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ABSTRACT

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiologic agent of coronavirus disease 2019
(COVID-19), triggers a pathophysiological process linked not only to viral mechanisms of infectivity, but also to the pattern of
host response. Drug repurposing is a promising strategy for rapid identification of treatments for SARS-CoV-2 infection, and
several attractive molecular viral targets can be exploited. Among those, 3CL protease is a potential target of great interest.
Objective: The objective of the study was to screen potential 3CLP™ inhibitors compounds based on chemical fingerprints among
anti-inflammatory, anticoagulant, and respiratory system agents. Methods: The screening was developed based on a drug
property prediction framework, in which the evaluated property was the ability to inhibit the activity of the 3CLP™ protein, and
the predictions were performed using a dense neural network trained and validated on bioassay data. Results: On the validation
and test set, the model obtained area under the curve values of 98.2 and 76.3, respectively, demonstrating high specificity for
both sets (98.5% and 94.7%). Regarding the 1278 compounds screened, the model indicated four anti-inflammatory agents,
two anticoagulants, and one respiratory agent as potential 3CLP™ inhibitors. Conclusions: Those findings point to a possible
desirable synergistic effect in the management of patients with COVID-19 and provide potential directions for in vitro and in
vivo research, which are indispensable for the validation of their results. (REV INVEST CLIN. 2022;74(1):31-9)
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INTRODUCTION

Severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), the etiologic agent of the pandemic
disease coronavirus disease 2019 (COVID-19), is a
positive-sense single-stranded RNA novel betacoro-
navirus that is highly transmissible and whose infec-
tion in humans manifests itself as mild symptoms to
severe respiratory failure or even multiple organ
failurel2. According to genomic analyses results,
SARS-CoV-2 shares 79.5% sequence identity with
SARS-CoV and 50% with middle east respiratory
syndrome coronavirus (MERS-CoV)3. Moreover, its
genome consists of six major open-reading frames
that are common to coronaviruses and a number of
other accessory genes“.

With transmission predominantly by aerosols and re-
spiratory droplets and a mean incubation period of
3-4 days, SARS-CoV-2 invades host cells via binding
to the angiotensin-converting-enzyme-2 (ACE 2) re-
ceptor, which is found mainly in the epithelium of the
respiratory tract, but also the epithelium of other
organs such as the intestine and endothelial cells in
the kidney and blood vessels>. The pathophysiological
process triggered from this infection is linked not only
to the viral mechanisms of infectivity but also to the
pattern of the elicited host response. According to the
three-step COVID-19 pathogenesis model, the com-
plex interaction between host and viral responses
results in a dynamic spectrum of clinical manifesta-
tions that can be schematically grouped into three
phases: pulmonary phase, marked by ACE deficiency,
pneumonia, and severe acute respiratory syndrome;
pro-inflammatory phase, with hyperproduction of cy-
tokines (resulting in a so-called “cytokine storm”),
systemic inflammation, and acute lung injury; and
pro-thrombotic phase, in which widespread platelet
aggregation and thrombosis give rise to coagulopathy
and multi-organ failure®.

In light of the high global morbidity and mortality of
COVID-19 and the elevated socioeconomic costs im-
posed by this disease, the scientific community has
engaged in efforts to develop and repurpose drugs for
its treatment. In this scenario, considering the need
for the swift development of therapeutic measures,
the repurposing of clinically evaluated drugs repre-
sents a promising strategy for rapid identification and
deployment of treatments for SARS-CoV-2 infection’.
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Several attractive molecular targets for viral inhibition
that can be exploited by repurposed drugs are pro-
vided by the structure, life cycle, and pathogenic
mechanisms of this virus®. Among those, chymotryp-
sin-like protease (3CLP™), also called main protease
(MPro), is a potential target of great interest.

3CLPr, which controls the activities of the coronavirus
replication complex, is the main protease of this viral
group, being observed at high degree of structural
similarity and conservation of the active site among
the main proteases of SARS-CoV-2, SARS-CoV, and
MERS-CoV?:1°, Since this protease cleaves the virus-
encoded polyproteins, it is necessary for viral matura-
tion and thus indispensable to the infectious pro-
cessil12,

Drug screens and structure-based designs targeting
3CLP have identified a variety of compounds from
different therapeutic classes that inhibit its activity.
These compounds can be classified into two catego-
ries according to the integration of their effects in the
infectious and pathophysiological process triggered
by SARS-CoV-2: (i) drugs whose effect on the disease
is restricted to antiviral action resulting from protein
inhibition (and, possibly, by other virus-related mech-
anisms); and (ii) drugs that, in addition to antiviral
action, exert a beneficial effect on the control of the
host immune and respiratory function (through, for
example, anti-inflammatory activity with cytokine
suppression or anticoagulant activity or enhancing
respiratory function property)?13.

