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RESUMEN

Presentamos nuevos modelos de la expansión de una región HII dentro de un
medio uniforme. Con un modelo de capa delgada y con simulaciones hidrodinámicas
(+transporte radiativo) con simetŕıa esférica, demostramos que las regiones HII
observadas están en un intervalo de parámetros para el cual existe una solución
adimensional universal. Esta ley universal se deriva de los modelos de capa delgada
y de las simulaciones numéricas. Una comparación entre estos dos tipos de modelos
muestra que el formalismo de capa delgada sólo es válido para las fases tempranas de
la expansión de una región HII. Finalmente, tabulamos la “ley universal” (derivada
de las simulaciones hidrodinámicas) y damos una aproximación anaĺıtica a esta ley,
la cual puede ser escalada para obtener el radio en función del tiempo de cualquier
región HII observada.

ABSTRACT

We present new models for the expansion of an HII region into a uniform envi-
ronment. With a thin-shell model and with full, gasdynamic (+radiative transfer),
spherically symmetric simulations, we demonstrate that observed HII regions are
in a parameter regime for which there is a universal, dimensionless expansion law.
This universal expansion solution is derived from the thin shell model and from
the numerical simulations. A comparison between the two types of model shows
that the thin shell formalism is valid only for the early phases of the HII region
expansion. Finally, we tabulate the “universal law” (derived from the spherically
symmetric simulations) and give an analytic approximation to this law, which can
be scaled to obtain the radius vs. time of any observed HII region.

Key Words: HII regions — ISM: evolution — ISM: kinematics and dynamics —
stars: formation

1. INTRODUCTION

The timescale for “normal” (i.e., low density) HII
regions to reach pressure equilibrium with the sur-
rounding environment is longer than the lifetime of
the O stars which power them. However, the more
recently discovered “compact”, “ultracompact”, and
even “hypercompact” HII regions (the more extreme
of which have sizes ≤0.03 pc and are embedded
in molecular clouds with densities >106 cm−3, see
Kurtz 2005) do reach pressure equilibrium (and stop
expanding) while their central star is still on the
main sequence (de Pree, Rodŕıguez, & Goss 1995).

1Instituto de Ciencias Nucleares, Universidad Nacional

Autónoma de México, D.F., Mexico.
2Instituto de Astronomı́a, Universidad Nacional Autó-

noma de México, D.F., Mexico.
3Centro de Radioastronomı́a y Astrof́ısica, Universidad

Nacional Autónoma de México, Morelia, Michoacán, Mexico.

These observational developments have brought
new life to theoretical studies of expanding HII re-
gions. Quite extensive work has been done in the
past on numerical (e.g., Mathews & O’Dell 1969;
Tenorio-Tagle et al. 1982) and analytic (Franco,
Tenorio-Tagle, & Bodenheimer 1990; Shu et al.
2002) solutions to the expanding HII region prob-
lem. The observations of compact HII regions (see
above) led Raga, Cantó, & Rodŕıguez (2012) to focus
on the regime of relaxation of the HII region expan-
sion to its final, pressure equilibrium. In the present
paper, we pursue this line of work.

The general characteristics of the problem are as
follows. As described, e.g., in the book of Dyson
& Williams (1980), after an instantaneous “turning
on” of a stellar source (with an S∗ ionizing photon
rate) in a homogeneous environment, an HII region
first undergoes a constant density expansion until it
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150 RAGA, CANTÓ, & RODRÍGUEZ

reaches its “initial Strömgren radius”,

RS =

(

3S∗

4πn2
0
αH

)1/3

, (1)

where n0 is the hydrogen number density of the neu-
tral environment and αH is the case B recombination
coefficient of H.

When this radius is approached, the HII region
begins a slower “hydrodynamic expansion”, in which
the hot, ionized gas expands, incorporates more ma-
terial, and pushes out the surrounding, neutral en-
vironment. This expansion continues until the HII
region reaches a final radius

Rf =
RS

σ2/3
, (2)

where σ = (c0/ci)
2, with c0 and ci being the isother-

mal sound speeds of the neutral and the ionized gas,
respectively. It could be argued that instead of the
sound speeds, it might be appropriate to use (in the
definition of σ) a “turbulent velocity” characteristic
of small scale turbulent motions. However, such tur-
bulent velocities would be of the order of the local
sound speed, so that the value of σ is not likely to
be modified very strongly.

