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ABSTRACT

Background: The coronavirus disease (COVID-19) is an infectious disease caused by the SARS-CoV-2 virus and is responsible 
for nearly 6 million deaths worldwide in the past 2 years. Machine learning (ML) models could help physicians in identifying 
high-risk individuals. Objectives: To study the use of ML models for COVID-19 prediction outcomes using clinical data and a 
combination of clinical and metabolic data, measured in a metabolomics facility from a public university. Methods: A total of 
154 patients were included in the study. “Basic profile” was considered with clinical and demographic variables (33 variables), 
whereas in the “extended profile,” metabolomic and immunological variables were also considered (156 characteristics). A selec-
tion of features was carried out for each of the profiles with a genetic algorithm (GA) and random forest models were trained 
and tested to predict each of the stages of COVID-19. Results: The model based on extended profile was more useful in early 
stages of the disease. Models based on clinical data were preferred for predicting severe and critical illness and death. ML de-
tected trimethylamine N-oxide, lipid mediators, and neutrophil/lymphocyte ratio as important variables. Conclusion: ML and 
GAs provided adequate models to predict COVID-19 outcomes in patients with different severity grades. (REV INVEST CLIN. 

2022;74(6):314-27)
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INTRODUCTION

COVID-19 is an infectious disease caused by the SARS-
CoV-2 virus. This disease is considered a worldwide 
emergency and has caused nearly 6 million deaths in 
2 years. Most people infected by the virus will develop 
mild or moderate illness; however, a certain percentage 
of the population will experience severe and critical 
disease. People with underlying illnesses, such as dia-
betes, cancer, cardiovascular disease, arterial hyper-
tension, renal disease, and obesity, among others, are 
more likely to develop severe COVID-19 complications, 
and even could not survive1. Effective clinical manage-
ment of these patients will depend on early stratifica-
tion based on their clinical characteristics2.

Since predicting the early outcomes of COVID-19 is 
challenging, machine learning (ML) models could help 
physicians in identifying high-risk individuals. ML ap-
proaches such as support vector machines (SVMs)3, 
random forests (RFs)4, or deep neural networks 
based5 have been implemented for analyzing X-ray or 
computed tomography (CT) images6 with the aim to 
stratify high-risk COVID-19 patients. Other studies 
have focused on blood tests, sociodemographic data, 
and comorbidities to develop COVID-19 diagnostic 
and prognostic models, including ML techniques7-10.

In addition, other authors have trained an ML model 
using proteomics and metabolomics measurements 
from a training cohort of non-severe and severe CO-
VID-19 patients, identifying potential blood biomark-
ers for severity prediction11. Since the identification 
of biomarkers associated with survival and death re-
mains a major challenge for early prognosis, Sardar et 
al.12 developed AI-based algorithms for predicting 
COVID-19 patient’s survival or death based on a pub-
licly available dataset, consisting of clinical parame-
ters and protein profile data of hospital-admitted 
COVID-19 patients12.

Despite metabolomics and proteomics offer multiple 
advantages for the identification of predictive bio-
markers, the technologies to perform these kinds of 
experiments are not widely available in hospitals or 
health institutions, where the physicians need afford-
able tools to early stratify patients. Considering this, 
in the present work, we propose two ML models based 
on previously collected information: a basic model 
(with clinical and demographic data only) and an 

extended model (with the addition of immunological 
and metabolomics data). The basic model will be of 
particular interest for clinicians. However, when meta-
bolic and immunological information may be available, 
the models to classify patients gain predictive power, 
mainly for low-risk patients, although these charac-
teristics lose relevance for predicting severe, critical 
cases or death.

METHODS

Study population

Patients were recruited at the respiratory triage unit 
in a Zone Hospital of the Mexican Social Security In-
stitute, in Zacatecas, Mexico, from March to Novem-
ber 2020. The control group (37 subjects) included 
patients negative to the SARS-CoV-2 PCR test; Group 
2 (mild) included 37 patients with a positive result in 
the COVID-19 test, who presented mild symptoms. 
Group 3 (severe) consisted of 35 patients positive to 
the COVID-19 test, who were hospitalized and re-
quired oxygen by nasal cannula. Group 4 (critical) in-
cluded 45 positive patients that required intensive 
care and who were mechanically ventilated. From the 
critically ill patients, 17 survived and 28 patients died. 
Table 1 shows the clinical and demographic character-
istics of all participants, as well as relevant laboratory 
data collected at the moment of hospital admission, 
as earlier as 4 days on average since symptoms onset.

