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RESUMEN

Mediante la técnica del virial a segundo armónico se analiza, en primera
aproximación, la estabilidad de un fluido autogravitante estático, tipo Dedekind,
que consiste de dos elipsoides confocales de diferente densidad. Estas figuras, que
mantienen su equilibrio en base a corrientes internas de vorticidad diferencial, resul-
tan debido a que algunos de los miembros de una serie de esferoides inhomogéneos
rotantes son de frecuencia nula, de donde se bifurcan en secuencias de ε (la densi-
dad relativa del cuerpo) fija. Se encuentra que tales secuencias tienen un régimen
de inestabilidad, el cual es tanto más amplio mientras menor sea ε, pero que se
estrecha al incrementar ε. Para ε muy grande la inestabilidad persiste en la porción
final de las secuencias, en donde se hallan las figuras cuyo elipsoide interno tiene la
excentricidad ecuatorial más prominente.

ABSTRACT

The second order virial equations are employed to analyze, in a first approx-
imation, the stability of a self-gravitating fluid made up of two confocal ellipsoids
carrying internal currents of differential vorticity, which allow their equilibrium.
These Dedekind-type figures result because some of the members of a series of in-
homogeneous rotating spheroids have null frequencies, from which they bifurcate in
sequences of fixed ε, the body’s relative density. We find that such sequences have
each an instability regime, which is wide at low ε, and becomes gradually narrower
as ε increases. Instability persists—even for very large ε—at the final portion of
the sequences, where the figures whose internal ellipsoid has the most prominent
equatorial flattening are located.

Key Words: GRAVITATION — HYDRODYNAMICS — STARS: ROTA-

TION

1. INTRODUCTION

Referring to a past paper (Montalvo, Mart́ınez & Cisneros 1983) on the hydrostatic relative equilibrium of
a self-gravitating, perfect, incompressible, fluid made up of two confocal spheroids, endowed with solid-body
differential rotation we recall that, provided the internal spheroid (the “nucleus”) is of higher density, rotates
faster, and is flatter than the external spheroid (the “atmosphere”), such a model satisfies the equilibrium
conditions, the solution comprising a wide spectrum, or series, of figures; the also revised case of common
angular velocity leads to a negative result (Tassoul 1978). In a more recent paper (Cisneros, Mart́ınez, &
Montalvo 2000; hereafter Paper I), the study of the stability of the spheroidal series revealed the existence
of tri-axial, static, figures carrying internal currents of differential vorticity, a work that relied heavily on a
paper by Tassoul & Ostriker (1968; hereafter, T&O). These Dedekind-type inhomogeneous figures arise only
in the event that the vorticity of the nucleus is larger than the vorticity of the atmosphere, the general solution
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168 CISNEROS, MARTÍNEZ, & MONTALVO

encompassing both spheroids and ellipsoids, the stability of the latter being our current interest. We hasten
to add that the ellipsoidal shape of the model must be taken with some caution (see § 3). Anyway, ellipsoidal
inhomogeneous figures are by no means commonly found. It is not redundant to point out here that figures
of equilibrium are impossible for inhomogeneous ellipsoidal masses rotating, either with ωn = ωa, or with
ωn 6= ωa, where ω refers to angular velocity about the smallest axis. The first case is the substance of Hamy’s
theorem (Hamy 1887), which states that no stratification made up of any number of confocal ellipsoids, all of
them rotating with the same angular velocity, is an equilibrium figure. For the second case we have no reference
but, a priori, its impossibility looks sound if one considers, as a plausible argument, that the velocity field of
the nose of the nucleus would induce unwanted dynamical effects. The static ellipsoids of differential vorticity,
on the other hand, originate because, among the members of the quoted series of inhomogeneous rotating
spheroids, there are some whose pulsating frequency vanishes, from which they branch off, or bifurcate. Let us
mention, by the way—though it will not concern us in the present context—that, under the stated conditions
of differential vorticity, these ellipsoids can even rotate (with a common, though quite low, angular velocity) as
a solid body, as long as the atmosphere develops a retrograde internal current (Cisneros, Mart́ınez, & Montalvo
1995); an analysis of the stability of these last figures could be the subject of another work. Our current
analysis of stability—actually dynamical stability, since frictional effects will be ignored—will be carried out,
as in Paper I, by means of the virial method but, in contrast, Chandrasekhar’s approach will be used instead
of that of T&O, since the later assumes axial symmetry, and so is not adequate for our current purposses. On
this account, our procedure necessarily implies that the virial equilibrium conditions hold.

It must be pointed out that in none of our previous works on the equilibrium of inhomogeneous masses
the virial method was invoked. In fact, those other works were based on the fulfillment of the hydrostatic
conditions, namely, the continuity of pressure at the external surface of the whole body, and the continuity of
pressure at the interface nucleus-atmosphere. Yet, the frequencies of the Dedekind ellipsoids—which should
correspond to those obtained in the limit as ε goes to 0—are recovered intact from the current work and, more
important, this is also true for the frequencies of the source figures, namely the rotating spheroids of differential
angular velocity. In spite of its fluid nature and its somewhat geometrical restriction, the model contains an
element of truth, namely that, as in real stars, the cores are of higher density and bear internal motions more
important than their envelopes, which invests our model of a certain astrophysical interest.

2. THE VIRIAL METHOD

The well-known results on the equilibrium and the stability of the various classical ellipsoidal series (Maclau-
rin’s, Jacobi’s, Dedekind’s, etc.,) were recovered in the 1960’s by means of the virial method—which, as re-
gards to fluids, is not restricted to homogeneous masses—in a series of individual papers by Chandrasekhar &
Lebovitz, a work that was later compiled by the first author in a book (hereafter Ch 1969). In the reminder of
this work, the equations from that book quoted herein will come from to its Chapter 7, unless explicitly stated
otherwise. In essence, the virial method consists in replacing the equation of motion by its moments with
respect to the coordinates. Thus to second order—the current approximation—the linearized virial equations
are obtained by multiplying the j equation of motion by xi, followed by an integration over the volume instan-
taneously occupied by the fluid. The resulting equation is then sligthly disturbed by means of a Lagrangian
displacement ~ξ(~x, t) which, in a first approximation, can be given by

