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ABSTRACT

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiologic agent of coronavirus disease 2019 
(COVID-19), triggers a pathophysiological process linked not only to viral mechanisms of infectivity, but also to the pattern of 
host response. Drug repurposing is a promising strategy for rapid identification of treatments for SARS-CoV-2 infection, and 
several attractive molecular viral targets can be exploited. Among those, 3CL protease is a potential target of great interest. 
Objective: The objective of the study was to screen potential 3CLpro inhibitors compounds based on chemical fingerprints among 
anti-inflammatory, anticoagulant, and respiratory system agents. Methods: The screening was developed based on a drug 
property prediction framework, in which the evaluated property was the ability to inhibit the activity of the 3CLpro protein, and 
the predictions were performed using a dense neural network trained and validated on bioassay data. Results: On the validation 
and test set, the model obtained area under the curve values of 98.2 and 76.3, respectively, demonstrating high specificity for 
both sets (98.5% and 94.7%). Regarding the 1278 compounds screened, the model indicated four anti-inflammatory agents, 
two anticoagulants, and one respiratory agent as potential 3CLpro inhibitors. Conclusions: Those findings point to a possible 
desirable synergistic effect in the management of patients with COVID-19 and provide potential directions for in vitro and in 
vivo research, which are indispensable for the validation of their results. (REV INVEST CLIN. 2022;74(1):31-9)
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INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2), the etiologic agent of the pandemic 
disease coronavirus disease 2019 (COVID-19), is a 
positive-sense single-stranded RNA novel betacoro-
navirus that is highly transmissible and whose infec-
tion in humans manifests itself as mild symptoms to 
severe respiratory failure or even multiple organ 
failure1,2. According to genomic analyses results, 
SARS-CoV-2 shares 79.5% sequence identity with 
SARS-CoV and 50% with middle east respiratory 
syndrome coronavirus (MERS-CoV)3. Moreover, its 
genome consists of six major open-reading frames 
that are common to coronaviruses and a number of 
other accessory genes4.

With transmission predominantly by aerosols and re-
spiratory droplets and a mean incubation period of 
3-4 days, SARS-CoV-2 invades host cells via binding 
to the angiotensin-converting-enzyme-2 (ACE 2) re-
ceptor, which is found mainly in the epithelium of the 
respiratory tract, but also the epithelium of other 
organs such as the intestine and endothelial cells in 
the kidney and blood vessels5. The pathophysiological 
process triggered from this infection is linked not only 
to the viral mechanisms of infectivity but also to the 
pattern of the elicited host response. According to the 
three-step COVID-19 pathogenesis model, the com-
plex interaction between host and viral responses 
results in a dynamic spectrum of clinical manifesta-
tions that can be schematically grouped into three 
phases: pulmonary phase, marked by ACE deficiency, 
pneumonia, and severe acute respiratory syndrome; 
pro-inflammatory phase, with hyperproduction of cy-
tokines (resulting in a so-called “cytokine storm”), 
systemic inflammation, and acute lung injury; and 
pro-thrombotic phase, in which widespread platelet 
aggregation and thrombosis give rise to coagulopathy 
and multi-organ failure6.

In light of the high global morbidity and mortality of 
COVID-19 and the elevated socioeconomic costs im-
posed by this disease, the scientific community has 
engaged in efforts to develop and repurpose drugs for 
its treatment. In this scenario, considering the need 
for the swift development of therapeutic measures, 
the repurposing of clinically evaluated drugs repre-
sents a promising strategy for rapid identification and 
deployment of treatments for SARS-CoV-2 infection7. 

Several attractive molecular targets for viral inhibition 
that can be exploited by repurposed drugs are pro-
vided by the structure, life cycle, and pathogenic 
mechanisms of this virus8. Among those, chymotryp-
sin-like protease (3CLpro), also called main protease 
(Mpro), is a potential target of great interest.

3CLpro, which controls the activities of the coronavirus 
replication complex, is the main protease of this viral 
group, being observed at high degree of structural 
similarity and conservation of the active site among 
the main proteases of SARS-CoV-2, SARS-CoV, and 
MERS-CoV9,10. Since this protease cleaves the virus-
encoded polyproteins, it is necessary for viral matura-
tion and thus indispensable to the infectious pro-
cess11,12.

Drug screens and structure-based designs targeting 
3CLpro have identified a variety of compounds from 
different therapeutic classes that inhibit its activity. 
These compounds can be classified into two catego-
ries according to the integration of their effects in the 
infectious and pathophysiological process triggered 
by SARS-CoV-2: (i) drugs whose effect on the disease 
is restricted to antiviral action resulting from protein 
inhibition (and, possibly, by other virus-related mech-
anisms); and (ii) drugs that, in addition to antiviral 
action, exert a beneficial effect on the control of the 
host immune and respiratory function (through, for 
example, anti-inflammatory activity with cytokine 
suppression or anticoagulant activity or enhancing 
respiratory function property)13.