Data acquisition

Metabolites measurement

Amino acids, biogenic amines and derivatives, and or-
ganic acids were analyzed by a reverse-phase LC–MS/
MS custom assay, while glycerophospholipids, acyl-
carnitines, glucose, and sphingomyelins were mea-
sured by Direct Infusion Tandem Mass Spectrometry 
(DI-MS/MS) analysis performed on an ABSciex 4000 
Qtrap tandem MS instrument (Applied Biosystems/
MDS Analytical Technologies, Foster City, CA) 
equipped with an Agilent 1260 series UHPLC system 
(Agilent Technologies, Palo Alto, CA). An Agilent re-
versed phase Zorbax Eclipse XDB C18 column (3.0 
mm × 100 mm, 3.5 µm particle size, 80 Å pore size) 
with a Phenomenex (Torrance, CA, USA) Security-
Guard C18 pre-column (4 mm × 3.0 mm) was used. 
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Table 1. Clinical and demographic characteristics, including laboratory analyses

Variables G1 G2 G3 G4 p-value

n = 37 n = 41 n = 35 n = 45

Male sex, n (%) 16 
(43.2)

26 
(56)

16 
(45.7)

29 
(64.4)

0.07

Age, median years 
(Q1–Q3)

41 
(38–54)

58 
(51–64)

53 
(48–61)

58 
(46–64)

0.0001

Symptoms to sampling, 
median days (Q1–Q3)

2 
(1–5)

3 
(0–6)

3 
(1–6)

5 
(2–7)

0.04

Pneumonia, n (%) NA NA 2 
(5.7)

10 
(22.2)

0.06

ARDS, n (%) NA NA NA 34 
(75.5)

–

Mechanical ventilation,  
n (%)

NA NA 0 
(0)

39 
(86.6)

< 0.0001

Death, n (%) NA NA 8 
(22.2)

28 
(77.7)

< 0.0001

Symptom, n (%)

Fever NA 22 
(53.7)

21 
(60)

28 
(62.2)

0.4

Cough NA 30 
(73.1)

27 
(77.1)

41 
(91.1)

0.03

Headache 27 
(73.0)

30 
(73.1)

21 
(60)

24 
(53.3)

0.03

Dyspnea 5 
(13.5)

13 
(31.7)

31 
(88.6)

32 
(71.1)

< 0.0001

Diarrhea 2 
(5.4)

4 
(9.8)

6 
(17.1)

4 
(8.8)

0.5

Chest tightness 2 
(5.4)

6 
(14.6)

12 
(34.3)

8 
(17.7)

0.06

Chills 4 
(10.8)

14 
(34.1)

15 
(42.8)

10 
(22.2)

0.4

Pharyngalgia 14 
(37.8)

14 
(34.1)

15 
(42.8)

12 
(26.6)

0.4

Myalgia 14 
(37.8)

21 
(51.2)

19 
(54.3)

19 
(42.2)

0.7

Arthralgias 11 
(29.7)

22 
(53.7)

19 
(54.3)

18 
(40)

0.5

Rhinorrhea 6 
(16.2)

8 
(19.5)

6 
(17.1)

2 
(4.4)

0.09

Polypnea 1 
(2.7)

NA 6 
(17.1)

8 
(17.7)

0.04

Anosmia NA 10 
(24.4)

7 
(20)

4 
(8.8)

0.05

Dysgeusia NA 10 
(24.4)

7 
(20)

5 
(11.1)

0.06

Comorbidities, n (%)

Diabetes  
(self-reported)

3 
(8.1)

4 
(9.8)

18 
(51.4)

9 
(20)

0.01

Obesity  
(> 30 kg/m2)

3 
(8.1)

8 
(19.5)

7 
(20)

13 
(28.9)

0.02

Hypertension  
(self-reported)

9 
(24.3)

11 
(26.9)

13 
(37.1)

17 
(37.7)

0.1

(Continues)
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To quantify organic acids, amino acids, and biogenic 
amines and derivatives, an individual 7-point calibra-
tion curve was generated for each analyte. The ratios 
of each analyte signal intensity to its corresponding 
isotope-labeled internal standard mixture were plot-
ted against the specific known concentrations using 
quadratic regression with a 1/×2 weighting. Lipids, 
acylcarnitines, and glucose were analyzed semi-quan-
titatively. Single-point calibration of a representative 
analyte was built, using the same group of compounds 
that share the same core structure, assuming linear 
regression through zero. All data analyses were done 
using Analyst 1.6.2 and MultiQuant 3.0.3. A detailed 
description about sample preparation and chromato-
graphic methods was previously reported by our 
group13.