ξi = Li;kxk, (1)

where Li;k denotes nine constants. Let
~ξ(~x, t) = eλt~ξ(~x), (2)

be the time dependence of the perturbation, where λ is a characteristic value (a kind of frequency). Our task
will be to derive two dispersion relations similar, at any rate, to those derived from Eqs. (115) and (124), from
which the frequencies of the Riemann S-type ellipsoids can be obtained. These equations—which are already
free of terms related to the variation in pressure and, hence, fit well to our incompressible fluid—contain, we
remark, the equilibrium conditions when they are stated in the virial form, and are valid for a Riemann fluid.
We must, of course, set Ω = 0 in both determinants in order that they should correspond, in the first place,
to the Dedekind problem. In this section we give a brief account of the main steps required to obtain these
determinants, and postpone till § 3 the treatment of the inhomogeneous mass itself.
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STABILITY OF A SELF-GRAVITATING INHOMOGENEOUS FLUID 169

2.1. The Homogeneous Ellipsoids

The stability of a Riemann fluid with respect to oscillations belonging to the second harmonics can be
handled by considering the linearized version of the second-order virial equation. The pertinent equation to be
considered in this case is Eq. (152), with the various terms in it having the values given in Eqs. (143), (144),

and (145) (Chapter 2, Ch 1969). If, in considering these equations, the Lagrangian displacement ~ξ(~x, t) is given
by Eq. (2), the virial equation gives

λ2Vi;j − 2λQjlVi;l − 2λΩεil3Vl;j − 2Ωεil3(QlkVj;k − QjkVl;k) + Q2
jlVi;l + Q2

ilVj;l

= Ω2(Vi;j − δi3V3j) + δWij + δijδΠ, (3)

where the last two terms refer to the variation of the tensor of potential energy and the variation of pressure,
respectively; the variation of the tensor of kinetic energy is already implicit in the terms involving the Q’s, and
the variation of the moment of inertia tensor is proportional to the coefficients Vi;j ’s. The meaning of the Vi;j ’s
and of the matrices Qjl is given in the next section, but we shall be interested in the special case when the
velocity field in an initial steady state is a linear function of the coordinates, and is of the form

ui = Qijxj . (4)

In order to obtain the determinants (115) and (124) following from Eq. (3) we must, in the first place, note that
Eqs. (98)–(106) are obtained after replacing the pair (i, j) in Eq. (3)—where summation over repeated indices
is understood—by (3,3), (1,1), (2,2), (1,2), (2,1), (1,3), (2,3), (3,1), and (3,2). These nine virial equations can
be separated into two non-combining groups, according to their parity with respect to the axis about which
the internal motions occur, namely the x3 axis: an equation is odd if one, and only one, of the indices in the
Vij ’s that attend it, is always 3, whereas it is even if there are two indices, or none, with the value 3. Later,
when we consider these determinants as applied to our inhomogeneous static fluid, we shall set in them Ω = 0.

2.1.1. The Even Modes

Now, Eq. (115) is obtained after Eqs. (113) and (114) which, along with the condition

Lk;k =
∂ξk

∂xk

, (5)

which is zero, as required by the solenoidal character of ~ξ [see Eq. (96)], form a homogeneous system of three
equations in the variables V11, V22, and V33, where

Vij = LikIjk + LjkIik (6)

and Iik are the moments of inertia. The second equality of Eqs. (113) and (114) is obtained after expressing the
differences δW11 − δW33, and δW22 − δW33, respectively, in accordance with Eq. (149) (Chapter 3, Ch 1969),
where δWij refers to the variation of potential energy. The tensor of potential energy is given by

Wsk;ij(x) =

∫

V

ρxs∂Bij(x)/∂xkdV, (7)

and the tensor of gravitational potential by

Bij = G

∫

V

ρ(x′)
(xi − x′

i)(xj − x′

j)

|~x − ~x′|3 dV, (8)

so that Eq. (7), which depends on four, rather than two indices, is usually called the supertensor of potential
energy; here, the first pair of indices refers to the coordinates x, while the second pair refers to the tensor Bij

(Chandrasekhar & Lebovitz 1962). The expression for Bij at an interior point of a homogeneous ellipsoid is
given by
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170 CISNEROS, MARTÍNEZ, & MONTALVO

Bint.
ij = πGρ[2Bijxixj + a2

i δij(Ai −
3

∑

l=1

Ailx
2
l )]

int., (9)

where Ai, Ail, Bij are the so called “index symbols”, ai are the semiaxes of the ellipsoid, and G is the
gravitational constant. The index symbols are elliptic integrals running from 0 (λ) to ∞ if we are to compute
interior (exterior) contributions to Bij , where λ is the ellipsoidal coordinate of the considered point [Ch 1969,
Eqs. (103) and (104), Chapter 3]. The Bij ’s should not be confused with the potential tensor Bij . We thus
have the determinant

∣

∣

∣

∣

∣

∣

∣

1
2λ2 − Q1Q2 + 3B11 − B13 B12 − B23 − 1

2λ2 − 3B33 + B13

B12 − B13
1
2λ2 − Q1Q2 + 3B22 − B23 − 1

2λ2 − 3B33 + B23

1/a2
1 1/a2

2 1/a2
3

∣

∣

∣

∣

∣

∣

∣

= 0, (10)

from which the dispersion relation for the even modes follows. The showing up of the elements −Q1Q2 in
the first column, first row, and in the second column, second row, instead of the 2B12’s of Chandrasekhar’s
determinant, is a result of using relation (29). These quantities are elements of the matrix (97) [see also
Eq. (146), Chapter 6, Ch 1969], and are given by

Q1 =
−a2

1

(a2
1 + a2

2)
ζ, Q2 =

+a2
2

(a2
1 + a2

2)
ζ, (11)

where Q1 = Q12, and Q2 = Q21, and from which we obtain

Q1Q2 =
−a2

1a
2
2

(a2
1 + a2

2)
2
ζ2, (12)

where it is assumed that

a1 ≥ a2 ≥ a3. (13)

The components of the internal motion having an assigned (uniform) vorticity, ζ, about the x3 direction, can
be written in the form

u1 = Q1x2, u2 = Q2x1, u3 = 0. (14)

At this point, it is convenient to define an average of the vorticity [see Eq. (8) of Paper I for a similar definition
of an average of the angular velocity],

〈Z〉 =

∫

V
Z(ω̄)ω̄2ρ(x)dV
∫

V
ω̄2ρ(x)dV

. (15)

Similarly, we define an average of the squared vorticity [see Eq. (9) of Paper I for a similar definition of an
average of the squared angular velocity]

