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ABSTRACT

Background: The coronavirus disease (COVID-19) is an infectious disease caused by the SARS-CoV-2 virus and is responsible
for nearly 6 million deaths worldwide in the past 2 years. Machine learning (ML) models could help physicians in identifying
high-risk individuals. Objectives: To study the use of ML models for COVID-19 prediction outcomes using clinical data and a
combination of clinical and metabolic data, measured in a metabolomics facility from a public university. Methods: A total of
154 patients were included in the study. “Basic profile” was considered with clinical and demographic variables (33 variables),
whereas in the “extended profile,” metabolomic and immunological variables were also considered (156 characteristics). A selec-
tion of features was carried out for each of the profiles with a genetic algorithm (GA) and random forest models were trained
and tested to predict each of the stages of COVID-19. Results: The model based on extended profile was more useful in early
stages of the disease. Models based on clinical data were preferred for predicting severe and critical illness and death. ML de-
tected trimethylamine N-oxide, lipid mediators, and neutrophil/lymphocyte ratio as important variables. Conclusion: ML and
GAs provided adequate models to predict COVID-19 outcomes in patients with different severity grades. (REV INVEST CLIN.
2022;74(6):314-27)
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INTRODUCTION

COVID-19 is an infectious disease caused by the SARS-
CoV-2 virus. This disease is considered a worldwide
emergency and has caused nearly 6 million deaths in
2 years. Most people infected by the virus will develop
mild or moderate iliness; however, a certain percentage
of the population will experience severe and critical
disease. People with underlying illnesses, such as dia-
betes, cancer, cardiovascular disease, arterial hyper-
tension, renal disease, and obesity, among others, are
more likely to develop severe COVID-19 complications,
and even could not survivel. Effective clinical manage-
ment of these patients will depend on early stratifica-
tion based on their clinical characteristics?.

Since predicting the early outcomes of COVID-19 is
challenging, machine learning (ML) models could help
physicians in identifying high-risk individuals. ML ap-
proaches such as support vector machines (SVMs)3,
random forests (RFs)4, or deep neural networks
based> have been implemented for analyzing X-ray or
computed tomography (CT) images® with the aim to
stratify high-risk COVID-19 patients. Other studies
have focused on blood tests, sociodemographic data,
and comorbidities to develop COVID-19 diagnostic
and prognostic models, including ML techniques’-1°.

In addition, other authors have trained an ML model
using proteomics and metabolomics measurements
from a training cohort of non-severe and severe CO-
VID-19 patients, identifying potential blood biomark-
ers for severity prediction!!. Since the identification
of biomarkers associated with survival and death re-
mains a major challenge for early prognosis, Sardar et
al.'?2 developed Al-based algorithms for predicting
COVID-19 patient’s survival or death based on a pub-
licly available dataset, consisting of clinical parame-
ters and protein profile data of hospital-admitted
COVID-19 patients!2.

Despite metabolomics and proteomics offer multiple
advantages for the identification of predictive bio-
markers, the technologies to perform these kinds of
experiments are not widely available in hospitals or
health institutions, where the physicians need afford-
able tools to early stratify patients. Considering this,
in the present work, we propose two ML models based
on previously collected information: a basic model
(with clinical and demographic data only) and an
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extended model (with the addition of immunological
and metabolomics data). The basic model will be of
particular interest for clinicians. However, when meta-
bolic and immunological information may be available,
the models to classify patients gain predictive power,
mainly for low-risk patients, although these charac-
teristics lose relevance for predicting severe, critical
cases or death.

METHODS
Study population

Patients were recruited at the respiratory triage unit
in a Zone Hospital of the Mexican Social Security In-
stitute, in Zacatecas, Mexico, from March to Novem-
ber 2020. The control group (37 subjects) included
patients negative to the SARS-CoV-2 PCR test; Group
2 (mild) included 37 patients with a positive result in
the COVID-19 test, who presented mild symptoms.
Group 3 (severe) consisted of 35 patients positive to
the COVID-19 test, who were hospitalized and re-
quired oxygen by nasal cannula. Group 4 (critical) in-
cluded 45 positive patients that required intensive
care and who were mechanically ventilated. From the
critically ill patients, 17 survived and 28 patients died.
Table 1 shows the clinical and demographic character-
istics of all participants, as well as relevant laboratory
data collected at the moment of hospital admission,
as earlier as 4 days on average since symptoms onset.