When the HII region reaches Rf , the pressure of
the inner, ionized region is equal to the pressure of
the outer, neutral environment. As the photoionized
region has a temperature ∼104 K and the outer, neu-
tral environment a temperature ∼10–100 K, we have
σ ∼ 0.001 − 0.01, so that Rf ∼ 20 − 100 RS .

Spitzer (1968) and later Dyson & Williams (1980)
constructed an analytic model (which we will call
“Dyson’s solution”, in memory of Dyson’s enlight-
ened discussion of this problem) for the expansion of
an HII region, based on the assumption of pressure
balance between the ionized region and the neutral,
shocked gas (pushed out by the HII region). This
model has recently been improved by Raga et al.
(2012), so that it correctly relaxes to the final, pres-
sure equilibrium radius Rf (see equation 2).

Raga et al. (2012) show that their analytic model
fails to produce the “overexpansion” obtained in gas-
dynamic, HII region simulations, and claim that this
failure is due to the fact that the analytic model does
not incorporate the inertia of the shocked, neutral
gas. In the present paper we discuss a “thin shell
model” which does include the inertia of the neutral
gas pushed out by the expanding region (§ 2). We
also present 1D spherical, gasdynamic simulations,
with which we evaluate the validity of the thin shell
model (§ 3). The results of this comparison are sum-
marized in § 4.

2. THE THIN SHELL MODEL

2.1. The general problem

Let us consider a model for the expansion of an
HII region with the following regions:

• an inner, photoionized region which we as-
sume to be uniform (in density and temper-
ature), with an isothermal sound speed ci

(≈10 km s−1),

• a thin, spherical shell of neutral material which
is pushed out by the expanding HII region,

• a surrounding, undisturbed, neutral environ-
ment with a uniform density n0 and isothermal
sound speed c0 (≈1 km s−1).

We then write an equation for the time-evolution
of the mass M of the thin shell:

dM

dt
=

(

4πR2n0v − Ṅion

)

m, (3)

and an equation for its momentum Mv:

d

dt
(Mv) = 4πR2 (Pi − P0) , (4)

where R is the radius and v = dR/dt the velocity of
the thin shell, m is the mass per atom/ion (= mH for
a pure H gas), Pi is the pressure of the HII region
and P0 is the pressure of the undisturbed, neutral
environment. The mass M and ionization rate Ṅion

of the thin shell obey the relations

M =
4π

3
R3(n0 − n)m, (5)

and

Ṅion = S∗ −
4π

3
R3n2αH , (6)

where n is the (uniform) ion number density of the
HII region and αH ≈ 2.59 × 10−13 cm3 s−1 is the
case B recombination coefficient of H at 104K.

We now define the dimensionless variables:

r =
R

RS
, n′ =

n

n0

, and t′ =
tci

RS
. (7)

Equations (3–6) can then be combined to obtain a
system of two differential equations involving these
dimensionless variables:

d

dt′
(

r3n′
)

= λ
(

1 − r3n′2
)

, (8)

d

dt′

[

r3(1 − n′)
dr

dt′

]

= 3 (n′ − σ) r2 , (9)
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where

σ ≡
(

c0

ci

)2

; λ ≡ Rsn0αH

ci
, (10)

with RS given by equation (1). The λ parame-
ter is the ratio of the sound crossing time (RS/ci)
over the recombination time of the initial Strömgren
sphere (1/noαH). Therefore, for large values of λ,
the evolutionary timescale of the HII region (ini-
tially ≈RS/ci since the expansion begins at an ap-
proximately sonic velocity) is much longer than the
recombination timescale (which can be used as an
estimate for the time in which the nebula reaches
photoionization equilibrium).