〈Z2〉 =

∫

V
Z2(ω̄)ω̄2ρ(x)dx
∫

V
ω̄2ρ(x)dV

. (16)

2.1.2. The Odd Modes

The determinant (124) is obtained after Eqs. (119)–(121), which constitute a homogeneous system of four
equations in the unknowns V1;3, V3;1, V2;3, and V3;2, where Vi;j = Li;jIij . From the above considerations there
results

∣

∣

∣

∣

∣

∣

∣

∣

∣

λ2 + 2B13 2B13 + Q1Q2 0 0

2B13 λ2 + 2B13 + Q1Q2 0 −2λQ1

0 0 λ2 + 2B23 2B23 + Q1Q2

0 −2λQ2 2B23 λ2 + 2B23 + Q1Q2

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0, (17)
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STABILITY OF A SELF-GRAVITATING INHOMOGENEOUS FLUID 171

Fig. 1. Highly schematic diagram depicting the sequences of ellipsoids bifurcating from the series of rotating spheroids
of Paper I. The portion of the curves shown as dashed lines are the domains of instability.

from which the dispersion relation for the odd modes follows. The showing up of the terms in the second column,
first row, and fourth column, third row, instead of the respective elements in Chandrasekhar’s determinant,
is a result of using Eqs. (122) and (123). The elements in the second column, fourth row, and in the fourth
column, second row, can be handled by means of the definition (15). The determinants (10) and (17) provide
the means to obtain the dispersion relations for a Dedekind homogeneous mass; they still need to be modified if
we intend to use them for an inhomogeneous mass. We pause here on the question regarding the homogeneous
ellipsoids to start our own study.

3. THE INHOMOGENEOUS MODEL

The ellipsoids—of exact equilibrium, after Paper I—of the current work were obtained on the basis of the
continuity of the potential—and so of the pressure—across the border between the nucleus and the atmosphere;
this interface is assumed to be free from surface tension, and by hypothesis no flow of mass can occur across
it (Landau & Lifshitz 1959). A given ellipsoid can be specified by the body’s relative density ε[=(ρn−ρa)/ρa],
where ρ is the density, along with the squared vorticities, Z2

n, Z2
a , in units 4πGρa, and the equatorial (1) and

meridional (2) eccentricities, εn1
, εa1

, εn2
, and εa2

, of the nucleus (n) and the atmosphere (a). The families which
these figures conform can be arranged in sequences of fixed ε if we proceed as follows. Since mathematically
there is no difference between a rotating spheroid and a static spheroid the latter, if it is a bifurcation spheroid,
can be isolated, and then made to evolve progressively until the ellipsoidal shape appears neatly. To this end,
we let εn1

go through increasing values, which brings on an increase of Z2
n. The atmosphere, however, responds

to this increase of Z2
n by a decreasing Z2

a , and a corresponding decrease of εa2
occurs. We recall that, for any

figure of the sequences, εa1
is very low. This fact, together with the confocality condition

εn1
/εa1

= εn2
/εa2

, (18)
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172 CISNEROS, MARTÍNEZ, & MONTALVO

constrains the geometry of the figures. We use the confocality condition to simplify as much as possible the
mathematical treatment (but see, for example, the reasons given by Chambat as to the necessity of such
condition) (Chambat 1994). Thus, the more accomplished is the ellipsoidal shape for the nucleus, the less it is
so for the atmosphere —more accurately its surface of zero pressure—which actually becomes nearly spherical.
So, strictly speaking, the ovoidal shape for both nucleus and atmosphere is never attained in equilibrium. For
instance, the overall shape of one of the figures of the last portion of a sequence is like a small massive seed
embeded within a tenuous, almost spherical, atmosphere, a result of the fact that for these figures the vorticity
of the nucleus is very much larger than that of the atmosphere which, in addition, is close to zero [for the general
appearance of one of these figures see Figure 3(b) (Cisneros et al. 1995)]. For easy reference, we shall refer to
all the figures of a sequence simply as ellipsoids, which will be generated from a spheroid of similar flattening
as that at which the Maclaurin and Jacobi series meet. Now, there are other spheroids of null frequency, so
nuclei not as flattened at the poles as 0.8127 are—provided that their equatorial flattening is no higher than
about 0.01— also possible, the atmospheres having then a noticeable polar flattening; but, in any case, the
shapes of the last ellipsoids are only slightly different from one sequence to another.

3.1. Generalities

Turning now to the current problem, we assume for simplicity that the Li;j ’s in Eq. (1) are continuous
across the border between the nucleus and the atmosphere, so they need not be labeled with a superscript n or
a, used here to make a distinction between quantities pertaining to the nucleus or the atmosphere. Now, the set
of nine individual virial equations for the model is not particularly helpful for our current purposes, and so they
will not be fully displayed, as they were in Paper I. Rather, we shall begin our study directly from Eq. (10),
for the even modes, and from Eq. (17), for the odd modes. Any element of these determinants is an integral,
which is not only inhomogeneous per se, but also because of the inhomogeneous character of its integrand,
namely the tensor of potential energy Bij , and this last quantity depends on points of both the nucleus and
the atmosphere. These quantities may all be expressed in terms of the standard elliptic integrals of the first
and second kind (MacMillan 1958), and can be evaluated in a similar fashion as the integrals pertaining to the
inhomogeneous spheroids of Paper I [on this account, see Figure 1, Figure 2, and Eq. (10) of that paper]. We
recall that the total Bij for the atmosphere is made up of an interior plus an exterior contribution:

Bij(xa) = Bint.
ij (xa) + Bext.

ij (xa), (19)

and it follows that the total tensor of potential energy of the nucleus is the sum of two interior contributions.
Similarly, the total supertensor of potential energy, in the unit πGρa, reads

Wsk;ij =

∫

Vn

ρnxs∂Bij(xn)/∂xkdV +

∫

Va

ρaxs∂Bij(xa)/∂xkdV . (20)

We define

J11 ≡ In
11 + (Ib

11 − rIn
11), (21)

J22 ≡ In
22 + (Ib

22 − rIn
22), (22)

and

J33 ≡ In
33 + (Ib

33 − rIn
33), (23)

as the new quantities that replace the usual moments of inertia Iij , where r = (ε + 1)−1.