Data acquisition
Metabolites measurement

Amino acids, biogenic amines and derivatives, and or-
ganic acids were analyzed by a reverse-phase LC-MS/
MS custom assay, while glycerophospholipids, acyl-
carnitines, glucose, and sphingomyelins were mea-
sured by Direct Infusion Tandem Mass Spectrometry
(DI-MS/MS) analysis performed on an ABSciex 4000
Qtrap tandem MS instrument (Applied Biosystems/
MDS Analytical Technologies, Foster City, CA)
equipped with an Agilent 1260 series UHPLC system
(Agilent Technologies, Palo Alto, CA). An Agilent re-
versed phase Zorbax Eclipse XDB C18 column (3.0
mm x 100 mm, 3.5 pm particle size, 80 A pore size)
with a Phenomenex (Torrance, CA, USA) Security-
Guard C18 pre-column (4 mm x 3.0 mm) was used.
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Table 1. Clinical and demographic characteristics, including laboratory analyses

Variables G1 G2 G3 G4 p-value
n=37 n=41 n=35 n =45
Male sex, n (%) 16 26 16 29 0.07
(43.2) (56) (45.7) (64.4)
Age, median years 41 58 53 58 0.0001
(Q1-Q3) (38-54) (51-64) (48-61) (46-64)
Symptoms to sampling, 2 3 3 5 0.04
median days (Q1-Q3) (1-5) (0-6) (1-6) -7
Pneumonia, n (%) NA NA 2 10 0.06
(5.7) (22.2)
ARDS, n (%) NA NA NA 34 -
(75.5)
Mechanical ventilation, NA NA 0 39 < 0.0001
n (%) 0 (86.6)
Death, n (%) NA NA 8 28 < 0.0001
(22.2) (77.7)
Symptom, n (%)
Fever NA 22 21 28 0.4
(53.7) (60) (62.2)
Cough NA 30 27 41 0.03
(73.1) (77.1) (91.1)
Headache 27 30 21 24 0.03
(73.0) (73.1) (60) (53.3)
Dyspnea 5 13 31 32 < 0.0001
(13.5) (31.7) (88.6) (71.1)
Diarrhea 2 4 6 4 0.5
(5.4) (9.8) (17.1) (8.8)
Chest tightness 2 6 12 8 0.06
(5.4) (14.6) (34.3) (17.7)
Chills 4 14 15 10 0.4
(10.8) (34.1) (42.8) (22.2)
Pharyngalgia 14 14 15 12 0.4
(37.8) (34.1) (42.8) (26.6)
Myalgia 14 21 19 19 0.7
(37.8) (51.2) (54.3) (42.2)
Arthralgias 11 22 19 18 0.5
(29.7) (53.7) (54.3) (40)
Rhinorrhea 6 8 6 2 0.09
(16.2) (19.5) (17.1) (4.4)
Polypnea 1 NA 6 8 0.04
2.7 (17.1) (17.7)
Anosmia NA 10 7 4 0.05
(24.4) (20) (8.8)
Dysgeusia NA 10 7 5 0.06
(24.4) (20) (11.1
Comorbidities, n (%)
Diabetes 3 4 18 9 0.01
(self-reported) (8.1) (9.8) (51.4) (20)
Obesity 3 8 7 13 0.02
(> 30 kg/m?) (8.1) (19.5) 20) (28.9)
Hypertension 9 11 13 17 0.1
(self-reported) (24.3) (26.9) (37.1) (37.7)
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Table 1. Clinical and demographic characteristics, including laboratory analyses (continued)

