i αH

(

R3
S − R3

)

, (21)

where R is the radius of the hot bubble (region II of
Figure 1), ni is the ion number density of region IIIa
(assumed to be homogeneous within the region), S∗

is the rate of photoionizing photons (emitted by the
central star), αH ≈ 2.6 × 10−13 cm3 s−1 is the case
B hydrogen recombination coefficient at 104 K.

The condition of pressure equilibrium between
the photoionized region and the hot bubble is

P = mnic
2
i , (22)

where P is the pressure of the stellar wind bubble
(see equation 3), ci (≈10 km s−1) is the isothermal
sound speed of the photoionized gas and m is the
average mass per ion (= 1.3 mH for a 90% H, 10% He
gas, by number).

Also, the condition of pressure equilibrium be-
tween regions IIIa (the photoionized region) and IIIb
(the shocked, neutral region) implies that

P = ρ0v
2
n , (23)

where we have used the isothermal shock jump con-
ditions (equation 4). As described in § 3.1, vn is
the velocity of the outer shock driven into the undis-
turbed environment.

Finally, the “shock pushed by a piston” relation
(equation 5) now takes the form:

vn = vps + ṘS =
c2
0

vn
+ ṘS , (24)

where ṘS is the velocity of the outer edge of the pho-
toionized region, and to obtain the second equality
we have used equation (4).

Combining equations (3) and (21–24), we obtain
a differential equation for RS of the form:

1

c0

dRS

dt
=

√

P

ρ0c2
0

−

√

ρ0c2
0

P
, (25)

where
P

ρ0c2
0

= λ

(

Rf

c0

t

)(

Rf

RS

)3

+

√

(

Rf

c0

λt

)2(
Rf

RS

)6

+

(

Rf

RS

)3

. (26)

The solutions of equations (25–26) depend on the
value of the dimensionless parameter

λ ≡
1

2

(

R0

Rf

)2

, (27)
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where R0 is given by equations (7, 9) and

Rf =

(

3S∗

4πn2
0αH

)1/3(
ci

c0

)4/3

. (28)

Rf is the final radius obtained by a “wind-less” HII
region which has reached pressure equilibrium with a
surrounding, homogeneous neutral environment (see,
e.g., the book of Dyson & Williams 1980). For pa-
rameters appropriate for an ultracompact HII region
powered by an O7 star, we have

λ = 290

(

Ṁ

5 × 10−7 M⊙ yr−1

)1/2
( vw

2500 km s−1

)2

×

(

107 cm−3

n0

)1/3(
1049 s−1

S∗

)2/3

×

(

1 km s−1

c0

)1/3(
10 km s−1

ci

)8/3

. (29)

It is straightforward to see that equations (25–26)
have the following two limits:

1. For λ ≫ 1, these equations become equation (6)
of § 3.1, i.e., the model for a wind-driven shell
with a negligibly thin HII region,

2. For λ = 0, these equations are identical to equa-
tion (8) of Raga et al. (2012a, who modeled the
expansion of an HII region in the absence of a
stellar wind).

Therefore, by spanning all positive values of the di-
mensionless parameter λ, we have models ranging
from a “wind-less” to a “wind dominated” expand-
ing HII region.

In the following section we present numerical so-
lutions (of equations 25–26) giving the radius RS of
the expanding HII region as a function of time. We
also integrate equation (8) (setting r = RS/c0 in the
right hand term) to obtain the radius Rn if the outer
shock driven into the undisturbed environment, and
we combine equations (21–22) to obtain the radius
of the hot bubble (region II of Figure 1):

(

R

Rf

)3

=

(

RS

Rf

)3

−

(

ρ0c
2
0

P

)2

, (30)

where the second term on the right is given by equa-
tion (26).

Fig. 4. Hot bubble radius (dashed line), outer radius of
the HII region (solid line) and radius of the shock driven
into the surrounding environment (dash-dotted line) as
a function of time, obtained from numerical solutions of
the “thick HII region model” of § 4. The six panels are
labeled with the values of the dimensionless parameter λ
(see equations 27, 29) used for each solution.

4.2. Numerical solutions

In Figure 4, we show the numerical results ob-
tained from numerical integrations of the “thick HII
region” model (described in § 4.1) for different values
of the dimensionless parameter λ (see equations 27,
29). The λ = 0 solution (top left panel) is identi-
cal to the “wind-less expanding HII region” model
of Raga et al. (2012a). The λ = 100 solution is most
similar to the “thin HII region” model described in
§ 3 (i.e., the solution shown in Figure 2).