To contribute to the recognition of pre-existing drugs 
with this dual action on SARS-CoV-2 infection, and 
considering the pathophysiological progression of CO-
VID-19, this work proposed the virtual screening of 
potential 3CLpro inhibitors based on chemical finger-
prints among anti-inflammatory, anticoagulant, and 
respiratory system agents using a deep learning ap-
proach.

METHODS

This work was developed based on a drug property 
prediction framework, in which the evaluated prop-
erty was the ability to inhibit the activity of the 
3CLpro protein, treated as a binary variable (0 for inac-
tive and 1 for active). The goal was to virtually screen 
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this property in a set of drugs classified as “immuno-
suppressive agents", “anticoagulants", and “respira-
tory system agents”, to suggest potential candidates 
for repurposing for the treatment of SARS-CoV-2 in-
fection, especially in patients manifesting respiratory 
conditions. Such prediction was performed using a 
dense neural network (DNN) trained and validated on 
bioassay data.

The training data came from the screening bioassay 
record AID170614, which belongs to the assay project 
“Summary of probe development efforts to identify 
inhibitors of the SARS coronavirus 3C-like Protease”15, 
whose purpose was to identify compounds that in-
hibit SARS-3CLpro-mediated peptide cleavage using 
fluorescence measurements to estimate the average 
percentage inhibition for the compounds tested at a 
concentration of six micromolar. In this assay, com-
pounds with an activity score of 0 to 15 were classi-
fied as inactive compounds, and compounds with an 
activity score of 15 to 100 were classified as active 
compounds. A total of 290,726 compounds were 
evaluated in the aforementioned assay, among which 
405 were labeled as active. In order to create a less 
unbalanced training set, 270,321 negative and all 
405 positive samples were selected to compose it, 
and the positive ones were oversampled by 200. 
Thus, the training set comprised 270,321 instances 
labeled as 0 and 81,000 instances labeled as 1, en-
compassing a total of 270,726 unique compounds.

The validation set consisted of 20,176 negative (in-
active) and 69 positive (active) compounds. The 
negative samples were from: the AID1706 record14 
(n = 20,000), which were randomly selected and not 
included in the training set); and the bioassay record 
AID 124035816 (n = 176), in which compounds were 
evaluated for inhibition of the 3C-like protease from 
bat coronavirus HKU4, the likely reservoir host to the 
human coronavirus that causes MERS17. The positive 

samples were from: the bioassay records AID 488958, 
AID 488999, AID 493245, AID 588771, AID 588772, 
and AID 58878618-23, confirmatory assays linked to 
the same assay Project15 (n = 41); and the bioassay 
record AID 124035816 (n = 28). There was, there-
fore, no overlap between the training and validation 
data, and in the validation set, there were active and 
inactive compounds evaluated in different projects/
publications.

In addition, to add robustness to the predictive gener-
ability evaluation, an external test set was adopted, 
consisting of 71 positive and 1,253 negative molecule 
fragments for covalent or non-covalent binding to the 
active site of 3CLpro. This data were obtained through 
combined mass spectrometry and X-ray screen24. It 
is important to highlight that, while in the mentioned 
assays, the inhibition capacity of the protease activ-
ity demonstrated by the compounds was evaluated; 
this screening evaluated binding properties related to 
the active site of the protease. Thus, the difference 
in the nature of the data, despite the correlation be-
tween them, has to be considered.

The predictive variables – that is, the compounds – 
were represented in the form of PubChem Substruc-
ture Fingerprints25, which encodes molecular frag-
ment’s information with 881 binary bits. Each bit 
represents the presence of a certain feature (e.g., an 
element count, a type of ring system or an atom pair-
ing) in a chemical structure. A DNN – whose structure 
is summarized in table 1 – was then trained on train-
ing set (receiving 881 binary features as input for 
each instance) and validated on validation set. As for 
the model’s performance on this second set, sensitiv-
ity, specificity, and accuracy values were calculated. 
The receiver operating characteristic (ROC) curve was 
also plotted, along with the corresponding area under 
the curve (AUC) value.