Variables

Gl G2 G3 G4 p-value
n=37 n=41 n =35 n =45
Admission laboratory
data, median (Q1-Q3)
Erythrocytes 5.1 5.2 5.1 5.1 0.9
(million/mL) (4.8-5.5) (4.9-5.6) (4.9-5.4) (4.7-5.5)
Hemoglobin (g/dL) 15.4 15.3 15.0 15.3 0.7
(14.7-16.3) (14.2-16.1) (14.4-15.8) (13.5-16.5)
Platelets 278.8 257.0 248.5 243.0 0.06
(thousands/mL) (238.0-327.0) (206.5-314.0) (213.0-274.0) (184.8-282.0)
Leukocytes (x103) 7.1 7.0 8.6 9.5 0.0002
(6.05-8.4) (5.4-8.3) (6.7-10.4) (7.6-12.1)
Neutrophils (%) 60.1 66.6 79.4 85.4 < 0.0001
(54.5-66.0) (56.2-75.6) (75.3-83.0) (81.4-90.8)
Lymphocytes (%) 30.5 25.1 14.3 8.8 < 0.0001
(25.8-36.0) (15.4-34.5) (10.6-16.8) (5.2-11.8)
Neutrophils-lymphocytes 1.7 3.0 6.7 11.2 < 0.0001
ratio (1.5-2.2) (1.6-3.7) (4.5-7.4) (6.7-16.7)
Monocytes (%) 6.8 7.1 5.1 35 < 0.0001
(5.3-8.7) (4.8-8.8) (3.0-6.1) (2.6-5.0)
Glucose (mg/dL) 93.0 112.0 134.3 150.0 < 0.0001
(85.0-103.0)5 (95.8-125.5) (97.0-136.6) (113.0-247.0)
Creatinine (mg/dL) 0.9 0.87(0.7-1.0) 0.85 1.0 0.01
(0.7-1.0) (0.7-0.9) (0.8-1.5)

To quantify organic acids, amino acids, and biogenic
amines and derivatives, an individual 7-point calibra-
tion curve was generated for each analyte. The ratios
of each analyte signal intensity to its corresponding
isotope-labeled internal standard mixture were plot-
ted against the specific known concentrations using
quadratic regression with a 1/x2 weighting. Lipids,
acylcarnitines, and glucose were analyzed semi-quan-
titatively. Single-point calibration of a representative
analyte was built, using the same group of compounds
that share the same core structure, assuming linear
regression through zero. All data analyses were done
using Analyst 1.6.2 and MultiQuant 3.0.3. A detailed
description about sample preparation and chromato-
graphic methods was previously reported by our
group?3.

Cytokines and chemokines measurement
A premixed LEGENDplex™ Human Inflammation Pan-

el (13-plex) (BioLegend, USA) was used to measure
plasma cytokine and chemokine levels, performed
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according to the manufacturer’s instructions. Data
were acquired using a FACS CANTO Il flow cytometer
4-2-2 configuration, (BD Biosciences, USA) with Fire-
Plex software. Analysis was performed using the LEG-
ENDplex analysis software v8.0. All regression analy-
ses showed an R? > 0.99.

Data and pre-processing

After a careful inspection of the dataset, 154 patients
were included (three patients were eliminated due to
significant data missing). For dichotomous variables,
1 was placed for “yes” and O for “no;” continuous
variables were normalized using the Z-score. For the
purposes of the present work, we defined as “basic
profile” those characteristics related to clinical and
demographic variables. In “extended profile,” we in-
cluded metabolites and immunological, clinical, and
demographic variables.

In total, 156 characteristics were included for the “ex-
tended data;” and for the basic data, 33 features plus
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the class were included. The predictive models were
implemented for: (1) non-COVID-19 versus all COV-
ID-19 patients; (2) mild disease versus severe and
critical disease; (3) severe disease versus critical dis-
ease; and (4) survivors versus non-survivors. Box
Tidwell test was performed to analyze data linearity,
considering p < 0.05 as significant and linearly inde-
pendent.

Feature selection

Feature selection was done with GALGO, an object-
oriented package developed in R language. GALGO
employs genetic algorithms (GA) to select models
with high performance, as has been previously de-
scribed4.

Classification method

RF was a classifier to build the classification models.
This popular ML algorithm is a combination of deci-
sion trees (DTs); the results are acquired by adding
the vote from different DT to decide the final class?!®.
Three hundred generations were tested at each it-
eration of the GA; 1000 iterations in the models and
the characteristics that were repeated were repre-
sented in a frequency graph. The trained models
(80% of data) were then cross-validated (k = 5), and
the results were averaged to obtain the model evalu-
ation metrics. Once the training model was made, it
was subjected to a blind validation with the 20% of
data, which simulates the performance that will be
obtained when testing it with unknown patients for
the model.