3.1.1. The Even Modes

Note that, since the V11, V22, and V33 correspond to the first, second, and third columns of the determinant
(10), the elements of the first, second, and third columns must be averaged over J11, J22, and J33, respectively.
Correspondingly, the average defined in Eq. (16), becomes

〈Z2〉J11 ≡ Z2
nIn

11 + Z2
a(Ib

11 − rIn
11), (24)
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if it is placed in the first column, and

〈Z2〉J22 ≡ Z2
nIn

22 + Z2
a(Ib

22 − rIn
22), (25)

if it is placed in the second column. For brevity, we call these terms Z2
1 , or,

Z2
1 =

Z2
n + Z2

a(J11 − 1)r

J11
, (26)

and Z2
2 , or,

Z2
2 =

Z2
n + Z2

a(J22 − 1)r

J22
. (27)

The numerical values of Z2
n and Z2

a can be taken directly from a previous calculation (Cisneros et al. 1995).
With this notation, the evaluation of the index symbols is straigthforward. For example, if we wish to evaluate
the symbol B33 placed, say, in the third column of the determinant (10), we write

B33(3) =
Bext.

33 + Bint.
33 (J33 − 1)r

J33
, (28)

where Bext.
33 and Bint.

33 mean the exterior and interior contributions of the potential for this particular index
symbol [see Eq. (19)]. The extra (3) in B33(3) has no mathematical meaning, it serves only as a guide that
reminds us that this element is placed in the third column, and so it must be averaged over J33, and the
like. It remains only to give proper consideration to the third elements of each column [which are not index
symbols, see Eq. (10)]. Provided they are constructed for our inhomogeneous mass and calling these elements
T1(1), T2(2), and T3(3), we can calculate them in a similar way. Reducing the determinant (7) according to our
conventions, and substituting σ = −iλ, where σ is the frequency, the resulting equation can be written

ax2 + bx + c = 0, (29)

where

a = 4(T1(1) + T2(2) + T3(3)),

b = −4(((Z2
1 + 3B11(1) − B13(1)) + (Z2

2 + 3B22(2) − B23(2)))T3(3)−

((−3B33(3) + B23(3) + (−Z2
1 − 3B11(1) + B13(1)))T2(2)+

((B23(2) − B12(2)))T1(1) + ((B13(1) − B12(1))T2(2)−

((−3B33(3) + B13(3) + (−Z2
2 − 3B22(2) + B23(2)))T1(1))),

and

c = 4(((Z1 + 3B11(1) − B13(1))(Z2 + 3B22(2) − B23(2))T3(3)−

((Z1 + 3B11(1) − B13(1))(−3B33(3) + B23(3)))T2(2)−

((B12(2) − B23(2))(B12(1) − B13(1)))T3(3)+

((B12(2) − B23(2))(−3B33(3) + B23(3)))T1(1)+

((−3B33(3) + B13(3))(B12(1) − B13(1)))T2(2)−

((−3B33(3) + B13(3))(Z2 + 3B22(2) − B23(2)))T3(3))).
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174 CISNEROS, MARTÍNEZ, & MONTALVO

3.1.2. The Odd Modes

Next, the inhomogeneous version of the determinant (17) will be considered. We first note that the unknowns
V1;3, V3;1, V2;3, and V3;2, correspond to the first, second, third, and fourth columns respectively, so the elements
of the first and third columns must be averaged over J33, those of the second column over J11, and those of
the fourth column over J22. If, say, B13 is placed in the second column, following our previous convention we
write it as

B13(2) =
Bext.

13 + Bint.
13 (J22 − 1)r

J22
, (30)

and the like. The average of vorticity is of the form

〈Z〉J11 ≡ ZnIn
11 + Za(Ib

11 − rIn
11), (31)

if it happens to be placed in the second column, and the like. The determinant (17) can be reduced to a cubic
equation of the form

dx3 + ex2 + fx + g = 0, (32)

where

d = 8,

e = −4(2B23(2) − D2 + 2B23(3) + 2B131 − D1 + 2B13(3) − 4D),

f = 2((2B23(3)(2B23(2) − D2) + 2B13(3)(2B13(1) − D1)+

(2B13(1) − D1 + 2B13(3))(2B23(2) − D2 + 2B23(3))−

(2B23(2) − D2)2B23(3) − (2B23(3) + 2B13(3))(4D)−

(2B13(1) − D1)2B13(3))),

and

g = −((2B13(1) − D1 + 2B13(3))2B23(3)(2B23(2) − D2)+

(2B23(2) − D2 + 2B23(3))2B13(3)(2B13(1) − D1)−

(2B13(1) − D1 + 2B13(3))(2B23(2) − D2)2B23(3) − 2B13(3)2B23(3)(4D)−

(2B23(2) − D2 + 2B23(3))(2B13(1) − D1)2B13(3)),

where D stands for the negative of the product of the averages given by the inhomogeneous version of Eq. (15);
calling d1 and d2 these terms when they refer to the element of the fourth column, second row, and the second
column, fourth row, respectively, we have

D = −d1d2, (33)

where

d1 =
Zn + Za(J11 − 1)r

J11
, (34)

and

d2 =
Zn + Za(J22 − 1)r

J22
. (35)
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4. NUMERICAL RESULTS

The numerical solution of Eq. (29) and Eq. (32), namely the body’s characteristic frequencies of oscillation,
is given in Table 1, for several values of ε; this table is similarly constructed as that of an earlier work
(Cisneros et al. 1995), with the addition of five new columns giving the oscillation frequencies. The values of
the parameters corresponding to the equilibrium have been recalculated on the basis that the figures are now
known to be in exact equilibrium, so that more significant digits than those given for brevity in Table 1 are
certainly needed. Table 1 is segmented in sequences, each sequence listing the parameters that describe the
equilibrium (Columns 1 to 6), and the stability (Columns 7 to 11) of its members. The first three columns
give Z2

n, εn1
(this last eccentricity is increased selectively), and εn2

; the next three columns give Z2
a , εa1

, and
εa2

; the other columns give the squared oscillation modes, σ2, normalized to
√

πGρa; Columns 7 to 9 give the
odd modes, σ2

1 , σ2
2 , and σ2

3 ; Columns 10 and 11 are for the even modes, σ2
4 , and σ2

5 . The sequence for ε = 2
is provided with three models, all of them with εn1

= 0.0005: one is the model which fits naturally into the
sequence, and is stable; another has a nucleus relatively flatter at the poles than the first, and is unstable; this
exemplifies how sensitive can stability be around this region, where the nucleus is still far from being truly
ellipsoidal; the third model has εn2

about 0.7, clearly below the value belonging to the bifurcation spheroid
itself; this last model has a nucleus certainly not as ellipsoidal as desired, but is stable, and similar figures for
other sequences also prove to be stable.