Cytokines and chemokines measurement

A premixed LEGENDplex™ Human Inflammation Pan-
el (13-plex) (BioLegend, USA) was used to measure 
plasma cytokine and chemokine levels, performed 

according to the manufacturer’s instructions. Data 
were acquired using a FACS CANTO II flow cytometer 
4-2-2 configuration, (BD Biosciences, USA) with Fire-
Plex software. Analysis was performed using the LEG-
ENDplex analysis software v8.0. All regression analy-
ses showed an R2 > 0.99.

Data and pre-processing

After a careful inspection of the dataset, 154 patients 
were included (three patients were eliminated due to 
significant data missing). For dichotomous variables, 
1 was placed for “yes” and 0 for “no;” continuous 
variables were normalized using the Z-score. For the 
purposes of the present work, we defined as “basic 
profile” those characteristics related to clinical and 
demographic variables. In “extended profile,” we in-
cluded metabolites and immunological, clinical, and 
demographic variables.

In total, 156 characteristics were included for the “ex-
tended data;” and for the basic data, 33 features plus 

Table 1. Clinical and demographic characteristics, including laboratory analyses (continued)

Variables G1 G2 G3 G4 p-value

n = 37 n = 41 n = 35 n = 45

Admission laboratory 
data, median (Q1–Q3)

Erythrocytes  
(million/mL)

5.1 
(4.8–5.5)

5.2 
(4.9–5.6)

5.1 
(4.9–5.4)

5.1 
(4.7–5.5)

0.9

Hemoglobin (g/dL) 15.4 
(14.7–16.3)

15.3 
(14.2–16.1)

15.0 
(14.4–15.8)

15.3 
(13.5–16.5)

0.7

Platelets  
(thousands/mL)

278.8 
(238.0–327.0)

257.0 
(206.5–314.0)

248.5 
(213.0–274.0)

243.0 
(184.8–282.0)

0.06

Leukocytes (×103) 7.1 
(6.05–8.4)

7.0 
(5.4–8.3)

8.6 
(6.7–10.4)

9.5 
(7.6–12.1)

0.0002

Neutrophils (%) 60.1 
(54.5–66.0)

66.6 
(56.2–75.6)

79.4 
(75.3–83.0)

85.4 
(81.4–90.8)

< 0.0001

Lymphocytes (%) 30.5 
(25.8–36.0)

25.1 
(15.4–34.5)

14.3 
(10.6–16.8)

8.8 
(5.2–11.8)

< 0.0001

Neutrophils-lymphocytes 
ratio

1.7 
(1.5–2.2)

3.0 
(1.6–3.7)

6.7 
(4.5–7.4)

11.2 
(6.7–16.7)

< 0.0001

Monocytes (%) 6.8 
(5.3–8.7)

7.1 
(4.8–8.8)

5.1 
(3.0–6.1)

3.5 
(2.6–5.0)

< 0.0001

Glucose (mg/dL) 93.0 
(85.0–103.0)5

112.0 
(95.8–125.5)

134.3 
(97.0–136.6)

150.0 
(113.0–247.0)

< 0.0001

Creatinine (mg/dL) 0.9 
(0.7–1.0)

0.87(0.7–1.0) 0.85 
(0.7–0.9)

1.0 
(0.8–1.5)

0.01
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the class were included. The predictive models were 
implemented for: (1) non-COVID-19 versus all COV-
ID-19 patients; (2) mild disease versus severe and 
critical disease; (3) severe disease versus critical dis-
ease; and (4) survivors versus non-survivors. Box 
Tidwell test was performed to analyze data linearity, 
considering p < 0.05 as significant and linearly inde-
pendent.

Feature selection

Feature selection was done with GALGO, an object-
oriented package developed in R language. GALGO 
employs genetic algorithms (GA) to select models 
with high performance, as has been previously de-
scribed14.