Validation process

To assess the classification performance of the final
models, the following performance metrics were used:
area under the receiver operating characteristic curve
(AUQ), sensitivity, specificity, and accuracy. The ex-
perimental design is shown in Figure 1. We analyzed
the data with classical statistical methods, such as
Principal Component Analysis (PCA) and Partial Least
Squares Discriminant Analysis (PLS-DA). Fold change
(FC) analysis was also included to evaluate the level
of expression of relevant metabolites. Since we de-
fined a priori the study groups, we performed cluster
analysis by means of PCA (biplot and loading plots)
to verify if the selected metabolites are naturally
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grouping according to disease severity. By RF, the
mean accuracy decrease was also calculated to esti-
mate how much accuracy the model loses by exclud-
ing each variable. Finally, ROC curves were built with
other classification algorithms, such as PLS-DA, logis-
tic regression (LR), and SVM.

RESULTS

Figure 2 shows the graphics for feature selection
when basic and extended models are trained. Table 2
contains the information regarding each model, both
for basic data and extended data. The features se-
lected for each model and the performance (AUC,
sensitivity, specificity, and accuracy) are shown. We
also built AUC curves by means of other algorithms
(PLS-DA, LR, and SVM) to verify the performance of
the models (Table S1). In addition, the DTs and prob-
abilities are presented in Figure S1.

For the prediction of disease, the basic data as well
as extended data had an excellent performance, al-
though in this case, the inclusion of metabolic and
immunological variables (trimethylamine N-oxide
[TMAQ], LysoPC a C26:0, LysoPC a C18:2, PC aa
C36:6, C10:1, and IFN-0.2) increased the model per-
formance. Cough was a common variable between
both models. In addition, to distinguish between
non-COVID-19 and all COVID-19 patients, the pres-
ence of obesity, fever, dysgeusia, and anosmia was
relevant. Data were also analyzed by PLS-DA and
variable importance in projection (VIP), which are
classical statistical analysis. The models built with
both basic and extended profile were cross validated,
showing no overfitting. About 71% of the variables
from the extended profile selected by GALGO were
included also in the PLS-DA model, while only 40% of
the variables from basic profiles were coincident in
both approaches (Figure S2). FC analysis was also
performed (Figure S3 A), and Table S2 shows that all
the variables selected by ML and classical statistical
methods had significant and similar FC values.

To distinguish between mild disease and severe dis-
ease (composed by all the patients who were hos-
pitalized), the basic data as well as extended data
had AUC performances above 0.95. Again, the inclu-
sion of metabolic variables increased the perfor-
mance, both for the trained and blind experiments.
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Figure 2. Forward selection models, for each of the stages of COVID-19. (A) COVID-19 versus non-COVID-19 model, basic data.
(B) COVID-19 versus non-COVID-19, extended model. (C) Mild versus severe and critical COVID-19, basic data. (D) Mild versus
severe and critical COVID-19, extended model. (E) Severe disease versus critical disease, basic data. (F) Severe disease versus critical
disease, extended model. (G) Survivors versus non-survivors, basic data. (H) Survivors versus non-survivors, extended model.
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Table 2. Feature selection and machine learning models performance in training and testing stages, for each of the COVID-19 groups according to the basic and

extended profile (continued)

Extended profile

Basic profile

Sensitivity Specificity Accuracy

Sensitivity Specificity Accuracy Features AUC
(95%Cl)

AUC
(95%CI)

Features

Chills

Survivors
versus

Vomit

Non survivors

Training with
100% of data

SM OH C 16:1

Training with

Diarrhea

100% of data

0.62 0.47 0.78 0.66

(0.52-0.72)

PC aa 32:2

0.73

0.50 0.86

0.68
(0.61-0.76)

Abdominal

pain

PC ae C 36:0

Sex

Smoking

Headache
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From the PLS-DA analysis, the differentiation between
both classes is clearly visible, with a cross-validation
showing no overfitting of the model. The variables
with highest VIP scores (dyspnea, lymphocytes, neu-
trophils, and neutrophil-lymphocyte ratio [NLR]) were
also included in the ML model. In the case of the basic
profile, only neutrophils, monocytes, and lymphocytes
were detected in common in both models. The per-
formance of cross-validation showed a Q2 below 0.5,
which may indicate some overfitting. This agrees with
the finding reported for the ML method, where also
the performance of the extended profile was higher
than for the basic profile (Figure S4). Figure S3 B and
Table S3 show the FC analysis for this comparison.