4.1. The Instability Regimes

The discernment of instability along a sequence is provided by the existence of negative squared frequencies
among the general solution of either Eq. (29), or Eq. (32) which, in the current case, occurs via the even mode
σ2

4 . Let us remark that in Chandrasekhar’s approach for the Dedekind figures, instability does not show up
through the even modes, which is just contrary to what was found here. Any figure of equilibrium—any row
of Table 1—which does not have a negative σ2

4 is therefore stable. A sequence of low ε is—except for a narrow
region about the bifurcation spheroid— made up of unstable ellipsoids, the domain of instability becoming
confined, for high ε, to a small segment at the end of the sequence. Even for ε = 500 (not included in Table 1),
instability persists beyond εn1

≈ 0.7. Figure 1 is a (highly schematic) diagram showing the sequences of static
ellipsoids branching off the series of rotating spheroids from the bifurcation points; it can be seen that the
domain of instability—dashed lines—becomes narrower as ε increases.

5. SUMMARY

We have carried out a stability study of an inhomogeneous static ellipsodal mass carrying internal currents
of differential vorticity. The results indicate that, if the figures are arranged in sequences as in Table 1, regimes
of instabilty are clearly distinguished in every sequence. Now, since in passing, on a given sequence, from a
regime of stability to one of instability, the squared frequency changes sign, a null frequency is clearly implied.
However, the mathematical form of our equations does not permit to find out easily where exactly this change—
which signals the onset of instability—occurs, as we were able to do with the spheroids of Paper I; in considering
a null frequency, then, we must content ourselves with a gross trial calculation; we will not pursue on this point
any further.
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TABLE 1

PROPERTIES AND CHARACTERISTIC FREQUENCIES OF OSCILLATION OF OUR MODELSa

Z2

n
εn1

εn2
104Z2

a
104 εa1

εa2
104 σ2

1 σ2

2 σ2

3 σ2

4 σ2

5

ε = 0.1

0.4116 0.00001 0.8130 4114.95 0. 10 0.8126 2058 0.3534 1.0986 0.8230 0.8470

0.3855 0.0001 0.8127 3765.55 0. 96 0.7822 1905 0.3526 1.0675 0.7947 0.8012

0.3396 0.0002 0.8270 3119.07 1. 75 0.7223 1612 0.3676 1.0202 0.7054 0.7836

0.3063 0.0003 0.8427 2644.53 2. 39 0.6722 1374 0.3889 0.9918 0.6519 0.7839

0.2650 0.0004 0.8643 2062.05 2. 78 0.6008 1064 0.4205 0.9563 0.5959 0.7932

0.1962 0.0005 0.8250 1334.13 2. 96 0.4887 683 0.4500 0.8755 0.5739 0.7191

0.1959 0.0006 0.8271 1324.47 3. 53 0.4871 677 0.4510 0.8752 0.5725 0.7207

0.1885 0.0007 0.8275 1232.33 3. 98 0.4706 629 0.4567 0.8659 0.5673 0.7172

0.1740 0.0008 0.8273 1056.03 4. 23 0.4371 537 0.4680 0.8470 0.5578 0.7093

0.1496 0.0009 0.8308 750.89 4. 01 0.3706 379 0.4905 0.8118 0.5404 0.6991

0.1245 0.0010 0.8300 449.86 3. 50 0.2884 226 0.5169 0.7691 0.5251 0.6843

0.1219 0.0050 0.9875 7.74 1. 93 0.0381 4 0.5667 0.8233 −0.5803 2.8775

0.1224 0.0100 0.9933 3.75 2. 67 0.0265 2 0.5604 0.8480 −1.6427 5.0106

0.1220 0.0500 0.9931 0.34 4. 03 0.0080 0.02 0.5612 0.8461 −1.5476 4.8193

0.1221 0.1000 0.9931 0.24 6. 75 0.0067 0.01 0.5612 0.8461 −1.5615 4.8471

0.1221 0.2000 0.9932 0.12 9. 26 0.0046 0.006 0.5615 0.8458 −1.6000 4.9238

0.1223 0.3000 0.9934 0.08 11. 20 0.0037 0.004 0.5620 0.8452 −1.6610 5.0458

0.1230 0.4000 0.9937 0.06 12. 90 0.0032 0.003 0.5628 0.8443 −1.7590 5.2416

0.1246 0.5000 0.9941 0.06 15. 10 0.0030 0.003 0.5638 0.8430 −1.9065 5.5663

0.1282 0.6000 0.9946 0.07 19. 30 0.0032 0.004 0.5653 0.8410 −2.1366 5.9961

0.1364 0.7000 0.9952 0.08 22. 51 0.0032 0.004 0.5674 0.8382 −2.5244 6.7715

0.1566 0.8000 0.9962 0.08 24. 10 0.0030 0.004 0.5704 0.8338 −3.2866 8.2957

0.2270 0.9000 0.9976 0.09 27. 10 0.0030 0.003 0.5754 0.8259 −5.4601 12.6432

Z2

n
εn1

εn2
104Z2

a
104 εa1

εa2
104 σ2

1 σ2

2 σ2

3 σ2

4 σ2

5

ε = 0.5

0.5610 0.00001 0.8128 5600.93 0.10 0.8122 2803 0.4813 1.4970 1.1210 1.5232

0.5600 0.0001 0.8126 5579.19 0.99 0.8112 2796 0.4803 1.4947 1.1186 1.1492

0.5210 0.0002 0.8130 4482.66 1.87 0.7600 2438 0.4519 1.3910 0.9241 1.0270

0.4802 0.0003 0.8301 2913.89 2.38 0.6601 1726 0.5159 1.3348 0.6255 1.0052

0.4521 0.0004 0.8370 1966.75 2.70 0.5660 1136 0.5994 1.3341 0.5167 1.0199

0.4329 0.0005 0.8470 1198.13 2.69 0.4566 648 0.6861 1.3358 0.4496 1.0628

0.4138 0.0006 0.8487 660.40 2.44 0.3457 340 0.7460 1.3103 0.4198 1.0756

0.4007 0.0007 0.8499 297.44 1.93 0.2346 150 0.7850 1.2815 0.3990 1.0840

0.3946 0.0008 0.8530 77.38 1.13 0.1203 39 0.8070 1.2623 0.3798 1.0990

0.3957 0.0009 0.8553 54.60 1.06 0.1011 27 0.8089 1.2642 0.3736 1.1099

0.4457 0.0010 0.9076 126.13 1.69 0.1534 63 0.7951 1.4189 0.1921 1.5226

0.4796 0.0050 0.9564 7.03 1.90 0.0363 3.5 0.7717 1.6440 −0.4434 2.8341

0.4797 0.0100 0.9566 5.71 3.42 0.0327 2.8 0.7715 1.6454 −0.4498 2.8470

0.4797 0.0500 0.9570 0.43 4.72 0.0090 0.2 0.7715 1.6470 −0.4615 2.9703
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TABLE 1 (CONTINUED)