Since ci ≈ 10 km s−1 and c0 ≈ 1 km s−1 (see
above), we have σ ≈ 0.01. Combining equations (10)
and (1) we obtain

λ =
1

ci

(

3S∗n0α
2

H

4π

)1/3

= 54.30 ×
(

S∗

1049s−1

)1/3
( n0

1 cm−3

)1/3
(

10 km s−1

ci

)

. (11)

Therefore, for HII regions driven by sources with ion-
izing photon rates S∗ ∼ 1049 s−1 into uniform envi-
ronments with densities n0 ≥ 1 cm−3, we will always
have λ > 50.

The initial radius of the shell (formed at the end
of the initial, constant density expansion of the ion-
ization front) is R = RS (i.e., r = 1) and the ini-
tial value of the HII region density is n = n0 (i.e.,
n′ = 1). Expanding equations (8–9) around these
initial values, it is straightforward to show that the
initial expansion velocity vi of the shell is

vi = ci

√
1 − σ → dr

dt′
=

√
1 − σ . (12)

With these initial values, equations (8–9) can be in-
tegrated in a straightforward way to obtain R(t) and
n(t).

In Figure 1, we show the shell radius as a function
of time obtained for σ = 0.01 (see equation 10) and
for λ = 10, 102, 103 and 104, spanning the possible
values for this dimensionless parameter (see equa-
tion 11). The shell radius shows an oscillatory be-
haviour at long evolutionary times. We will show in
§ 3 that these oscillations are unphysical.

2.2. The case of global photoionization equilibrium

As shown by equation (11), the dimensionless pa-
rameter λ has values ≫1 for all observed HII regions.
This empirical fact implies that the term in paren-
theses in the right hand side of equation (8) has to

Fig. 1. The solid curves give the HII region radius (in
units of RS) as a function of time (in units of RS/ci) ob-
tained from numerical integrations of the thin shell model
(equations 8–9) for σ = 0.01 and for different λ values
(each plot is labeled with the corresponding λ value). In
all plots, the “high λ solution” (obtained by integrating
equation 14 with σ = 0.01) is shown with a dashed curve.
The thin shell solution show a series of oscillations which
are unphysical (as discussed in § 3.2).

have values ∼λ−1 ≪ 1. Therefore, we have:

r3n′2 ≈ 1 → S∗ =
4π

3
R3n2αH , (13)

the second equality involving the dimensional vari-
ables. This is the condition of global balance be-
tween the stellar ionizing photon production rate and
the recombination rate in the whole volume of the
HII region.

We can then substitute equation (13) in equa-
tion (9) to obtain:

d2r4

dt′2
= 12

(

r1/2 − σr2

)

, (14)

where we have furthermore assumed that n ≪ n0

(which is correct except for the very early evolution
of the hydrodynamic expansion of the HII region).
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The numerical solution to equation (14) obtained
for σ = 0.01 is plotted in all of the frames of Figure 1,
showing that it reproduces well the solutions to the
more general problem described by equations (8–9)
for all of the considered values of the dimensionless
parameter λ. We therefore conclude that for the
values of λ corresponding to all observed HII regions
(see equation 11), the assumption of global ioniza-
tion equilibrium (equation 14) leads to a thin shell
solution in good agreement with the non-equilibrium
formulation (equations 8–9).

For the σ = 0 case (i.e., c0 = 0, the case of a
“cold” surrounding environment), equation (14) has
the analytic solution:

R(t) = RS (1 + at)
4/7

, with a =
7

2
√

3

ci

RS
. (15)

Interestingly, this relation is most similar to Dyson’s
solution (in which the inertia of the expanding, neu-
tral material is neglected, see § 1), which only differs
from equation (15) in the constant a, which has a
value aD = 7c0/(4RS).

2.3. The universal σ ≪ 1, λ ≫ 1 solution

Equation (14) can be rewritten in the form:

d2

dτ2

(

R

Rf

)4

= 12

[

(

R

Rf

)1/2

−
(

R

Rf

)2
]

, (16)

where a new dimensionless time τ = tc0/Rf has been
defined, and Rf = RS/σ2/3 is the final, pressure
equilibrium radius of the expanding HII region, see
equation (2).