Notably, when severe COVID-19 patients were com-
pared with critically ill COVID-19 patients, the perfor-
mance of the model was higher when the basic data
were considered. In this case, leukocytes and creati-
nine levels and vomit and rhinorrhea distinguished
severe and critical cases with an AUC of 0.91. In con-
trast, the inclusion of metabolites diminished the per-
formance of the model. In this case, 100% of the
variables from the extended profile selected by ML
were found in the PLS-DA analysis with a VIP score
higher than 1.5. The FC analysis also revealed the
highest values for p-hydroxyhippuric acid and TMAO,
although lysoPC a 28:1 was also significant (Figure S3
C and Table S4). The cross-validation analysis showed
a low performance, which agrees with the superposi-
tion of both classes in the PLS-DA model. In the case
of the basic profile, only leukocytes were predicted by
the PLS-DA method (Figure S5).

Prediction of patients who would survive and those
who would not, was only achieved with a discrete suc-
cess for both types of data. In this stage, the basic
data provided a higher performance. Sex, smoking
status, and the presence of several symptoms such
as chills, vomit, diarrhea, abdominal pain, and head-
ache predicted death among critical patients. None of
the extended profile variables selected by ML had a
VIP score higher than 1.5 in the PLS-DA analysis.
SMOH16:1 and PC ae 36:0 were significant in the FC
analysis (Figure S3 D and Table S5). The cross-valida-
tion showed a low value in Q2. In the case of the basic
profile, only headache and abdominal pain were se-
lected in common by both models; however, the VIP
values were below 1.5. The performance of the basic
model was higher than that of the extended profile



K.E. VILLAGRANA-BANUELOS ET AL.: MACHINE LEARNING AND COVID-19

and this agrees with the report by us for the ML ap-
proach (Figure S6).

As an additional strategy to verify the implication of
the variables selected by different algorithms, unsu-
pervised and hierarchical cluster analyses were per-
formed. This with the main objective of verifying if
the natural clustering of samples and analytes effec-
tively corresponded to the assigned classes defined a
priori on the experimental design. In the PCA analysis,
Group 1 (controls) and Group 2 (mild) were clustered
at the bottom, while Group 3 (severe) and Group 4
(critically ill) were clustered at the upper quadrants.
From loading plots, variables such as neutrophils, neu-
trophils/lymphocyte ratio, kynurenine/tryptophan,
cough, dyspnea, fever, TMAO, glucose, vomit, leuko-
cytes, lipids (carnitines and lysophospholipids), obe-
sity, and cytokines were in the upper quadrants, while
tryptophan, citric acid, lymphocytes, and lysoPCs with
smaller and mono-unsaturated fatty acids were clus-
tered at the bottom. In the biplot analysis, patient
samples were grouped together with the variables
and were also clearly visible how patients such as
CV19-0809 (critically ill), CV19-0532 (critically ill),
CV19-0932 (critically ill), CV19-0814 (critically ill),
CV19-0807 (critically ill), CV19-0519 (critically ill),
CV19-0991 (severe), CV19-0484 (severe), CV19-
0329 (severe), and CV19-0847 (severe) were clus-
tered with the variables mentioned above in the upper
and right side. Contrary, CV19-0583 (mild), CV19-
0606 (mild), CV19-0700 (control), and CV19-0578
(control) were grouped at the bottom, together with
variables such as lymphocytes and lysoPCs with
smaller and mono-unsaturated fatty acids. From the
RF analysis, we show here the mean accuracy de-
crease plot. This plot expresses how much accuracy
the model loses by excluding each variable. The more
the accuracy suffers, the more important the vari-
able is for the successful classification. The variables
are presented in descending importance. In this anal-
ysis, lipids, TMAO, and clinical variables such as neu-
trophils, neutrophil/lymphocytes ratio, and lympho-
cytes were very important for the model performance
(Figure S7).

We finally propose an algorithm to classify patients
when they arrive in the emergency rooms with sus-
pected COVID-19, as shown in Figure 3. It is worth
mentioning that in this algorithm, the extended data
were only useful in non-severe forms of the disease.
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Once the disease has been established, the clinical
and demographic data were more adequate to dif-
ferentiate between severe and critical disease, and to
predict death among critical patients.