Z2

n
εn1

εn2
104Z2

a
104 εa1

εa2
104 σ2

1 σ2

2 σ2

3 σ2

4 σ2

5

ε = 0.5

0.4797 0.1000 0.9572 0.25 7.11 0.0068 0.1 0.7720 1.6463 −0.4663 2.8797

0.4799 0.2000 0.9579 0.14 10.44 0.0050 0.07 0.7742 1.6428 −0.4843 2.9153

0.4807 0.3000 0.9591 0.10 12.93 0.0041 0.05 0.7781 1.6368 −0.5164 2.9788

0.4832 0.4000 0.9608 0.08 15.16 0.0036 0.04 0.7838 1.6276 −0.5669 3.0791

0.4894 0.5000 0.9631 0.09 18.56 0.0036 0.04 0.7918 1.6143 −0.6445 3.2333

0.5032 0.6000 0.9663 0.08 21.12 0.0034 0.04 0.8029 1.5995 −0.7661 3.4763

0.5343 0.7000 0.9705 0.10 25.68 0.0036 0.05 0.8185 1.5680 −0.9714 3.8879

0.6115 0.8000 0.9764 0.11 28.86 0.0035 0.06 0.8411 1.5256 −1.3766 4.7026

0.8777 0.9000 0.9849 0.12 32.07 0.0035 0.06 0.8780 1.4502 −2.5405 7.0451

Z2

n
εn1

εn2
104Z2

a
104 εa1

εa2
104 σ2

1 σ2

2 σ2

3 σ2

4 σ2

5

ε = 1

0.7480 0.00001 0.8127 7462.46 0.10 0.8121 3737 0.6416 1.9959 1.4946 1.5376

0.7234 0.0001 0.8128 6297.77 0.96 0.7799 3452 0.5949 1.8920 1.3311 1.3902

0.7036 0.0002 0.8280 4089.20 1.69 0.7000 2670 0.6204 1.7864 0.8636 1.2932

0.7067 0.0003 0.8330 3807.53 2.47 0.6870 2529 0.6386 1.7969 0.7822 1.2721

0.7170 0.0004 0.8433 3431.82 3.17 0.6687 2316 0.6716 1.8342 0.6803 1.2946

0.7144 0.0005 0.8466 2918.22 3.74 0.6346 1976 0.7156 1.8654 0.5873 1.2979

0.7440 0.0006 0.8849 455.10 1.95 0.2880 233 1.0458 2.1574 0.1976 1.6595

0.7414 0.0007 0.8849 258.93 1.73 0.2188 130 1.0655 2.1494 0.1843 1.6680

0.7405 0.0008 0.8849 190.35 1.70 0.1880 95 1.0715 2.1454 0.1794 1.6707

0.7448 0.0009 0.8888 77.61 1.22 0.1204 39 1.0786 2.1599 0.1491 1.7230

0.7761 0.0010 0.9102 77.85 1.32 0.1206 39 1.0671 2.3003 −0.0080 2.0643

0.7979 0.0050 0.9271 10.22 2.36 0.044 5.1 1.0556 2.4306 −0.2092 2.4830

0.7980 0.0100 0.9274 2.85 2.49 0.023 1.4 1.0557 2.4318 −0.2128 2.4896

0.7982 0.0500 0.9277 1.08 7.67 0.014 0.54 1.0558 2.4329 −0.2172 2.4984

0.7983 0.1000 0.9280 0.35 8.73 0.008 0.17 1.0569 2.4312 −0.2213 2.5065

0.7986 0.2000 0.9291 0.14 10.71 0.005 0.07 1.0610 2.4231 −0.2359 2.5348

0.7999 0.3000 0.9311 0.10 13.33 0.0041 0.05 1.0690 2.4089 −0.2619 2.5857

0.8039 0.4000 0.9340 0.09 16.14 0.0038 0.05 1.0815 2.3875 −0.6303 2.6667

0.8138 0.5000 0.9380 0.06 16.11 0.0030 0.03 1.0982 2.3567 −0.3662 2.7921

0.8359 0.6000 0.9434 0.09 21.95 0.0034 0.05 1.1213 2.3128 −0.4655 2.9909

0.8855 0.7000 0.9506 0.10 25.94 0.0035 0.05 1.1535 2.2491 −0.6337 3.3309

1.0082 0.8000 0.9605 0.11 29.34 0.0035 0.06 1.2004 2.1507 −0.9681 4.0112

1.4280 0.9000 0.9748 0.12 32.50 0.0035 0.06 1.2769 1.9761 −1.9421 5.9942

Z2

n
εn1

εn2
104Z2

a
104 εa1

εa2
104 σ2

1 σ2

2 σ2

3 σ2

4 σ2

5

ε = 2

1.1223 0.00001 0.8128 11173.71 0.10 0.8120 5607 0.9618 2.9933 2.2424 2.3057

1.0918 0.0001 0.8127 8496.27 0.94 0.7680 5110 0.8970 2.8135 1.9544 2.0530

1.1194 0.0002 0.8270 7733.10 1.84 0.7610 4995 0.8628 2.7813 1.7827 1.9984
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TABLE 1 (CONTINUED)