This equation has to be integrated with the initial
condition R(t = 0) = RS , which using equation (2)
can be written in the form:

(

R

Rf

)

t=0

= σ2/3 ,

(

dR/Rf

dτ

)

t=0

=
√

σ−1 − 1 . (17)

This initial condition then introduces the depen-
dence of the solution on the dimensionless parameter
σ (see equation 10).

As we have described in § 1, expanding HII re-
gions generally have values σ ≫ 1. Therefore, the
initial condition given by equation (17) can be re-
placed with

(

R

Rf

)

t=0

≈ 0 ,

(

dR/Rf

dτ

)

t=0

→ ∞ . (18)

Using this modified initial condition, it is possible
to integrate equation (17) to obtain a “universal so-
lution”, which is correct for all HII region expan-
sion problems with σ ≪ 1 and λ ≫ 1 (see equa-
tions 10 and 11). A numerical integration of this
problem gives results which are basically indistin-
guishable from the σ = 0.01 photoionization equilib-
rium solution shown in Figure 1.

3. NUMERICAL SIMULATIONS

3.1. The models

In order to evaluate the thin shell solutions de-
scribed above, we have carried out 1D, spherically
symmetric simulations of an expanding HII region,
integrating the set of equations:

∂n

∂t
+

∂nu

∂R
+

2nu

R
= 0 , (19)

∂nu

∂t
+

∂

∂R

[

n(u2 + c2)
]

+
2nu2

R
= 0 , (20)

∂nHI

∂t
+

∂nHIu

∂R
+

2nHIu

R
= (n−nHI)

2αH−nHIφ , (21)

φ =
S∗σν0

4πR2
e−τν0 ; τν0

= σν0

∫ R

0

nHI dR′ , (22)

where R is the spherical radius, u the (radial) fluid
velocity, n is the number density of the (pure H)
gas, nHI is the neutral H number density, n − nHI

is the ionized H density (equal to the electron den-
sity), and αH = 2.59 × 10−13 cm3 s−1 is the case
B recombination coefficient of H at 104 K. The pho-
toionization rate φ is computed in the standard “grey
HII region” approximation (in which the frequency
dependence of the photoionization cross section σν is
not considered), so that it is given (as a function of
the ionizing photon rate S∗ and the Lyman limit HI
photoionization cross section σν0

= 6.3×10−18 cm2)
by equation (22). Finally, the sound speed is com-
puted as a function of the neutral fraction of the gas
as:

c =

(

nHI

nH

)

c0 +

(

1 − nHI

nH

)

ci , (23)

where ci is the isothermal sound speed of the ionized
gas and c0 is the sound speed of the external, neutral
gas.

The code used to integrate these equations is de-
scribed by Raga et al. (2012), and has a second order
(space and time) implementation of the “flux vector
splitting” algorithm of van Leer (1982). With this
code, we have run four models with the parameters
given in Table 1, using a 2000 point, uniform ra-
dial grid of outer radius Rout, fully containing all of
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TABLE 1

PARAMETERS OF THE HII REGION SIMULATIONS

Models M1 M2 M3 M4

n0 [cm−3] 107 107 100 10

c0 [km s−1] 1.0 0.316 1.0 1.0

Rout [cm] 1.0 × 1018 3.0 × 1018 2.0 × 1021 8.0 × 1021

RS [cm] 4.52 × 1015 4.52 × 1015 9.73 × 1018 4.52 × 1019

Rf [cm] 9.73 × 1016 4.52 × 1017 2.10 × 1020 9.73 × 1020

σ 0.01 0.001 0.01 0.01

λ 11699 11699 252 117

(RSn0σν0
)−1 3.5 × 10−6 3.5 × 10−6 1.6 × 10−4 3.5 × 10−4

the perturbations within the computational domain
during the time-integration.

The four models share a S∗ = 1049 s−1 stellar
photoionization rate (corresponding to an O7, main
sequence star) and a ci = 10 km s−1 ionized gas
sound speed (see equation 23). The different values
chosen for the environmental density n0 (see Table 1)
range from 107 cm−3 (appropriate for an ultracom-
pact HII region) down to 10 cm−3. Model M1 has
been previously presented by Raga et al. (2012).