Classification method

RF was a classifier to build the classification models. 
This popular ML algorithm is a combination of deci-
sion trees (DTs); the results are acquired by adding 
the vote from different DT to decide the final class15. 
Three hundred generations were tested at each it-
eration of the GA; 1000 iterations in the models and 
the characteristics that were repeated were repre-
sented in a frequency graph. The trained models 
(80% of data) were then cross-validated (k = 5), and 
the results were averaged to obtain the model evalu-
ation metrics. Once the training model was made, it 
was subjected to a blind validation with the 20% of 
data, which simulates the performance that will be 
obtained when testing it with unknown patients for 
the model.

Validation process

To assess the classification performance of the final 
models, the following performance metrics were used: 
area under the receiver operating characteristic curve 
(AUC), sensitivity, specificity, and accuracy. The ex-
perimental design is shown in Figure 1. We analyzed 
the data with classical statistical methods, such as 
Principal Component Analysis (PCA) and Partial Least 
Squares Discriminant Analysis (PLS-DA). Fold change 
(FC) analysis was also included to evaluate the level 
of expression of relevant metabolites. Since we de-
fined a priori the study groups, we performed cluster 
analysis by means of PCA (biplot and loading plots) 
to verify if the selected metabolites are naturally 

grouping according to disease severity. By RF, the 
mean accuracy decrease was also calculated to esti-
mate how much accuracy the model loses by exclud-
ing each variable. Finally, ROC curves were built with 
other classification algorithms, such as PLS-DA, logis-
tic regression (LR), and SVM.

RESULTS

Figure 2 shows the graphics for feature selection 
when basic and extended models are trained. Table 2 
contains the information regarding each model, both 
for basic data and extended data. The features se-
lected for each model and the performance (AUC, 
sensitivity, specificity, and accuracy) are shown. We 
also built AUC curves by means of other algorithms 
(PLS-DA, LR, and SVM) to verify the performance of 
the models (Table S1). In addition, the DTs and prob-
abilities are presented in Figure S1.

For the prediction of disease, the basic data as well 
as extended data had an excellent performance, al-
though in this case, the inclusion of metabolic and 
immunological variables (trimethylamine N-oxide 
[TMAO], LysoPC a C26:0, LysoPC a C18:2, PC aa 
C36:6, C10:1, and IFN-α2) increased the model per-
formance. Cough was a common variable between 
both models. In addition, to distinguish between 
non-COVID-19 and all COVID-19 patients, the pres-
ence of obesity, fever, dysgeusia, and anosmia was 
relevant. Data were also analyzed by PLS-DA and 
variable importance in projection (VIP), which are 
classical statistical analysis. The models built with 
both basic and extended profile were cross validated, 
showing no overfitting. About 71% of the variables 
from the extended profile selected by GALGO were 
included also in the PLS-DA model, while only 40% of 
the variables from basic profiles were coincident in 
both approaches (Figure S2). FC analysis was also 
performed (Figure S3 A), and Table S2 shows that all 
the variables selected by ML and classical statistical 
methods had significant and similar FC values.

To distinguish between mild disease and severe dis-
ease (composed by all the patients who were hos-
pitalized), the basic data as well as extended data 
had AUC performances above 0.95. Again, the inclu-
sion of metabolic variables increased the perfor-
mance, both for the trained and blind experiments. 
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Figure 1. Experimental design.
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Figure 2. Forward selection models, for each of the stages of COVID-19. (A) COVID-19 versus non-COVID-19 model, basic data. 
(B) COVID-19 versus non-COVID-19, extended model. (C) Mild versus severe and critical COVID-19, basic data. (D) Mild versus 
severe and critical COVID-19, extended model. (E) Severe disease versus critical disease, basic data. (F) Severe disease versus critical 
disease, extended model. (G) Survivors versus non-survivors, basic data. (H) Survivors versus non-survivors, extended model.

A

C

E

G

B

D

F

H



321

K.E. Villagrana-Bañuelos ET AL.: MACHINE LEARNING AND COVID-19

Ta
bl

e 
2

. 
Fe

at
ur

e 
se

le
ct

io
n 

an
d 

m
ac

hi
ne

 l
ea

rn
in

g 
m

od
el

s 
pe

rf
or

m
an

ce
 i

n 
tr

ai
ni

ng
 a

nd
 t

es
ti

ng
 s

ta
ge

s,
 f

or
 e

ac
h 

of
 t

he
 C

O
V

ID
-1

9
 g

ro
up

s 
ac

co
rd

in
g 

to
 t

he
 b

as
ic

 a
nd

  
ex

te
nd

ed
 p

ro
fil

e

Ba
si

c 
pr

of
ile

Ex
te

nd
ed

 p
ro

fi
le

Fe
at

ur
es

A
U

C
(9

5
%

C
I)