To contribute to the recognition of pre-existing drugs
with this dual action on SARS-CoV-2 infection, and
considering the pathophysiological progression of CO-
VID-19, this work proposed the virtual screening of
potential 3CLP™ inhibitors based on chemical finger-
prints among anti-inflammatory, anticoagulant, and
respiratory system agents using a deep learning ap-
proach.

METHODS

This work was developed based on a drug property
prediction framework, in which the evaluated prop-
erty was the ability to inhibit the activity of the
3CLP protein, treated as a binary variable (0 for inac-
tive and 1 for active). The goal was to virtually screen



Table 1. Drug-property prediction DNN summarized structure
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Type of layer Activation function

Number of units Number of parameters

Dense Relu
Dense Relu
Dense Sigmoid

256 225,792
8 2,056
1 9

DNN: dense neural network; Relu: rectified linear unit.

this property in a set of drugs classified as “immuno-
suppressive agents”, “anticoagulants”, and “respira-
tory system agents”, to suggest potential candidates
for repurposing for the treatment of SARS-CoV-2 in-
fection, especially in patients manifesting respiratory
conditions. Such prediction was performed using a
dense neural network (DNN) trained and validated on

bioassay data.

The training data came from the screening bioassay
record AID1706%, which belongs to the assay project
“Summary of probe development efforts to identify
inhibitors of the SARS coronavirus 3C-like Protease”1%,
whose purpose was to identify compounds that in-
hibit SARS-3CLP°-mediated peptide cleavage using
fluorescence measurements to estimate the average
percentage inhibition for the compounds tested at a
concentration of six micromolar. In this assay, com-
pounds with an activity score of O to 15 were classi-
fied as inactive compounds, and compounds with an
activity score of 15 to 100 were classified as active
compounds. A total of 290,726 compounds were
evaluated in the aforementioned assay, among which
405 were labeled as active. In order to create a less
unbalanced training set, 270,321 negative and all
405 positive samples were selected to compose it,
and the positive ones were oversampled by 200.
Thus, the training set comprised 270,321 instances
labeled as 0 and 81,000 instances labeled as 1, en-
compassing a total of 270,726 unique compounds.

The validation set consisted of 20,176 negative (in-
active) and 69 positive (active) compounds. The
negative samples were from: the AID1706 record®*
(n = 20,000), which were randomly selected and not
included in the training set); and the bioassay record
AID 124035816 (n = 176), in which compounds were
evaluated for inhibition of the 3C-like protease from
bat coronavirus HKU4, the likely reservoir host to the
human coronavirus that causes MERS!’. The positive
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samples were from: the bioassay records AID 488958,
AID 488999, AID 493245, AID 588771, AID 588772,
and AID 5887861823, confirmatory assays linked to
the same assay Project!> (n = 41); and the bioassay
record AID 124035816 (n = 28). There was, there-
fore, no overlap between the training and validation
data, and in the validation set, there were active and
inactive compounds evaluated in different projects/
publications.

In addition, to add robustness to the predictive gener-
ability evaluation, an external test set was adopted,
consisting of 71 positive and 1,253 negative molecule
fragments for covalent or non-covalent binding to the
active site of 3CLP™. This data were obtained through
combined mass spectrometry and X-ray screen?4. It
is important to highlight that, while in the mentioned
assays, the inhibition capacity of the protease activ-
ity demonstrated by the compounds was evaluated;
this screening evaluated binding properties related to
the active site of the protease. Thus, the difference
in the nature of the data, despite the correlation be-
tween them, has to be considered.

The predictive variables — that is, the compounds —
were represented in the form of PubChem Substruc-
ture Fingerprints?>, which encodes molecular frag-
ment’s information with 881 binary bits. Each bit
represents the presence of a certain feature (e.g., an
element count, a type of ring system or an atom pair-
ing) in a chemical structure. A DNN — whose structure
is summarized in table 1 — was then trained on train-
ing set (receiving 881 binary features as input for
each instance) and validated on validation set. As for
the model’s performance on this second set, sensitiv-
ity, specificity, and accuracy values were calculated.
The receiver operating characteristic (ROC) curve was
also plotted, along with the corresponding area under
the curve (AUC) value.
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The model was then used to screen (binary predicting
3CLPr inhibition activity or inactivity, based on prior
training) 1,278 compounds with anti-inflammatory
(n = 733), anticoagulant (n = 163) or respiratory
(n = 382) action, and thus identify potential repur-
posing candidate drugs for the management of
SARS-CoV-2 infection and disease. These compounds
were collected in the PubChem Classification Brows-
er repository, corresponding to records annotated
with the medical subject headings descriptors “Anti-
inflammatory Agents,” “Anticoagulants,” and “Respi-
ratory System Agents” (excluding nasal deconges-
tants and central respiratory stimulants).