These densities result in values for the dimen-
sionless parameter λ (see equations 10 and 11) in
the ∼100–104 range (see Table 1). Also, two val-
ues of the environmental sound speed c0 (1.0 and
0.316 km s−1) have been explored, resulting in values
of the dimensionless parameter σ (see equation 10)
of 0.01 and 0.001, respectively (see Table 1).

3.2. Comparison of model M1 with the thin shell

solutions

In Figure 2, we present the density stratification
in the (t, R)-plane resulting from model M1 (which
is appropriate for an ultracompact HII region, see
Table 1). This stratification shows the low density,
expanding HII region (lower part of the figure) and
the shock driven by the expansion into the neutral
enviromnent. In this figure we have plotted Dyson’s
solution and the solution of Raga et al. (2012),
both of which neglect the inertia of the shocked,
neutral layer. The solution of Raga et al. (2012)
coincides with Dyson’s solution at low values of t,
but it converges to the correct, final radius Rf for
large times. This solution does not have the “over-
shoot” shown by the numerical simulation (i.e., at
times t ∼ 5 × 104 yr, the HII region has radii larger
than Rf , see Figure 2).

Also shown in Figure 2 are a numerical integra-
tion of the thin-shell model (equations 8–9) and the

Fig. 2. (t, R)-plane density stratification obtained from
model M1. The ion+atom number density is shown (in
cm−3) with the colour scheme given by the top bar.
As time evolves, the radius of the low density, HII re-
gion (blue region in the bottom part of the plot) first
grows and then settles to the final radius (Rf ) resulting
from the HII region/surrounding environment pressure
equilibrium condition (see equation 2). The plot shows
Dyson’s solution (black dashed line) and the solution of
Raga et al. (2012) (white dashed line), both of which do
not include the inertia of the neutral, swept-up material
(see § 1). The analytic, thin shell solution given by equa-
tion (15) (black solid line) and the results of a numerical
integration of equations (8–9) (white solid line) are also
shown. The color figure can be viewed online.

analytic solution given by equation (15). We see
that the numerical, thin shell solution has a larger
overshoot region (with R > Rf ), and that it has
a pronounced rebound which is completely absent
in the numerical simulation. This lack of agree-
ment between the numerical simulation and the thin
shell solution is not surprising, given the fact that at
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t ∼ 5 × 104 yr the width of the perturbed, neutral
region (this is the region between the outer edge of
the HII region and the outer shock, see Figure 2) is
already comparable to the HII region radius. There-
fore, a thin shell model is clearly not applicable at
the later evolutionary times shown in Figure 2.

In Figure 3, we show a zoom (in the t, R-plane)
of the early evolution of model M1. In this plot, we
see that for t < 3000 yr the analytic and numerical
thin shell solutions are indistinguishable, and that
they agree very well with the expanding HII region
predicted from the numerical simulation. At these
times, Dyson’s solution and the solution of Raga et
al. (2012) predict lower radii than the ones of the
simulated HII region (see Figure 3). At larger times,
the HII region radius predicted from the numerical
simulation deviates from all of the other solutions.

From the comparison of model M1 with the other
more approximate models we therefore conclude:

• the numerical, thin shell solutions (see Figures 1
and 2) show a first overshoot of the final HII
region radius Rf which is too large. The suc-
cessive “rebounds” of the thin shell solutions
are not physical, and they occur at times in
which the numerical simulation shows that the
shocked, neutral environment is not confined to
a thin shell (so that the thin shell model is mean-
ingless),

• at early evolutionary times (see Figure 3), both
the numerical and analytic, thin shell solu-
tions show an excellent agreement with model
M1. The fact that they are clearly better than
Dyson’s solution shows that a more accurate
model for the early time-evolution is obtained
when the inertia of the shocked, neutral envi-
ronment is included in the model.

3.3. The universal, expanding HII region solution

We have computed four HII region simulations
(models M1–M4, see Table 1) in order to explore
the following possibility. In § 2.3, we have shown
that for a combination of dimensionless parameters
(see equations 10 and 11) that satisfies the conditions
λ ≫ 1 and σ ≪ 1, there is a single solution of R/Rf

as a function of τ = tc0/Rf which is valid for all
models (satisfying the above conditions).