Se
ns

it
iv

it
y

Sp
ec

if
ic

it
y

A
cc

ur
ac

y
Fe

at
ur

es
A

U
C

(9
5

%
C

I)
Se

ns
it

iv
it

y
Sp

ec
if

ic
it

y
A

cc
ur

ac
y

C
O

V
ID

-1
9

ve
rs

us
N

on
-C

O
V

ID
-1

9

C
ou

gh
T

ra
in

in
g 

C
ou

gh
T

ra
in

in
g

O
be

si
ty

0
.9

5
(0

.8
2

–
0

.9
6

)
0

.9
0

0
.9

2
0

.9
1

T
rim

et
hy

la
m

in
e 

N
-o

xi
de

1
(1

–
1

)
0

.8
6

0
.9

7
1

Fe
ve

r
Ly

so
 P

C
 a

 C
 2

6
:0

D
ys

ge
us

ia
Ly

so
 P

C
 a

 C
 1

8
:2

A
no

sm
ia

Bl
in

d 
Te

st
 

0
.8

8
(0

.7
4

–
1

)

1
0

.9
1

0
.9

3
IF

N
-α

2
PC

 a
a 

C
 3

6
:6

C
 1

0
:1

Bl
in

d 
Te

st
0

.9
3

(0
.8

1
–

1
)

1
0

.9
5

0
.9

6

M
ild

 C
O

V
ID

-1
9

ve
rs

us
Se

ve
re

 a
nd

 C
rit

ic
al

 
C

O
V

ID
-1

9

T
ire

dn
es

s
T

ra
in

in
g 

C
 1

0
:2

T
ra

in
in

g 

N
eu

tr
op

hi
ls

0
.9

6
(0

.8
8

–
0

.9
8

)
0

.9
4

0
.9

2
0

.9
3

N
eu

tr
op

hi
ls

0
.9

8
(0

.9
6

–
1

)
1

0
.8

9
0

.9
2

M
on

oc
yt

es
Ly

so
 P

C
 a

 C
 1

4
:0

Ly
m

ph
oc

yt
es

D
ys

pn
ea

C
hi

lls
Ly

m
ph

oc
yt

es

C
ou

gh
Bl

in
d 

Te
st

0
.9

2
0

.6
0

0
.7

8
M

et
hi

on
in

e 
su

lfo
xi

de
Bl

in
d 

Te
st

1
0

.9
2

0
.9

5

A
rt

hr
al

gi
a

0
.8

0
(0

.5
6

–
0

.9
2

)
N

eu
tr

op
hi

ls
 ly

m
ph

oc
yt

es
 

R
at

io
 

0
.9

7
(0

.8
5

–
1

)

M
ya

lg
ia

T
rim

et
hy

la
m

in
e 

N
-o

xi
de

T
ra

ns
hy

dr
ox

yp
ro

lin
e

To
ta

l d
im

et
hy

la
rg

in
in

e

Se
ve

re
 C

O
V

ID
-1

9
ve

rs
us

C
rit

ic
al

 C
O

V
ID

-1
9

T
ra

in
in

g
T

ra
in

in
g

Le
uk

oc
yt

es
0

.9
1

(0
.7

3
-0

.9
2

)
0

.9
1

0
.8

1
0

.8
7

0
.8

5
(0

.9
4

–
1

)
0

.8
8

0
.7

5
0

.8
2

C
re

at
in

in
e

T
rim

et
hy

la
m

in
e 

N
-o

xi
de

V
om

it
p 

H
yd

ro
xy

hi
pp

ur
ic

 a
ci

d

R
hi

no
rr

he
a

Bl
in

d 
Te

st
0

.6
2

0
.8

7
0

.7
5

Ly
so

 P
C

 a
 C

 2
8

:1
Bl

in
d 

Te
st

1
0

.4
2

0
.7

5

0
.6

7
(0

.4
1

–
0

.8
8

)
0

.6
8

(0
.4

7
–

0
.9

2
)

(C
on

ti
nu

es
)



322

REV INVEST CLIN. 2022;74(6):314-27

From the PLS-DA analysis, the differentiation between 
both classes is clearly visible, with a cross-validation 
showing no overfitting of the model. The variables 
with highest VIP scores (dyspnea, lymphocytes, neu-
trophils, and neutrophil-lymphocyte ratio [NLR]) were 
also included in the ML model. In the case of the basic 
profile, only neutrophils, monocytes, and lymphocytes 
were detected in common in both models. The per-
formance of cross-validation showed a Q2 below 0.5, 
which may indicate some overfitting. This agrees with 
the finding reported for the ML method, where also 
the performance of the extended profile was higher 
than for the basic profile (Figure S4). Figure S3 B and 
Table S3 show the FC analysis for this comparison.