Table 1. Drug-property prediction DNN summarized structure

Type of layer Activation function Number of units Number of parameters

Dense Relu 256 225,792

Dense Relu 8 2,056

Dense Sigmoid 1 9

DNN: dense neural network; Relu: rectified linear unit.
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The model was then used to screen (binary predicting 
3CLpro inhibition activity or inactivity, based on prior 
training) 1,278 compounds with anti-inflammatory 
(n = 733), anticoagulant (n = 163) or respiratory 
(n = 382) action, and thus identify potential repur-
posing candidate drugs for the management of 
SARS-CoV-2 infection and disease. These compounds 
were collected in the PubChem Classification Brows-
er repository, corresponding to records annotated 
with the medical subject headings descriptors “Anti-
inflammatory Agents,” “Anticoagulants,” and “Respi-
ratory System Agents” (excluding nasal deconges-
tants and central respiratory stimulants).

The predictive significance of each of the features 
(PubChem Substructure Fingerprints bits) used in the 
representation of the molecular structures was also 
estimated. This was done using the Deep SHAP ap-
proach, an additive feature attribution method used 
for deep-neural networks that recursively passes the 
compositional approximation of Shapley values (rep-
resentations of feature weights) backward through 
the network and, therefore, satisfies local precision, 
missingness, and consistency26,27.

All steps of data processing, model development and 
virtual screening were implemented in Python. To ob-
tain the PubChem fingerprints, the PaDEL-Descriptor 
software28 was used, and the Keras library was used 
to develop the deep neural network.

RESULTS

The proposed DNN binary classifier was trained for 
150 epochs using the Adam optimizer (with a learn-
ing rate of 0.001) and binary cross entropy as loss 
function. On the validation set, the model was able to 
correctly label compounds when it comes to their 
3CLpro inhibition activity 52 out of 69 active com-
pounds and 19,871 out of 20,176 inactive com-
pounds, thus obtaining sensitivity and specificity 
rates of 75.4% and 98.5%, respectively. On the test 
set, the model predicted 3CLpro inhibition activity for 
33 out of 71 active site binders and 1,186 out of 
1,253 active site non-binders, thus obtaining “sensi-
tivity” and “specificity” rates (if interchangeability 
between active site binding and protease inhibition is 
assumed) of 46.8% and 94.7%, respectively. The 

corresponding ROC curves for validation and test sets 
are depicted in figures 1 and 2, respectively.

Regarding the 1,278 compounds screened, the model 
indicated as potential 3CLpro inhibitors (predicted la-
bel = 1): the anti-inflammatory agents celecoxib 
(compound CID = 2662), gadolinium chloride (com-
pound CID = 61486), fenoprofen calcium (compound 
CID = 64746, 64747, 14010989, and 67668959) 
and SC-236 (compound CID = 9865808); the antico-
agulants DX-9065a (compound CID = 122128) and 
dpc-602 (compound CID = 9915041); and the respi-
ratory agent zafirlukast (compound CID = 5717). The 
remaining compounds were classified as inactive (pre-
dicted label = 0). Among those, celecoxib, fenoprofen 
calcium, and zafirlukast are FDA-approved drugs, 
while the remaining are experimental drugs.

An adequate distribution of predictive weights was 
observed among the molecular features used in the 
representation of the compounds (according to the 
fingerprints approach adopted). The 20 bits of the 
molecular representation of the compounds with 
the highest predictive importance in model’s out-
puts according to the Deep SHAP analysis are shown 
in table 2.

DISCUSSION

Deep learning has shown high performance in virtual 
screening – among others, against chemical libraries 
to identify candidate compounds for drug repurposing 
–, contributing significantly to research in biological 
sciences and drug discovery29. Repurposing drugs 
available for other diseases would be beneficial for 
COVID-19 management, as these can be directly 
tested as anti-SARS-CoV-2 drugs30.

In clinical situations where a dual effect of the drug is 
desired, the strategy of repurposing drugs that are 
already known to act on one of the intended patho-
physiological aspects, investigating potential action 
on another aspect, becomes even more beneficial. In 
the case of COVID-19, a multisystemic disease with 
potentially significant respiratory involvement and 
with major immune dysregulation involved, it is inter-
esting to screen drugs that act in these systems (with 
potential symptomatic relief and prevention of 
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complications) for combative properties to SARS-
CoV-2 infection.

A deep learning-based virtual screening strategy was 
adopted in the present work, which evaluated the 
potential of 733 anti-inflammatory drugs, 163 anti-
coagulants, and 382 respiratory drugs for repurposing 
to treat COVID-19 based on the prediction of the 
inhibition property of 3CLpro, using as an input the 
complex molecular representation of the compounds 

based on 881 binary chemical features. The com-
pounds celecoxib, gadolinium chloride, fenoprofen 
calcium, SC-236, DX-9065, dpc-602, and zafirlukast 
were predicted to be active, being celecoxib, fenopro-
fen calcium, and zafirlukast FDA-approved drugs.