Clearly, in the set of equations used for the nu-
merical simulations (equations 19–22), it is possi-
ble to define other dimensionless numbers. In par-
ticular, let us consider the dimensionless number
(RSn0σν0

)−1 (see equation 22). This number mea-
sures the thickness of the ionization front transition

Fig. 3. (t, R)-plane density stratification obtained from
model M1. This is a zoom of the initial expansion region
of the density stratification shown in Figure 2. The color
figure can be viewed online.

in units of the initial Strömgren radius (equation 1)
of the HII region, and has a value ≪ 1 for all models
(see Table 1) as well as for all real HII regions pro-
duced by stellar sources. Therefore, the ionization
front is extremely narrow, and the precise value of
its thickness is unlikely to affect the dynamics of the
HII region expansion.

Therefore, it might be reasonable to assume that
the expansion of the simulated HII regions is mostly
determined by the σ and λ dimensionless parameters
(see equation 10), and that it also has a “high λ, low
σ” regime with a universal R/Rf vs. τ = tc0/Rf

law (where R is the radius of the expanding HII re-
gion). To explore this possibility, in Figure 4 we
show the density stratifications in the dimensionless
(R/Rf , τ)-plane obtained from models M1–M4.

It is clear from Figure 4 that all of the computed
models produce a very similar HII region expansion,
regardless of the model parameters. This is shown
more quantitatively in Figure 5, in which we plot the
HII region radius (calculated as the position at which
H is 50% ionized) as a function of (dimensionless)
time for all models.

The two models with λ ∼ 104 (M1 and M2, with
σ values of 0.01 and 0.001, respectively, see Table 1)
show indistinguishable expansion laws. The models
with lower values of λ (M3 and M4, with λ ∼ 250
and 100, respectively) show solutions with small but
progressively larger deviations from model M1 (see
Figure 3).

Therefore, it is clear that the numerical simula-
tions do show a “high λ, low σ” regime, in which all
models share very similar R/Rf vs. τ = tc0/Rf HII
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Fig. 4. Density stratifications in the (t, R)-plane obtained
from models M1 (top) to M4 (bottom). The time axis is
given in units of Rf/c0 (the ratio between the final radius
of the HII region and the isothermal sound speed of the
neutral environment) and the radial axis in units of Rf .
The densities are given (in units of the environmental
density n0) by the bars on the right of each plot. Model
M2 (which has a smaller value of σ = (c0/ci)

2) shows a
larger density range than the other models. The color
figure can be viewed online.

region expansion laws. This “universal law” is tabu-
lated in Table 2, in which we give the values of R/Rf

as a function of τ = tc0/Rf obtained from model M2
(our model with highest λ and lowest σ values). Ac-
tually, the HII region expansions produced by mod-

Fig. 5. Radius of the HII region (in units of Rf ) vs.
time (in units of Rf/c0) obtained from the four numer-
ical simulations (see Table 1). The results from models
M1 and M2 are shown with solid curves, and the results
from M3 and M4 with dashed curves. The lower curve
corresponds to model M4.

TABLE 2

EXPANSION LAW FOR λ ≫ 1, σ ≪ 1

tc0/Rf R/Rf v/c0

0.1 0.38 2.01

0.2 0.55 1.34

0.3 0.67 1.00

0.4 0.76 0.88

0.5 0.83 0.75

0.7 0.93 0.44

1.0 1.03 0.23

1.5 1.10 0.07

2.0 1.10 −0.02

2.5 1.08 −0.06

3.0 1.06 −0.05

3.5 1.03 −0.04

4.0 1.02 −0.03

4.5 1.01 −0.01

5.0 1.00 0.00

els M1 and M2 agree to within the number of digits
shown in Table 2.