Notably, when severe COVID-19 patients were com-
pared with critically ill COVID-19 patients, the perfor-
mance of the model was higher when the basic data 
were considered. In this case, leukocytes and creati-
nine levels and vomit and rhinorrhea distinguished 
severe and critical cases with an AUC of 0.91. In con-
trast, the inclusion of metabolites diminished the per-
formance of the model. In this case, 100% of the 
variables from the extended profile selected by ML 
were found in the PLS-DA analysis with a VIP score 
higher than 1.5. The FC analysis also revealed the 
highest values for p-hydroxyhippuric acid and TMAO, 
although lysoPC a 28:1 was also significant (Figure S3 
C and Table S4). The cross-validation analysis showed 
a low performance, which agrees with the superposi-
tion of both classes in the PLS-DA model. In the case 
of the basic profile, only leukocytes were predicted by 
the PLS-DA method (Figure S5).

Prediction of patients who would survive and those 
who would not, was only achieved with a discrete suc-
cess for both types of data. In this stage, the basic 
data provided a higher performance. Sex, smoking 
status, and the presence of several symptoms such 
as chills, vomit, diarrhea, abdominal pain, and head-
ache predicted death among critical patients. None of 
the extended profile variables selected by ML had a 
VIP score higher than 1.5 in the PLS-DA analysis. 
SMOH16:1 and PC ae 36:0 were significant in the FC 
analysis (Figure S3 D and Table S5). The cross-valida-
tion showed a low value in Q2. In the case of the basic 
profile, only headache and abdominal pain were se-
lected in common by both models; however, the VIP 
values were below 1.5. The performance of the basic 
model was higher than that of the extended profile Ta
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and this agrees with the report by us for the ML ap-
proach (Figure S6).

As an additional strategy to verify the implication of 
the variables selected by different algorithms, unsu-
pervised and hierarchical cluster analyses were per-
formed. This with the main objective of verifying if 
the natural clustering of samples and analytes effec-
tively corresponded to the assigned classes defined a 
priori on the experimental design. In the PCA analysis, 
Group 1 (controls) and Group 2 (mild) were clustered 
at the bottom, while Group 3 (severe) and Group 4 
(critically ill) were clustered at the upper quadrants. 
From loading plots, variables such as neutrophils, neu-
trophils/lymphocyte ratio, kynurenine/tryptophan, 
cough, dyspnea, fever, TMAO, glucose, vomit, leuko-
cytes, lipids (carnitines and lysophospholipids), obe-
sity, and cytokines were in the upper quadrants, while 
tryptophan, citric acid, lymphocytes, and lysoPCs with 
smaller and mono-unsaturated fatty acids were clus-
tered at the bottom. In the biplot analysis, patient 
samples were grouped together with the variables 
and were also clearly visible how patients such as 
CV19-0809 (critically ill), CV19-0532 (critically ill), 
CV19-0932 (critically ill), CV19-0814 (critically ill), 
CV19-0807 (critically ill), CV19-0519 (critically ill), 
CV19-0991 (severe), CV19-0484 (severe), CV19-
0329 (severe), and CV19-0847 (severe) were clus-
tered with the variables mentioned above in the upper 
and right side. Contrary, CV19-0583 (mild), CV19-
0606 (mild), CV19-0700 (control), and CV19-0578 
(control) were grouped at the bottom, together with 
variables such as lymphocytes and lysoPCs with 
smaller and mono-unsaturated fatty acids. From the 
RF analysis, we show here the mean accuracy de-
crease plot. This plot expresses how much accuracy 
the model loses by excluding each variable. The more 
the accuracy suffers, the more important the vari-
able is for the successful classification. The variables 
are presented in descending importance. In this anal-
ysis, lipids, TMAO, and clinical variables such as neu-
trophils, neutrophil/lymphocytes ratio, and lympho-
cytes were very important for the model performance 
(Figure S7).

We finally propose an algorithm to classify patients 
when they arrive in the emergency rooms with sus-
pected COVID-19, as shown in Figure 3. It is worth 
mentioning that in this algorithm, the extended data 
were only useful in non-severe forms of the disease. 