Celecoxib, a pyrazole nonsteroidal anti-inflammatory 
drug (NSAID), selectively inhibits cyclo-oxygenase-2 
(COX-2), which is expressed heavily in inflamed tis-
sues where it is induced by inflammatory 

Figure 1. Receiver operating characteristic curve for models performance on validation set. AUC: area under the curve.

Figure 2. Receiver operating characteristic curve for models performance on test set. AUC: area under the curve.
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mediators31,32. It was pointed out as a possible SARS-
CoV-2 Mpro inhibitor in a molecular-docking virtual 
screening33 and as an adjuvant treatment promotes 
the recovery of all types of COVID-19 and further 
reduces the mortality rate of elderly and those with 
comorbidities in a clinical study34. The NSAID feno-
profen calcium inhibits both isozymes of COX and 
activates both peroxisome proliferator activated re-
ceptors35; therefore, it may downregulate leukotriene 
B4 production and thereby interfere with the leukot-
riene pathway of inflammatory exacerbation, which 
has been demonstrated to mediate lung injury in sev-
eral diseases35-37.

The experimental anti-inflammatory agent’s gado-
linium chloride and SC-236 are, respectively, a TRP 
channel blocker38 and a potent and selective COX-2 
inhibitor39. Gadolinium chloride, which acts as a 
macrophage inhibitor, has been shown to attenuate 

acute lung injury and pulmonary apoptosis in septic 
patients40, as well as effectively attenuate lung 
ischemia-reperfusion injury by the reduction of 
macrophage-dependent damage41. SC-236 sup-
presses the nuclear translocation of RelA/p65 sub-
unit of NF-κB, whose signaling cascade is abnor-
mally activated in SARS-CoV-2 infection and whose 
inhibition has been touted as promising in the man-
agement of COVID-1942,43.

DX-9065 and dpc-602 are experimental selective in-
hibitors of coagulation factor Xa (FXa), a serine pro-
tease, and are part of the group of novel anticoagu-
lants with improved pharmacologic and clinical 
profiles, offering benefits over traditional therapies, 
that are in development44. It has been shown that 
elevated levels of FXa are related not only to hyper-
coagulability in patients with severe COVID-19, but 
also to inflammatory exacerbation and viral infection 

Table 2. Feature importance of the top-20 influential PubChem Fingerprint bits used for molecular representation in model’s 
predictions on test set

Bit number Bit description Bit section Average impact (×10²)

576 N=C–C:C-[#1] Simple SMARTS patterns 1.05

539 N=C–C–[#1] Simple SMARTS patterns 0.90

523 N:C:C–C Simple SMARTS patterns 0.88

672 O=C–C=C–[#1] Simple SMARTS patterns 0.87

531 S–C:C–C Simple SMARTS patterns 0.83

259 ≥ 3 aromatic rings Rings in a canonic ESSR ring set 0.81

528 [#1]–N–C–[#1] Simple SMARTS patterns 0.78

602 O=C–C–N–C Simple SMARTS patterns 0.74

180 ≥ 1 saturated or aromatic  
nitrogen–containing ring size 6

Rings in a canonic ESSR ring set 0.72

659 C–C–S–C–C Simple SMARTS patterns 0.71

691 O–C–C–C–C–C–N Simple SMARTS patterns 0.69

357 C(~C)(:C)(:N) Simple atom nearest neighbors 0.68

712 C–C(C)–C(C)–C Simple SMARTS patterns 0.65

699 O–C–C–C–C–C(C)–C Simple SMARTS patterns 0.64

698 O–C–C–C–C–C–C–C Simple SMARTS patterns 0.64

372 C(~H)(:C)(:N) Simple atom nearest neighbors 0.62

185 ≥ 2 any ring size 6 Rings in a canonic ESSR ring set 0.60

412 S(~C)(~C) Simple atom nearest neighbors 0.57

418 C=N Detailed atom neighborhoods 0.56

405 O(~C)(~C) Simple atom nearest neighbors 0.55

ESSR: extended set of smallest rings; SMARTS: SMILES arbitrary target specification.
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mechanisms, what positions FXa inhibitors as a po-
tential prophylactic and therapeutic treatment for 
high-risk patients with COVID-1945. Furthermore, 
considerable active site similarity based on 3D finger-
prints and the positioning of catalytic residues was 
observed between the FXa protease and the 3CL pro-
tease46, and three FXa inhibitors were screened as 
potential inhibitors of 3CLpro in an in silico molecular 
docking of ligand selection47.