The predictive significance of each of the features
(PubChem Substructure Fingerprints bits) used in the
representation of the molecular structures was also
estimated. This was done using the Deep SHAP ap-
proach, an additive feature attribution method used
for deep-neural networks that recursively passes the
compositional approximation of Shapley values (rep-
resentations of feature weights) backward through
the network and, therefore, satisfies local precision,
missingness, and consistency?627,

All steps of data processing, model development and
virtual screening were implemented in Python. To ob-
tain the PubChem fingerprints, the PaDEL-Descriptor
software?® was used, and the Keras library was used
to develop the deep neural network.

RESULTS

The proposed DNN binary classifier was trained for
150 epochs using the Adam optimizer (with a learn-
ing rate of 0.001) and binary cross entropy as loss
function. On the validation set, the model was able to
correctly label compounds when it comes to their
3CLP™ inhibition activity 52 out of 69 active com-
pounds and 19,871 out of 20,176 inactive com-
pounds, thus obtaining sensitivity and specificity
rates of 75.4% and 98.5%, respectively. On the test
set, the model predicted 3CLP™ inhibition activity for
33 out of 71 active site binders and 1,186 out of
1,253 active site non-binders, thus obtaining “sensi-
tivity” and “specificity” rates (if interchangeability
between active site binding and protease inhibition is
assumed) of 46.8% and 94.7%, respectively. The
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corresponding ROC curves for validation and test sets
are depicted in figures 1 and 2, respectively.

Regarding the 1,278 compounds screened, the model
indicated as potential 3CLP™ inhibitors (predicted la-
bel = 1): the anti-inflammatory agents celecoxib
(compound CID = 2662), gadolinium chloride (com-
pound CID = 61486), fenoprofen calcium (compound
CID = 64746, 64747, 14010989, and 67668959)
and SC-236 (compound CID = 9865808); the antico-
agulants DX-9065a (compound CID = 122128) and
dpc-602 (compound CID = 9915041); and the respi-
ratory agent zafirlukast (compound CID = 5717). The
remaining compounds were classified as inactive (pre-
dicted label = 0). Among those, celecoxib, fenoprofen
calcium, and zafirlukast are FDA-approved drugs,
while the remaining are experimental drugs.

An adequate distribution of predictive weights was
observed among the molecular features used in the
representation of the compounds (according to the
fingerprints approach adopted). The 20 bits of the
molecular representation of the compounds with
the highest predictive importance in model’s out-
puts according to the Deep SHAP analysis are shown
in table 2.

DISCUSSION

Deep learning has shown high performance in virtual
screening — among others, against chemical libraries
to identify candidate compounds for drug repurposing
—, contributing significantly to research in biological
sciences and drug discovery?®. Repurposing drugs
available for other diseases would be beneficial for
COVID-19 management, as these can be directly
tested as anti-SARS-CoV-2 drugs3°.

In clinical situations where a dual effect of the drug is
desired, the strategy of repurposing drugs that are
already known to act on one of the intended patho-
physiological aspects, investigating potential action
on another aspect, becomes even more beneficial. In
the case of COVID-19, a multisystemic disease with
potentially significant respiratory involvement and
with major immune dysregulation involved, it is inter-
esting to screen drugs that act in these systems (with
potential symptomatic relief and prevention of
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Figure 1. Receiver operating characteristic curve for models performance on validation set. AUC: area under the curve.
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Figure 2. Receiver operating characteristic curve for models performance on test set. AUC: area under the curve.
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complications) for combative properties to SARS-
CoV-2 infection.

A deep learning-based virtual screening strategy was
adopted in the present work, which evaluated the
potential of 733 anti-inflammatory drugs, 163 anti-
coagulants, and 382 respiratory drugs for repurposing
to treat COVID-19 based on the prediction of the
inhibition property of 3CLP™, using as an input the
complex molecular representation of the compounds
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based on 881 binary chemical features. The com-
pounds celecoxib, gadolinium chloride, fenoprofen
calcium, SC-236, DX-9065, dpc-602, and zafirlukast
were predicted to be active, being celecoxib, fenopro-
fen calcium, and zafirlukast FDA-approved drugs.