Once the disease has been established, the clinical 
and demographic data were more adequate to dif-
ferentiate between severe and critical disease, and to 
predict death among critical patients.

DISCUSSION

In this study, we proposed a methodology consisting 
of a selection of features to predict COVID-19 and its 
outcomes (including death) that were carried out by 
GALGO, followed by construction of an RF model, 
which was subsequently cross-validated and blind 
tested. Besides, these features were inspected across 
the recent COVID-19 literature, finding that most of 
them (except creatine) have been reported as poten-
tial markers of diagnosis and prognosis (Table S6).

In the present work, metabolites were measured by a 
targeted method. Targeted metabolomics approach-
es represent several advantages for selecting specific 
and probable validated biomarkers. In contrast to un-
targeted metabolomics approaches, absolute concen-
tration levels of known metabolites are reported, al-
lowing for more reproducibility and validation in 
intra- and inter-laboratories studies. It is also possible 
to establish a clear cut-off value for the metabolites 
selected in a predictive model.

In the previous studies conducted by our group, we 
presented the feature selection capabilities of the GA 
GALGO16,17. Typical feature selection approaches can 
be done mainly in two ways: either by selecting a 
subset of the original feature set or by extracting a 
lower number of features preserving the characteris-
tics of the original higher dimensional dataset18. Nev-
ertheless, biological data such as those presented 
here have many features, making the learning of non-
linear models unfeasible with existing linear tech-
niques18,19. In contrast, nature-driven approaches 
such as the genetic search look beyond the lineal rela-
tion between features and the outcome, testing the 
capabilities of a subset of features rather than the 
individual performance. While this may seem trivial, 
the number of possible feature combinations increas-
es exponentially, making the implementation very 
hard in a feasible computational time. The implemen-
tation of the GA generates a robust multivariate 
model despite the large number of features.
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Figure 3. Flowchart to classify patients based on the features identified by machine learning approaches.
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The previous studies have reported the use of RF, LR, 
SVM, gradient-boosted DT, and neural network to pre-
dict COVID-193,20,21. In a recent work, our group em-
ployed LR and SVM to identify differences associated 
to sex between COVID-19 patients. However, Li et al. 
demonstrated that RF had highest predictive perfor-
mance for predicting hospital admissions for COVID-19 
patients, and critical care admissions for COVID-19 
cases in terms of AUC compared to LR, SVM, neural 
network, and gradient boosting21. Similarly, Xiong et 
al. found that RF could predict COVID-19 severity with 
best performance compared to SVM and LR22.

In this work, we developed two approaches: one di-
rected to select features within the complete dataset 
(a combination of metabolomics, immunologic, clini-
cal, and demographic data) and the other directed to 
select those features that are more accessible in hos-
pitals and emergency rooms (clinical and demograph-
ic data). We found here that features selected based 
on metabolomics and immunological data seem to be 
only useful to predict infection and mild disease. We 
can speculate that once the disease is established, the 
metabolic and immune dysregulation that takes place 
does not allow the differentiation between severe and 
critical cases. In these stages, the use of clinical fea-
tures (symptoms and laboratory counts) is the pre-
ferred variables to predict negative outcomes.

We previously predicted infection, outcomes,23 and 
viral sepsis24 with the same dataset analyzed by 
means of classical statistical methods (unsupervised 
and supervised techniques, as well as their perfor-
mance). For the purposes of the present work, we 
aimed to validate these previous results using ML ap-
proaches. ML uses learning algorithms to find pat-
terns in rich and unwieldy data, being particularly 
helpful when the number of input variables exceeds 
the number of subjects. ML methods can be also ef-
fective even in the presence of complicated non-linear 
interactions. Other authors have employed ML to 
validate results by evaluating publicly available data-
sets. In a recent work, Papoutsoglou et al. employed 
automated machine learning (AutoML) to analyze 
three publicly available high-throughput COVID‑19 
datasets, including proteomic, metabolomic, and 
transcriptomic measurements. They found critical dif-
ferences between the original methodology and Au-
toML, presenting an advantage of the AutoML analy-
sis in terms of translatability of the model25.