We do not tabulate the solution for low values
of the dimensionless time τ = tc0/Rf . For such low
values of τ the analytic, thin shell solution (equa-
tion 15) should be used, as it gives results which
agree very well with the numerical simulations.
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In this way, the HII region radius as a function of
time can be obtained by scaling the solution given in
Table 1 using the appropriate values for the environ-
mental (isothermal) sound speed c0 and for the final
HII region radius Rf (see equation 2). The resulting
HII region radius as a function of time will be a good
approximation to the real expansion of the nebula if
the conditions λ ≫ 1 and σ ≪ 1 (see equation 10)
are met.

In Table 2 we also give the dimensionless expan-
sion velocity v/c0 corresponding to the “universal
solution”. We see that during most of its evolution
to pressure equilibrium, the HII region expands quite
slowly, at velocities comparable to, or smaller than,
the isothermal sound speed of the neutral gas. This
may explain why this expansion has been difficult to
detect observationally.

Finally, we propose an interpolation formula that
reproduces the “universal solution” (see Table 1)
with an accuracy of better than 2% in R/Rf :

f1(τ) =

(

7

2
√

3
τ

)4/7

, (24)

f2(τ) = 1 −
(

1 − 2.2τ + 4.2τ2 − 3.3τ3
)

e−2.4τ , (25)

R

Rf
(τ) = e−10τf1(τ) + (1 − e−10τ )f2(τ) , (26)

where f1(τ) is the σ ≪ 1 limit of the analytic, thin
shell solution (see equation 15) and f2(τ) is a least
squares fit to the numerical solution given in Table 2.
An appropriate switch between the analytic, small τ
solution and the least squares fit is achieved with the
e−10τ weight (see equation 26).

4. SUMMARY

We present a new, thin shell model for the ex-
pansion of an HII region. The solutions depend
on two dimensionless numbers: λ and σ (see equa-
tion 10). The σ parameter (∼0.01 for typical sound
speeds c0 ≈ 1 km s−1 and ci ≈ 10 km s−1) is the
square of the neutral-to-ionized gas sound speed ra-
tio, and the λ parameter is the ratio between the
sound crossing time and the recombination timescale
of the initial Strömgren sphere. For HII regions pow-
ered by O stars in environments of number densities
n0 ≥ 1 cm−3, one always has λ > 10 (see equa-
tion 11).

We show that for λ ≫ 1 (a condition met in
observed HII regions, see above), the thin shell
model simplifies from two to one differential equation
(equation 14), which can be integrated analytically
for the σ = 0 case. We also show that if the condi-
tions λ ≫ 1 and σ ≪ 1 are met, and an appropriate

adimensionalization is used, a single, “universal so-
lution” for the thin shell HII region expansion model
is obtained (equations 16 and 18).

We have carried out spherically symmetric, gas-
dynamic simulations of the expansion of HII regions
which show a good agreement with the thin shell
models for the beginning of the expansion. At later
times, the shocked, neutral medium pushed out by
the HII region becomes “thick” (i.e., with a width
comparable and then larger than the outer radius of
the HII region), and the numerical simulations de-
viate very substantially from the predictions of the
thin shell model (which show a series of compressions
and re-expansions which are absent in the numerical
simulations).

We have computed a series of numerical simu-
lations with dimensionless parameters σ=0.001–0.01
and λ ∼100–104 (see Table 1). We find that if the di-
mensionless HII region radius R/Rf (obtained from
the numerical simulations) is plotted as a function
of dimensionless time tc0/Rf (where c0 is the envi-
ronmental sound speed and Rf the final, pressure
equilibrium radius of the HII region), most similar
expansion laws are found for all of the computed
models (see Figure 5). This result shows that a high
λ, low σ “universal expansion law” is also found in
the simulated expanding HII regions. This solution
has been tabulated, and it can be scaled so as to
model the time-evolution of any given HII region (see
Table 2).

In this way, we show that spherically symmet-
ric, gasdynamic models of HII regions share the ex-
istence of a “high λ, low σ” regime with the thin shell
formulation. The existence of this regime consider-
ably simplifies the interpretation of observations of
expanding HII regions.

We acknowledge support from the Conacyt
grants 61547, 101356 and 101975. We thank an
anonymous referee for pointing out a series of mis-
takes in the first version of this paper.
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