DISCUSSION

In this study, we proposed a methodology consisting
of a selection of features to predict COVID-19 and its
outcomes (including death) that were carried out by
GALGO, followed by construction of an RF model,
which was subsequently cross-validated and blind
tested. Besides, these features were inspected across
the recent COVID-19 literature, finding that most of
them (except creatine) have been reported as poten-
tial markers of diagnosis and prognosis (Table S6).

In the present work, metabolites were measured by a
targeted method. Targeted metabolomics approach-
es represent several advantages for selecting specific
and probable validated biomarkers. In contrast to un-
targeted metabolomics approaches, absolute concen-
tration levels of known metabolites are reported, al-
lowing for more reproducibility and validation in
intra- and inter-laboratories studies. It is also possible
to establish a clear cut-off value for the metabolites
selected in a predictive model.

In the previous studies conducted by our group, we
presented the feature selection capabilities of the GA
GALGO%17 Typical feature selection approaches can
be done mainly in two ways: either by selecting a
subset of the original feature set or by extracting a
lower number of features preserving the characteris-
tics of the original higher dimensional dataset!®. Nev-
ertheless, biological data such as those presented
here have many features, making the learning of non-
linear models unfeasible with existing linear tech-
niques'®!® In contrast, nature-driven approaches
such as the genetic search look beyond the lineal rela-
tion between features and the outcome, testing the
capabilities of a subset of features rather than the
individual performance. While this may seem trivial,
the number of possible feature combinations increas-
es exponentially, making the implementation very
hard in a feasible computational time. The implemen-
tation of the GA generates a robust multivariate
model despite the large number of features.
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Figure 3. Flowchart to classify patients based on the features identified by machine learning approaches.
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The previous studies have reported the use of RF, LR,
SVM, gradient-boosted DT, and neural network to pre-
dict COVID-1932021 |n a recent work, our group em-
ployed LR and SVM to identify differences associated
to sex between COVID-19 patients. However, Li et al.
demonstrated that RF had highest predictive perfor-
mance for predicting hospital admissions for COVID-19
patients, and critical care admissions for COVID-19
cases in terms of AUC compared to LR, SVM, neural
network, and gradient boosting?!. Similarly, Xiong et
al. found that RF could predict COVID-19 severity with
best performance compared to SVM and LR?2.

In this work, we developed two approaches: one di-
rected to select features within the complete dataset
(a combination of metabolomics, immunologic, clini-
cal, and demographic data) and the other directed to
select those features that are more accessible in hos-
pitals and emergency rooms (clinical and demograph-
ic data). We found here that features selected based
on metabolomics and immunological data seem to be
only useful to predict infection and mild disease. We
can speculate that once the disease is established, the
metabolic and immune dysregulation that takes place
does not allow the differentiation between severe and
critical cases. In these stages, the use of clinical fea-
tures (symptoms and laboratory counts) is the pre-
ferred variables to predict negative outcomes.

We previously predicted infection, outcomes,?3 and
viral sepsis?* with the same dataset analyzed by
means of classical statistical methods (unsupervised
and supervised techniques, as well as their perfor-
mance). For the purposes of the present work, we
aimed to validate these previous results using ML ap-
proaches. ML uses learning algorithms to find pat-
terns in rich and unwieldy data, being particularly
helpful when the number of input variables exceeds
the number of subjects. ML methods can be also ef-
fective even in the presence of complicated non-linear
interactions. Other authors have employed ML to
validate results by evaluating publicly available data-
sets. In a recent work, Papoutsoglou et al. employed
automated machine learning (AutoML) to analyze
three publicly available high-throughput COVID-19
datasets, including proteomic, metabolomic, and
transcriptomic measurements. They found critical dif-
ferences between the original methodology and Au-
toML, presenting an advantage of the AutoML analy-
sis in terms of translatability of the model?>.
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In the present work, we found that some of the char-
acteristics previously predicted by us using tradition-
al statistics methods were also selected by ML ap-
proaches, particularly those associated with lipid
metabolism dysregulation (C10:2, C10:1, LysoPC a
C26:0, LysoPC a C 28:1, and PC aa C36:6). However,
with this new approach, kynurenine/tryptophan ratio,
butyric acid, propionic acid, or phenylalanine were not
identified as relevant variables. Instead, a new vari-
able, TMAO, was found in the predictive models for
infection, mild disease, and severe disease.