Z2

n
εn1

εn2
104Z2

a
104 εa1

εa2
104 σ2

1 σ2

2 σ2

3 σ2

4 σ2

5

ε = 2

1.1096 0.0003 0.8330 3227.11 3.00 0.6100 2739 1.0496 2.8010 0.8271 1.6271

1.1158 0.0004 0.8350 2457.10 2.69 0.5610 2021 1.1474 2.9084 0.6566 1.5599

1.1343 0.0005 0.8365 750.79 2.18 0.3561 434 1.5127 3.2121 0.3633 1.4807

0.7861 0.0005 0.6988 563.10 2.18 0.3044 340 1.4615 2.4266 0.5497 0.9375

1.3042 0.0005 0.9880 526.10 2.18 0.3104 267 1.1937 6.3645 −7.9687 18.3905

1.2536 0.0006 0.8790 230.28 1.41 0.2059 117 1.6176 3.6665 0.1063 1.9532

1.2542 0.0007 0.8790 191.25 1.50 0.1880 96 1.6228 3.6669 0.1021 1.9559

1.2546 0.0008 0.8789 153.63 1.54 0.1688 77 1.6274 3.6662 0.0983 1.9579

1.2551 0.0009 0.8790 132.44 1.61 0.1569 66 1.6297 3.6667 0.0956 1.9603

1.2554 0.0010 0.8790 114.04 1.66 0.1457 70 1.6307 3.6686 0.0937 1.9615

1.2935 0.0050 0.8941 14.43 2.91 0.0520 7.2 1.6269 3.8374 −0.0292 2.2168

1.2952 0.0100 0.8948 3.20 2.74 0.0245 1.6 1.6267 3.8447 −0.0361 2.2301

1.2953 0.0500 0.8949 0.32 4.33 0.0077 0.16 1.6275 3.8433 −0.0374 2.2323

1.2953 0.1000 0.8953 0.24 7.42 0.0066 0.12 1.6298 3.8389 −0.0403 2.2379

1.2958 0.2000 0.8971 0.11 10.06 0.0045 0.06 1.6390 3.8211 −0.0525 2.2609

1.2978 0.3000 0.9000 0.08 12.50 0.0037 0.04 1.6551 3.7899 −0.0742 2.3026

1.3039 0.4000 0.9043 0.08 15.43 0.0035 0.04 1.6790 3.7426 −0.1085 2.3692

1.3188 0.5000 0.9102 0.08 19.26 0.0035 0.04 1.7126 3.6747 −0.1610 2.4730

1.3523 0.6000 0.9181 0.07 20.58 0.0031 0.04 1.7589 3.5783 −0.2436 2.6392

1.4273 0.7000 0.9286 0.08 23.72 0.0031 0.04 1.8233 3.4383 −0.3839 2.9268

1.6115 0.8000 0.9430 0.09 26.73 0.0031 0.04 1.9173 3.2225 −0.6654 3.5111

2.2316 0.9000 0.9638 0.10 29.44 0.0031 0.05 2.0707 2.8402 −1.5018 5.2464

Z2

n
εn1

εn2
104Z2

a
104 εa1

εa2
104 σ2

1 σ2

2 σ2

3 σ2

4 σ2

5

ε = 5

2.2452 0.0001 0.8127 22335.77 0.999 0.8120 11220 1.9255 5.9898 4.4864 4.6172

2.2149 0.0002 0.8130 15401.91 1.522 0.7610 10476 1.7962 5.7213 4.1209 4.1877

2.2055 0.0003 0.8136 10684.58 2.618 0.7099 9435 1.7905 5.5175 3.5351 3.8570

2.2167 0.0004 0.8165 8030.19 3.287 0.6710 8431 1.8565 5.4330 3.0212 3.5599

2.1948 0.0005 0.7975 378.87 1.586 0.2530 222 3.2180 6.5641 0.4287 1.4562

2.3460 0.0006 0.8255 344.23 1.773 0.2440 193 3.2450 7.0715 0.3346 1.6502

2.3499 0.0007 0.8257 286.19 1.902 0.2244 156 3.2709 7.0994 0.3167 1.6518

2.3571 0.0008 0.8266 229.13 1.959 0.2024 121 3.2947 7.1351 0.2981 1.6600

2.5009 0.0009 0.8527 143.09 1.710 0.1620 73 3.3108 7.6922 0.1655 1.9280

2.5120 0.0010 0.8541 64.54 1.283 0.1096 32 3.3286 7.7346 0.1416 1.9523

2.5253 0.0050 0.8564 42.04 5.173 0.0886 21 3.3302 7.7889 0.1250 1.9835

2.5298 0.0100 0.8570 7.66 4.421 0.0379 4 3.3339 7.8015 0.1166 1.9936

2.5317 0.0500 0.8574 0.47 5.49 0.0094 0.17 3.3358 7.8043 0.1132 1.9995

2.5318 0.1000 0.8580 0.25 7.90 0.0068 0.12 3.3415 7.7927 0.1107 2.0040

2.5325 0.2000 0.8604 0.12 10.80 0.0046 0.06 3.3644 7.7448 0.1005 2.0225

2.5361 0.3000 0.8645 0.08 12.63 0.0036 0.04 3.4040 7.6609 0.0822 2.0562

2.5466 0.4000 0.8704 0.06 13.99 0.0030 0.03 3.4630 7.5340 0.0535 2.1104
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TABLE 1 (CONTINUED)