Celecoxib, a pyrazole nonsteroidal anti-inflammatory
drug (NSAID), selectively inhibits cyclo-oxygenase-2
(COX-2), which is expressed heavily in inflamed tis-
sues where it is induced by inflammatory
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Table 2. Feature importance of the top-20 influential PubChem Fingerprint bits used for molecular representation in model’s

predictions on test set

Bit number Bit description Bit section Average impact (x103)
576 N=C-C:C-[#1] Simple SMARTS patterns 1.05
539 N=C-C-[#1] Simple SMARTS patterns 0.90
523 N:C:C-C Simple SMARTS patterns 0.88
672 0=C-C=C-[#1] Simple SMARTS patterns 0.87
531 S-C.C-C Simple SMARTS patterns 0.83
259 > 3 aromatic rings Rings in a canonic ESSR ring set 0.81
528 [#1]-N-C—[#1] Simple SMARTS patterns 0.78
602 0=C-C-N-C Simple SMARTS patterns 0.74
180 > 1 saturated or aromatic Rings in a canonic ESSR ring set 0.72
nitrogen—containing ring size 6
659 C-C-S-C-C Simple SMARTS patterns 0.71
691 0-C-C-C-C-C-N Simple SMARTS patterns 0.69
357 C(~-OCOCN) Simple atom nearest neighbors 0.68
712 C-C(O)-C(O-C Simple SMARTS patterns 0.65
699 0-C-C-C-C-C(O)-C Simple SMARTS patterns 0.64
698 0-C-C-C-C-C-C-C Simple SMARTS patterns 0.64
372 C(-H)COCN) Simple atom nearest neighbors 0.62
185 > 2 any ring size 6 Rings in a canonic ESSR ring set 0.60
412 S(~-O)(~O) Simple atom nearest neighbors 0.57
418 C=N Detailed atom neighborhoods 0.56
405 O(~-O)(~C) Simple atom nearest neighbors 0.55

ESSR: extended set of smallest rings; SMARTS: SMILES arbitrary target specification.

mediators3!:32, It was pointed out as a possible SARS-
CoV-2 MP© inhibitor in a molecular-docking virtual
screening?? and as an adjuvant treatment promotes
the recovery of all types of COVID-19 and further
reduces the mortality rate of elderly and those with
comorbidities in a clinical study34. The NSAID feno-
profen calcium inhibits both isozymes of COX and
activates both peroxisome proliferator activated re-
ceptors3>; therefore, it may downregulate leukotriene
B4 production and thereby interfere with the leukot-
riene pathway of inflammatory exacerbation, which
has been demonstrated to mediate lung injury in sev-
eral diseases3>-37,

The experimental anti-inflammatory agent’s gado-
linium chloride and SC-236 are, respectively, a TRP
channel blocker3® and a potent and selective COX-2
inhibitor3®. Gadolinium chloride, which acts as a
macrophage inhibitor, has been shown to attenuate
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acute lung injury and pulmonary apoptosis in septic
patients??, as well as effectively attenuate lung
ischemia-reperfusion injury by the reduction of
macrophage-dependent damage“!. SC-236 sup-
presses the nuclear translocation of RelA/p65 sub-
unit of NF-kB, whose signaling cascade is abnor-
mally activated in SARS-CoV-2 infection and whose
inhibition has been touted as promising in the man-
agement of COVID-194243,

DX-9065 and dpc-602 are experimental selective in-
hibitors of coagulation factor Xa (FXa), a serine pro-
tease, and are part of the group of novel anticoagu-
lants with improved pharmacologic and clinical
profiles, offering benefits over traditional therapies,
that are in development*4. It has been shown that
elevated levels of FXa are related not only to hyper-
coagulability in patients with severe COVID-19, but
also to inflammatory exacerbation and viral infection



mechanisms, what positions FXa inhibitors as a po-
tential prophylactic and therapeutic treatment for
high-risk patients with COVID-194>. Furthermore,
considerable active site similarity based on 3D finger-
prints and the positioning of catalytic residues was
observed between the FXa protease and the 3CL pro-
tease*®, and three FXa inhibitors were screened as
potential inhibitors of 3CLP™ in an in silico molecular
docking of ligand selection*”.