TMAO has been associated with cardiovascular disor-
ders such as atherosclerosis. The atherogenic effect
of this compound is associated with alterations in
cholesterol and bile acid metabolism, activation of
inflammatory pathways, and promotion of foam cell
formation; a positive correlation has also been found
between elevated plasma levels of TMAO and an in-
creased risk of major adverse cardiovascular events
and death?%27. High levels of TMAO have been as-
sociated with the presence of diabetes?2. Elevation of
this compound is also associated with a decrease in
renal function and renal failure, and at the same time,
it has been associated with higher mortality in renal
failure?®. Importantly, it has been demonstrated that
TMAO induces inflammation and endothelial dysfunc-
tion through activating ROS-TXNIP-NLRP3 inflamma-
some, suggesting a likely mechanism for TMAO-de-
pendent enhancement in atherosclerosis and
cardiovascular risks3°.

Cardiovascular stroke and renal failure are common
complications of severe COVID-19 patients. Other
important variables, such as NLR, neutrophils, and
lymphocytes, have also been selected by us and oth-
ers. Yang et al.31, highlighted the importance of NLR
as a predictor of severity in COVID-19, and Tan et al.
identified lymphocytes as a marker of severity32. In
fact, assessment of the NLR gives information about
lasting inflammation and regulatory functions by neu-
trophils and lymphocytes, respectively, being an indi-
cator of the overall inflammatory status of the body.

Interestingly, ML detects TMAO, lipid mediators, and
NLR as important variables after several rounds of
testing and validation procedures, indicating that
these features gain importance in the sample evalu-
ated. These markers are individually associated to a
general inflammation profile, not only specific to
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COVID-19; however, when combined, allow to per-
fectly describe some of the processes altered in CO-
VID-19: intestinal dysbiosis, oxidative stress, tissue
hypoxia, and mitochondrial dysfunction.

The new strategy, based on Al algorithms and feature
selection driven by GALGO, was successful in identify-
ing potential COVID-19 biomarkers to predict differ-
ent outcomes. The strategy also revealed the useful-
ness of complex data (such as those composed by
metabolomics, immunologic, and clinical features) for
non-severe forms of the disease, while for the worst
scenarios, the use of simpler data (clinical and demo-
graphic features) is preferable. This allowed the es-
tablishment of a workflow for patient stratification on
hospital admission.

Differences in the selection of variables by the meth-
ods here employed can be attributable to the charac-
teristics of each model. When the Box-Tidwell test
was performed, only 60 variables had linearity with
respect to a binary outcome. This means that the
data presented here are complex and they are not
linear. Therefore, ML algorithms are more adequate
to analyze them. GALGO, by means of ranking stabil-
ity, selects those variables that remain relevant after
several cycles of testing. However, despite the differ-
ences in individual metabolites, classes and subclass-
es were similar both for ML or classical statistics ap-
proaches. Moreover, when the fold change was
calculated for each variable selected by GALGO and
PLS-DA, there were only minimal differences in the
obtained values, which indicate that independently of
the model selected, the behavior of the variable is the
same.

We recognize several limitations in our study. The
sample size was limited, due to restrictions during the
first epidemic wave. Traditional approaches for sam-
ple size estimation are not easily transferable to met-
abolic phenotyping studies, where it is not possible to
know in advance what resulting variables will be ob-
tained. It is often not known which, and how many,
metabolite candidates will be of potential interest;
therefore, estimation of the effect size will likely be
inaccurate. To account for this limitation, we are pro-
posing one model based on a GA (GALGO) that offers
several advantages (in terms of visualization and per-
formance), and it has been validated with classical
statistical methods, as has been demonstrated here.
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Our work also has strengths. Here, we performed a
validation with classical statistical approaches as well
as an updated review of the involvement of the se-
lected metabolites in COVID-19 diagnosis or progno-
sis. These approaches control for potential model
overfitting and retain the biological relevance of the
data to explain molecular alterations associated to
COVID-19.
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