Z2

n
εn1

εn2
104Z2

a
104 εa1

εa2
104 σ2

1 σ2

2 σ2

3 σ2

4 σ2

5

ε = 5

2.5724 0.5000 0.8786 0.09 20.85 0.0037 0.05 3.5458 7.3521 0.0099 2.1956

2.6302 0.6000 0.8894 0.09 23.15 0.0034 0.05 3.6598 7.0939 −0.0582 2.3336

2.7589 0.7000 0.9039 0.08 23.33 0.0030 0.04 3.8187 6.7195 −0.1739 2.5760

3.0707 0.8000 0.9235 0.12 30.68 0.0035 0.06 4.0506 6.1433 −0.4080 3.0778

4.0864 0.9000 0.9516 0.14 35.07 0.0037 0.07 4.4303 5.1247 −1.1225 4.6052

Z2

n
εn1

εn2
104Z2

a
104 εa1

εa2
104 σ2

1 σ2

2 σ2

3 σ2

4 σ2

5

ε = 10

4.1135 0.0001 0.8127 39700.27 0.99 0.8081 20527 3.5162 10.9595 8.2040 8.4346

4.1241 0.0002 0.8176 14090.42 1.99 0.6771 17412 3.4369 10.2798 6.6044 7.0642

4.2689 0.0003 0.8301 5683.94 2.05 0.5677 11623 3.9949 10.5754 4.0176 5.2983

4.4284 0.0004 0.8430 2247.11 2.17 0.4568 4138 4.7659 12.3819 1.7273 3.3537

4.5414 0.0005 0.8483 128.05 0.90 0.1523 67 6.1076 14.6492 0.1680 2.0034

4.6054 0.0006 0.8548 82.75 0.87 0.1234 42 6.1168 14.9573 0.1135 2.0896

4.6386 0.0007 0.8583 65.27 0.90 0.1099 33 6.1160 15.1216 0.0866 2.1390

4.5629 0.0008 0.8501 54.05 0.94 0.1002 27 6.1372 14.7566 0.1300 2.0308

4.4192 0.0009 0.8350 35.02 0.87 0.0808 18 6.1682 14.1351 0.1970 1.8603

4.4194 0.0010 0.8350 35.03 0.97 0.0808 18 6.1682 14.1359 0.1969 1.8605

4.4480 0.0050 0.8378 16.81 3.35 0.0561 8.4 6.1691 14.2511 0.1798 1.8923

4.4506 0.0100 0.8380 3.12 2.89 0.0242 1.6 6.1713 14.2586 0.1763 1.8956

4.4512 0.0500 0.8383 0.25 4.05 0.0068 0.12 6.1750 14.2526 0.1749 1.8976

4.4513 0.1000 0.8390 0.17 6.72 0.0056 0.09 6.1862 14.2286 0.1726 1.9016

4.4523 0.2000 0.8417 0.11 10.66 0.0045 0.06 6.2315 14.1300 0.1631 1.9182

4.4583 0.3000 0.8463 0.08 13.01 0.0037 0.04 6.3101 13.9575 0.1462 1.9482

4.4752 0.4000 0.8531 0.08 16.72 0.0036 0.04 6.4270 13.6969 0.1198 1.9976

4.5166 0.5000 0.8625 0.06 17.39 0.0030 0.03 6.5909 13.3233 0.0798 2.0749

4.6092 0.6000 0.8749 0.07 21.07 0.0031 0.04 6.8168 12.7934 0.0177 2.2010

4.8142 0.7000 0.8914 0.09 24.92 0.0032 0.04 7.1315 12.0256 −0.0873 2.4239

5.3058 0.8000 0.9137 0.09 27.94 0.0032 0.05 7.5911 10.8446 −0.3003 2.8903

6.8596 0.9000 0.9456 0.10 29.99 0.0031 0.05 8.3452 8.7589 −0.9607 4.3286

Z2

n
εn1

εn2
104Z2

a
104 εa1

εa2
104 σ2

1 σ2

2 σ2

3 σ2

4 σ2

5

ε = 25

9.6270 0.00015 0.8127 94418.84 1.49 0.8090 48602 8.3405 25.9488 19.4360 20.0013

10.0840 0.0002 0.8267 3761.04 1.08 0.4454 11375 11.5932 33.6104 6.8376 9.4239

11.0082 0.0003 0.8672 791.85 1.06 0.3054 1255 13.4165 36.2369 1.0958 3.4440

11.0126 0.0004 0.8670 552.26 1.25 0.2710 644 13.7669 36.9169 0.6936 2.9447

11.0185 0.0005 0.8671 426.11 1.42 0.2471 406 13.9569 37.2825 0.4904 2.7189

7.2235 0.0005 0.6988 1278.58 1.42 0.3044 4441 12.1491 22.0692 3.9631 5.1139

10.3549 0.0006 0.8360 322.83 1.57 0.2190 276 14.2141 34.0576 0.5535 2.1992

10.3700 0.0007 0.8366 273.23 1.72 0.2054 211 14.2947 34.2471 0.4699 2.1281
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TABLE 1 (CONTINUED)

Z2

n
εn1

εn2
104Z2

a
104 εa1

εa2
104 σ2

1 σ2

2 σ2

3 σ2

4 σ2

5

ε = 25

10.1198 0.0008 0.8254 204.93 1.76 0.1821 139 14.4254 33.3235 0.4221 1.9361

10.1303 0.0009 0.8257 138.70 1.68 0.1540 82 14.5271 33.4946 0.3289 1.8759

10.1377 0.0010 0.8258 73.92 1.40 0.1154 39 14.6116 33.6139 0.2559 1.8464

10.0944 0.0050 0.8237 0.54 0.04 0.0101 0.3 14.6745 33.4745 0.2168 1.8249

10.1019 0.0100 0.8240 0.16 0.08 0.0055 0.08 14.6739 33.5038 0.2154 1.8281

10.0969 0.0500 0.8240 0.11 2.73 0.0045 0.06 14.6863 33.4643 0.2156 1.8272

10.0971 0.1000 0.8247 0.03 2.95 0.0024 0.02 14.7110 33.4031 0.2133 1.8309

10.0996 0.2000 0.8277 0.03 6.13 0.0025 0.02 14.8235 33.1522 0.2043 1.8463

10.1115 0.3000 0.8328 0.04 9.73 0.0027 0.02 15.0185 32.7134 0.1882 1.8744

10.1468 0.4000 0.8403 0.05 12.79 0.0027 0.02 15.3085 32.0504 0.1632 1.9199

10.2329 0.5000 0.8505 0.05 15.33 0.0026 0.02 15.7151 31.1007 0.1256 1.9920

10.4249 0.6000 0.8642 0.05 17.26 0.0025 0.02 16.2753 29.7538 0.0675 2.1100

10.8481 0.7000 0.8822 0.06 21.08 0.0027 0.03 17.0562 27.8031 −0.0302 2.3198

11.8510 0.8000 0.9065 0.07 23.45 0.0026 0.03 18.1970 24.8046 −0.2286 2.7619

14.9171 0.9000 0.9412 0.07 25.47 0.0027 0.04 19.5131 20.0724 −0.8513 4.1396

a Notation: ε+1 is the density ratio ρnρ−1

a
; Z2 refers to squared vorticity normalized to 4πGρa; εn1

, εa1
,

εn2
, and εa2

are the equatorial (1) and meridional (2) eccentricities of the nucleus (n) and the atmosphere
(a); σ2 is the squared frequency normalized to

√

πGρa; subscripts in σ2 are used as follows: 1, 2, for the
even modes, 3, 4, 5 for the odd modes.
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