Zafirlukast is a cysteinyl leukotriene type 1 receptor
competitive and selective antagonist that has anti-
inflammatory properties and leads to bronchodila-
tion“8. In a molecular docking study, zafirlukast was
identified to interact significantly with 3CLP™4°. Ac-
cording to other virtual screenings conducted from
homology models of receptor binding domain, zafir-
lukast may have the potential to inhibit the binding of
another SARS-CoV-2 protein, the spike glycoprotein,
to the ACE-2 receptor, adding another potential
mechanism of action of the drug against viral infec-
tion>%>1 Another deep learning study using MACCS
fingerprints as molecular representations predicted
this drug to inhibit 3CLP32, Furthermore, by virtue of
its anti-inflammatory activity, zafirlukast could inter-
fere with the hyperinflammatory cytokine profile of
COVID-19.

The physiological effects played by the aforemen-
tioned compounds and the potential concurrent inhi-
bition of 3CLP™ point to a possible desirable synergis-
tic effect in the management of patients with
COVID-19, a multisystemic disease with an intricate
pathophysiology. Importantly, several preclinical ex-
periments (and possibly further clinical trials) are re-
quired to characterize their virus interaction profiles
as well as to evaluate the clinical benefits and safety
profile of these compounds in the context of SARS-
CoV-2 infection. Furthermore, by adopting a drug
property prediction framework, this study did not fo-
cus on other aspects (e.g., adverse effects) that are
essential to choosing candidates for repurposing. This
should be taken into consideration in further studies.

Considering structure-activity relationship (SAR), a
concept in which molecules with similar structures are
destined to have similar biological activities, as a cen-
tral concept in deep learning models for drug prop-
erty prediction, it is important to identify the most
influential features on the predictions, to confer
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explainability to the model. Thus, visualization of the
decision distribution and recognition of the bits of the
compounds’ fingerprints with the highest weights in
the analysis performed by the model to predict 3CLP™®
inhibition activity or inactivity, helps to remove biases
related to over-attribution of weight to point features
observed in instances of the training set, to inform
the predictive decision, and to provide insights into
molecular structural aspects related to such activity.
In this sense, it is worth noting that among the 20
bits of greatest predictive importance, 12 tested for
the presence of simple SMILES arbitrary target speci-
fication patterns, including the first 4.

Regarding the performance of the proposed predic-
tive model, some considerations need to be made.
The first concerns the exuberant discrepancy be-
tween the number of negative and positive samples
for training the neural network. Since the model is
exposed to few positive examples, there tends to be
a relative restriction of sensitivity, which was ob-
served especially in the evaluation on the test set.
However, as long as low false-positive rates are main-
tained (which was observed in both validation and
testing), this does not compromise the validity of the
screenings performed, even though potentially active
compounds may not be identified due to greater
structural divergence from the training active com-
pounds. The different nature of the test data com-
pared to the training and validation data should also
be noted. Although interchangeability between active
site binding and inhibitory activity was assumed for
predictive evaluation purposes, it is not possible to
infer that all compounds that demonstrated binding
(covalent or non-covalent) to the active site would, in
an assay, demonstrate inhibition of sufficient appre-
ciable magnitude to be classified as active for this
property. Still, the high sensitivity in both sets adds
robustness to the predictions made in the screening
performed by the model.

Since deep learning models are a highly data-driven
approach, the major limitation of this study was the
low availability of bioassay data of compounds posi-
tive for 3CLP™ inhibition activity. This limitation even
conditioned the inclusion of data from different as-
says — although integrated in the same project — with
differences in quantification strategies and method-
ological orientation: while the training data and the
negative test data came from a screening assay, the
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positive data from the test set came from a confirma-
tory assay. The binarization of the predicted variable
was a strategy adopted to deal with this limitation;
moreover, despite this, the model achieved a great
performance in the test set, with good sensitivity and
specificity values, indicating that there was an ade-
quate learning of patterns.

In conclusion, property prediction with deep learning
models, in an approach based on the SAR, shows
great potential to screen repurposing candidate drugs
for the treatment of COVID-19, especially from the
search for antiviral mechanisms in compounds with
already established actions potentially beneficial in
the pathophysiological context of the disease. As an
illustration of this potential, the present work report-
ed four anti-inflammatory agents, two anticoagu-
lants, and one respiratory agent as potential inhibitors
of the main protease of SARS-CoV-2. These data
provide possible directions for in vitro and in vivo re-
search, which are indispensable for the validation of
their results.
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