Zafirlukast is a cysteinyl leukotriene type 1 receptor 
competitive and selective antagonist that has anti-
inflammatory properties and leads to bronchodila-
tion48. In a molecular docking study, zafirlukast was 
identified to interact significantly with 3CLpro49. Ac-
cording to other virtual screenings conducted from 
homology models of receptor binding domain, zafir-
lukast may have the potential to inhibit the binding of 
another SARS-CoV-2 protein, the spike glycoprotein, 
to the ACE-2 receptor, adding another potential 
mechanism of action of the drug against viral infec-
tion50,51. Another deep learning study using MACCS 
fingerprints as molecular representations predicted 
this drug to inhibit 3CLpro52. Furthermore, by virtue of 
its anti-inflammatory activity, zafirlukast could inter-
fere with the hyperinflammatory cytokine profile of 
COVID-19.

The physiological effects played by the aforemen-
tioned compounds and the potential concurrent inhi-
bition of 3CLpro point to a possible desirable synergis-
tic effect in the management of patients with 
COVID-19, a multisystemic disease with an intricate 
pathophysiology. Importantly, several preclinical ex-
periments (and possibly further clinical trials) are re-
quired to characterize their virus interaction profiles 
as well as to evaluate the clinical benefits and safety 
profile of these compounds in the context of SARS-
CoV-2 infection. Furthermore, by adopting a drug 
property prediction framework, this study did not fo-
cus on other aspects (e.g., adverse effects) that are 
essential to choosing candidates for repurposing. This 
should be taken into consideration in further studies.

Considering structure-activity relationship (SAR), a 
concept in which molecules with similar structures are 
destined to have similar biological activities, as a cen-
tral concept in deep learning models for drug prop-
erty prediction, it is important to identify the most 
influential features on the predictions, to confer 

explainability to the model. Thus, visualization of the 
decision distribution and recognition of the bits of the 
compounds’ fingerprints with the highest weights in 
the analysis performed by the model to predict 3CLpro 
inhibition activity or inactivity, helps to remove biases 
related to over-attribution of weight to point features 
observed in instances of the training set, to inform 
the predictive decision, and to provide insights into 
molecular structural aspects related to such activity. 
In this sense, it is worth noting that among the 20 
bits of greatest predictive importance, 12 tested for 
the presence of simple SMILES arbitrary target speci-
fication patterns, including the first 4.

Regarding the performance of the proposed predic-
tive model, some considerations need to be made. 
The first concerns the exuberant discrepancy be-
tween the number of negative and positive samples 
for training the neural network. Since the model is 
exposed to few positive examples, there tends to be 
a relative restriction of sensitivity, which was ob-
served especially in the evaluation on the test set. 
However, as long as low false-positive rates are main-
tained (which was observed in both validation and 
testing), this does not compromise the validity of the 
screenings performed, even though potentially active 
compounds may not be identified due to greater 
structural divergence from the training active com-
pounds. The different nature of the test data com-
pared to the training and validation data should also 
be noted. Although interchangeability between active 
site binding and inhibitory activity was assumed for 
predictive evaluation purposes, it is not possible to 
infer that all compounds that demonstrated binding 
(covalent or non-covalent) to the active site would, in 
an assay, demonstrate inhibition of sufficient appre-
ciable magnitude to be classified as active for this 
property. Still, the high sensitivity in both sets adds 
robustness to the predictions made in the screening 
performed by the model.

Since deep learning models are a highly data-driven 
approach, the major limitation of this study was the 
low availability of bioassay data of compounds posi-
tive for 3CLpro inhibition activity. This limitation even 
conditioned the inclusion of data from different as-
says – although integrated in the same project – with 
differences in quantification strategies and method-
ological orientation: while the training data and the 
negative test data came from a screening assay, the 
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positive data from the test set came from a confirma-
tory assay. The binarization of the predicted variable 
was a strategy adopted to deal with this limitation; 
moreover, despite this, the model achieved a great 
performance in the test set, with good sensitivity and 
specificity values, indicating that there was an ade-
quate learning of patterns.

In conclusion, property prediction with deep learning 
models, in an approach based on the SAR, shows 
great potential to screen repurposing candidate drugs 
for the treatment of COVID-19, especially from the 
search for antiviral mechanisms in compounds with 
already established actions potentially beneficial in 
the pathophysiological context of the disease. As an 
illustration of this potential, the present work report-
ed four anti-inflammatory agents, two anticoagu-
lants, and one respiratory agent as potential inhibitors 
of the main protease of SARS-CoV-2. These data 
provide possible directions for in vitro and in vivo re-
search, which are indispensable for the validation of 
their results.
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