As can be seen in Figure 4, for progressively
larger values of λ, a larger, inner hot wind bubble
and a narrower HII region are obtained. In order to
evaluate the relative thickness of the HII region, we
have computed the value of

∆R

RS
=

RS − R

RS
, (31)

(where RS and R are the outer radii of the HII region
and of the hot bubble, respectively) as a function of
t. The results are shown in Figure 5, in which we see
that for λ = 10, the HII region has become a shell
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Fig. 5. Relative width of the HII region (see equation 31)
as a function of time obtained for different values of the
dimensionless parameter λ (see equation 27).

with a thickness of ∼1% of the radius of the ionized
nebula. For the λ ∼ 100 value expected for ultra-
compact HII regions driven by a main sequence O
star (see equation 29), the photoionized gas is con-
fined to an extremely narrow shell (see Figure 5).

5. SUMMARY AND DISCUSSION

In this paper, we have applied the “thick shell”
formalism of Raga et al. (2012a, who modeled the
expansion of an HII region photoionized by a wind-
less source) to the case of a source producing both
a photoionizing radiation field and a stellar wind.
For the case in which the HII region is thin (com-
pared to the width of the swept-up ambient medium
shell), the problem can be solved analytically with
an iterative method. This method gives solutions
which approximate the exact solution with accura-
cies of better than ∼5% (see § 3.2). Our new solution
to the wind-driven bubble expansion problem has a
transition from a R ∝ t3/5 law (i.e., the “classical”
solution, see Dyson 1977) for R ≪ R0 (see equa-
tion 9) to a R ∝ t1/3 law for R ≫ R0. Ultracompact
HII regions lie close to the transition between these
two regimes. Interestingly, this analytic solution has
been missed in previous studies of wind-driven HII
regions (see the review of Capriotti & Kozminski
2001).

The problem in which the HII region is not thin
leads to a more complex differential equation, which
we have integrated numerically (see §§ 4.1 and 4.2).
Different solutions are found for different values of
the dimensionless parameter λ ≡ R0/(2Rf ) (where

Fig. 6. Outer radius of the HII region (upper panel) and
expansion velocity (lower panel) for an ultracompact HII
region (of isothermal sound speed ci = 10 km s−1) driven
by a source with S∗ = 1049 s−1 into a uniform environent
of density n0 = 107 cm−3 (and isothermal sound speed
c0 = 1 km s−1). Three solutions are shown, correspond-
ing to stellar winds such that the dimensionless parame-
ter λ (see equations 27, 29) has values of 290 (short dash
line), 10 (long dash line) and 0 (solid line).

R0 is given by equation 9 and Rf is the final, pressure
equilibrium radius of an HII region from a wind-less
source). For increasing values of λ, we obtain so-
lutions ranging from the wind-less case (λ = 0) to
solutions in which the HII region becomes a very
thin shell (approaching the “thin HII region” ana-
lytic solutions derived in § 3.2).

The transition to the thin HII region regime (for
increasing λ values) is shown in Figures 4 and 5. In-
terestingly, for the nominal parameters that we have
chosen for an ultracompact HII region, we obtain
λ ≈ 300 (see equation 29), so that they are clearly
in the “thin HII region” regime.

In order to illustrate the effect of a stellar wind
on the characteristics of an HII region, in Figure 6
we show the HII region radius RS and the expan-
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sion velocity (dRS/dt) obtained for λ = 0 (i.e., a
wind-less HII region), λ = 290 (the value obtained
for our chosen ultracompact HII region parameters,
see equation 29) and for λ = 10 (an arbitrary, in-
termediate λ value). From this Figure we see that
while for λ = 0 the expansion velocity falls below
≈1 km s−1 in ∼500 yr, for λ = 10 the expansion ve-
locity remains above ≈1 km s−1 for an evolutionary
time ∼1.5×105 yr. For λ = 290, the expansion ve-
locity remains above ∼3 km s−1 for ∼2×104 yr and
above ∼2 km s−1 for ∼1.5×105 yr. Such expansion
velocities might be detected (using the techniques of
Kawamura & Masson 1998) in future interferometric
observations with, e.g., MERLIN and the EVLA.