In the present work, we found that some of the char-
acteristics previously predicted by us using tradition-
al statistics methods were also selected by ML ap-
proaches, particularly those associated with lipid 
metabolism dysregulation (C10:2, C10:1, LysoPC a 
C26:0, LysoPC a C 28:1, and PC aa C36:6). However, 
with this new approach, kynurenine/tryptophan ratio, 
butyric acid, propionic acid, or phenylalanine were not 
identified as relevant variables. Instead, a new vari-
able, TMAO, was found in the predictive models for 
infection, mild disease, and severe disease.

TMAO has been associated with cardiovascular disor-
ders such as atherosclerosis. The atherogenic effect 
of this compound is associated with alterations in 
cholesterol and bile acid metabolism, activation of 
inflammatory pathways, and promotion of foam cell 
formation; a positive correlation has also been found 
between elevated plasma levels of TMAO and an in-
creased risk of major adverse cardiovascular events 
and death26,27. High levels of TMAO have been as-
sociated with the presence of diabetes28. Elevation of 
this compound is also associated with a decrease in 
renal function and renal failure, and at the same time, 
it has been associated with higher mortality in renal 
failure29. Importantly, it has been demonstrated that 
TMAO induces inflammation and endothelial dysfunc-
tion through activating ROS-TXNIP-NLRP3 inflamma-
some, suggesting a likely mechanism for TMAO-de-
pendent enhancement in atherosclerosis and 
cardiovascular risks30.

Cardiovascular stroke and renal failure are common 
complications of severe COVID-19 patients. Other 
important variables, such as NLR, neutrophils, and 
lymphocytes, have also been selected by us and oth-
ers. Yang et al.31, highlighted the importance of NLR 
as a predictor of severity in COVID-19, and Tan et al. 
identified lymphocytes as a marker of severity32. In 
fact, assessment of the NLR gives information about 
lasting inflammation and regulatory functions by neu-
trophils and lymphocytes, respectively, being an indi-
cator of the overall inflammatory status of the body.

Interestingly, ML detects TMAO, lipid mediators, and 
NLR as important variables after several rounds of 
testing and validation procedures, indicating that 
these features gain importance in the sample evalu-
ated. These markers are individually associated to a 
general inflammation profile, not only specific to 
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COVID-19; however, when combined, allow to per-
fectly describe some of the processes altered in CO-
VID-19: intestinal dysbiosis, oxidative stress, tissue 
hypoxia, and mitochondrial dysfunction.

The new strategy, based on AI algorithms and feature 
selection driven by GALGO, was successful in identify-
ing potential COVID-19 biomarkers to predict differ-
ent outcomes. The strategy also revealed the useful-
ness of complex data (such as those composed by 
metabolomics, immunologic, and clinical features) for 
non-severe forms of the disease, while for the worst 
scenarios, the use of simpler data (clinical and demo-
graphic features) is preferable. This allowed the es-
tablishment of a workflow for patient stratification on 
hospital admission.

Differences in the selection of variables by the meth-
ods here employed can be attributable to the charac-
teristics of each model. When the Box-Tidwell test 
was performed, only 60 variables had linearity with 
respect to a binary outcome. This means that the 
data presented here are complex and they are not 
linear. Therefore, ML algorithms are more adequate 
to analyze them. GALGO, by means of ranking stabil-
ity, selects those variables that remain relevant after 
several cycles of testing. However, despite the differ-
ences in individual metabolites, classes and subclass-
es were similar both for ML or classical statistics ap-
proaches. Moreover, when the fold change was 
calculated for each variable selected by GALGO and 
PLS-DA, there were only minimal differences in the 
obtained values, which indicate that independently of 
the model selected, the behavior of the variable is the 
same.

We recognize several limitations in our study. The 
sample size was limited, due to restrictions during the 
first epidemic wave. Traditional approaches for sam-
ple size estimation are not easily transferable to met-
abolic phenotyping studies, where it is not possible to 
know in advance what resulting variables will be ob-
tained. It is often not known which, and how many, 
metabolite candidates will be of potential interest; 
therefore, estimation of the effect size will likely be 
inaccurate. To account for this limitation, we are pro-
posing one model based on a GA (GALGO) that offers 
several advantages (in terms of visualization and per-
formance), and it has been validated with classical 
statistical methods, as has been demonstrated here. 

Our work also has strengths. Here, we performed a 
validation with classical statistical approaches as well 
as an updated review of the involvement of the se-
lected metabolites in COVID-19 diagnosis or progno-
sis. These approaches control for potential model 
overfitting and retain the biological relevance of the 
data to explain molecular alterations associated to 
COVID-19.
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