Interferometric observations show that some ul-
tracompact HII regions have a “thick shell” morphol-
ogy, with shell widths of ∼10–20% of the nebular
radius (see Carral et al. 2002). Comparing this re-
sult with our predictions of the thickness of the HII
region, we would conclude that these “thick shell”
objects have a dimensionless parameter λ < 1 (see
Figure 5).

However, from equation (29) and the table of
main sequence O/B stellar parameters of Sternberg,
Hoffman, & Pauldrach (2003), we see that HII re-
gions (expanding into a n0 = 107 cm−3, uniform
environment) have λ = 150 → 670, the lower limit
corresponding to a B0 star, and the upper limit to
an O3 star. If we lower the environmental density
to n0 = 104 cm−3, we would obtain a λ = 15 → 70
range (see equation 29), still an order of magnitude
larger than the λ values necessary for producing a
“thick HII shell” morphology (see above and Fig-
ure 5).

As there are no empirical estimates of mass loss
rates from main sequence stars later than B0.5 (see,
e.g., Sternberg et al. 2003, and the review of Ku-
dritzki & Puls 2000), it is not clear what are the
values of λ for sources of later spectral type. If
we use the Ṁ ≈ 1.3 × 10−11 M⊙ yr−1 mass loss
rate for a B2 main sequence star (Teff = 21000 K,
log10 g = 4, see Strom & Peterson 1968) predicted
by Babel (1996), a vw = 1000 km s−1 wind veloc-
ity (see Figure 10 of Kudritski & Puls 2000) and
S∗ = 2.9 × 1044 s−1 (Dı́az-Miller, Franco, & Shore
1998), we obtain λ = 1.2 for an HII region expanding
into a n0 = 107 cm−3 environment, and λ = 0.12 for
n0 = 104 cm−3. Therefore, for a B2 central source
we would indeed expect to have ultracompact HII re-
gions with “thick shell” morphologies (see Figure 5).

Interestingly, the more recent paper of Marcolino
et al. (2009) calculates mass loss rates for O8 and

O9 main sequence which are two orders of magnitude
below previously obtained rates (such as the ones of
Sternberg et al. 2003, see above). These new mass
loss rates would imply that λ ∼ 1 for late OV stars.

Given the current lack of knowledge about winds
from late O and early B main sequence stars, fu-
ture comparisons between the models presented in
this paper and observations of ultracompact HII re-
gions might help to provide constraints on the val-
ues of the mass loss rates (Ṁ) and terminal wind
velocities (vw) of these stars. However, comparisons
between “thick shell” ultracompact HII regions and
our quasi-analytic models are complicated by the
fact that numerical simulations of wind-driven HII
regions (see, e.g., Garćıa-Segura & Franco 1996) pro-
duce thin shells that can develop strong instabilities
(a discussion of the physics of some of the instabil-
ities of thin-shell HII regions is presented by Breit-
schwerdt & Kahn 1988, and Kahn & Breitschwerdt
1990). These instabilities lead to corrugations of
a thin HII region which could result in an appar-
ent “thick shell” morphology. Therefore, future at-
tempts to derive wind properties from the intensi-
ties, sizes, expansion velocities and shell thicknesses
of “thick shell” ultracompact HII regions will pro-
duce relatively uncertain results.

Regarding the model described above, the most
important problem with it is that it does not include
the inertia of the swept-up environment. Raga et al.
(2012a) and Raga, Cantó, & Rodŕıguez (2012b) show
that this inertia introduces important effects in the
early evolution of the HII region expansion. How-
ever, there is no clear way of including this inertia
in an analytic (or quasi-analytic) approach, so that
the only way forward appears to be in the direction
of full, numerical solutions to the 1D Euler equa-
tions (see Raga et al. 2012b). A second limitation
is that the present model assumes that the radius of
the stellar wind shock (i.e., the outer boundary of
region I, see Figure 1) is negligibly small compared
to the size of the HII region. This might not be the
case in the early evolution of the system, for which
a “working surface” description (see Kwok, Purton,
& Fitzgerald 1978) might be more appropriate.

Finally, we would like to point out the recent pa-
per of Arthur (2012), which presents results from nu-
merical solutions of the full 1D Euler equations for
basically the same problem that has been treated
here. A detailed comparison between our quasi-
analytic models and the simulations of Arthur (2012)
should be made in the future in order to test their
accuracy.
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