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Abstract 
 

Prospective analysis of the statistical power of a hypothesis test should be one of the most important 

stages of any experiment; however, it is frequently omitted. In particular, for Costa Rica, no studies 

related to this topic were found for yield experiments in corn cultivation. The objective of this work 

was to determine the statistical power of a completely randomized design for yield experiments in 

the cultivation of corn (Zea mays) by simulating uniformity trials. To perform the calculations of 

power, the parameters of the spatial correlation process of a uniformity trial established in Santa 

Cruz, Costa Rica in 2018 were estimated. These estimates were used to perform 10 000 simulations 

of larger random fields, which allowed overlapping different number of repetitions and estimate 

the statistical power to detect a difference of 10% with respect to the mean in an experiment with 

a completely randomized design at a significance level of 5%. The 80% power was obtained with 

eight repetitions and it is concluded that, under the experimental conditions of this work, in yield 

trials in the cultivation of corn, to detect a difference of means of 10% at a level of significance 

5%, eight or more repetitions should be used. 
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Introduction 
 

In the planning of an agricultural experiment, it is often sought to compare treatments (genotypes 

of a cultivar, fertilizer dose, sowing density, formulations of an herbicide, among others). For this, 

these treatments are applied to experimental units, arranged according to a specific design, where 

one or more response variables are recorded. Then, with the use of statistical analysis techniques, 

the means of the response variable for each treatment are estimated and, commonly, hypotheses 

about them are tested (Robledo, 2015). 

 

In a hypothesis test, two types of mistakes can be made. The first type, called type I error, 

corresponds to making the decision to reject the null hypothesis, when it is true. The second type, 

called type II error, corresponds to making the decision not to reject the null hypothesis, when in 

fact the alternative hypothesis is true (Montgomery, 2019). The statistical power of a hypothesis 

test is defined as the probability of rejecting the null hypothesis when it is false, that is, the 

probability of finding differences when they actually exist. 

 

The study of statistical power is based on estimating the probability of making type II error, it is 

desired that this be small so that its complement (statistical power) is as high as possible (Lapeña 

et al., 2011). In other words, power is the probability that an effect of a given size can be 

distinguished from the intrinsic random variation of the variable (Gent et al., 2018). By convention, 

an acceptable power level has been set at 80% (Cohen, 1988). 

 

The power function depends on four elements that relate to each other: 1) level of significance; 

2) effect size; 3) variability; and 4) number of repetitions. The level of significance, symbolized 

by (α), is the probability of rejecting 𝐻0 when it is true. The effect size is the difference that is 

expected to be found between a pair of treatments and is established according to biological, 

physical, economic, scientific or practical criteria (Kuehl, 2001), in a clearer way, it is the 

minimum difference considered significant that is desired to detect between treatments. 

Variability is the residual variance of the experiment. The number of repetitions is the number 

of independent experimental units per treatment that are required to reach a certain level of 

power (Cohen, 1992). 

 

There is the problem that the statistical power works found in the literature assume some values 

for the parameters of the models in question. For example, for a classical linear model, the value 

of the variance of the mean difference is usually assumed to be known, because it is taken from 

other works or from previous experiences; however, these considerations may not represent well 

the actual conditions of the experiment. 

 

Additionally, few journals publish measures of variation useful for the calculation of power, so the 

information necessary to design the size of the trial is not available or is unreliable (Stroup, 2002); 

however, this information can be obtained with simulation techniques (Lantuéjoul, 2002). 

Currently, in the area of geostatistics, the techniques of simulation or generation of random field 

realizations are frequent, since they play an important role as a tool that allows obtaining 

information or making inference when the required analytical results are difficult to obtain in 

practice (Diggle and Ribeiro, 2010). 
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The purpose of geostatistical simulations is to reproduce the inherent spatial variability of the 

regionalized variable. The simulation reproduces the expected value and variability of the model 

in terms of the variogram, which is parameterized by the ‘nugget’, the ‘sill’ and the ‘range’. Then, 

it is possible to build many realizations from the same model; each realization will be different but 

will have the same expected value and the same covariance structure (Petitgas et al., 2017). Thus, 

with simulations of a uniformity trial, it is possible to study the effect of different designs and their 

variants on statistical power (Richter and Kroschewski, 2012). 

 

The calculation of statistical power is not a usual part of the planning of agricultural 

experimentation (González-Lutz, 2008). Thus, it is not known if a number of repetitions that allow 

reaching the desired power are used, which can lead to the conclusions based on the hypothesis 

tests of some works are not reliable, particularly when no significant differences are found. 

 

It is common for researchers to resort to arbitrary or traditional numbers without statistical or 

practical justification to define the repetitions that a trial should have. Most of the studies in the 

Costa Rican agricultural field focus on parametric tests such as analysis of variance or regression 

and the approach that has been given to the power from a prospective approach is null. In the 

literature consulted, only the work of Vargas-Rojas (2021) was found, who estimated the number 

of repetitions for yield trials in rice cultivation. 

 

The appropriate number of repetitions for a trial cannot be estimated without establishing the 

effect size, variance, significance level and treatment structure. These elements can vary from 

experiment to experiment depending on the objectives and conditions that the research will have, 

so it is necessary to study the statistical power for agricultural experiments. The objective of this 

work was to determine the statistical power of a completely randomized design for yield 

experiments in the cultivation of corn (Zea mays) by simulating uniformity trials in the area of 

Santa Cruz, Costa Rica. 

 

Materials and methods 
 

Generalities and conditions of the experiment 

 

To carry out the simulations, the data used were those from a uniformity trial carried out during 

the months of June to September 2016, at the Experimental Farm of Santa Cruz (FESC, for its 

acronym in Spanish), owned by the University of Costa Rica (10° 17’ 6.24” north latitude and 85° 

35’ 42.95” west longitude ), which is located in the canton of Santa Cruz, district of Santa Cruz, 

province of Guanacaste, at 54 masl. FESC has an average rainfall of 1 834 mm/year with dry season 

from December to April and with rainy season from May to November (Cerdas, 2015), it has an 

average annual temperature of 27.9 ºC, with average daily evaporation of 6.8 mm and daily global 

solar radiation of 18.7 MJ (Instituto Meteorológico Nacional, 2011). The predominant soils have 

medium to low fertility, are clayey, with characteristics of vertisols by 2:1 expandable clay, are 

taxonomically classified as Vertic Haplustalfs linked to Typic Haplusterts and Typic Ustorthents 

(Vega and Salas, 2012). 
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White corn seed of the HS5G hybrid was used, which is of high yield and low variability in its 

production (CV= 6.2%) (Cerritos et al., 1994). Sowing was carried out manually, in furrows 

separated by 1 m and with a distance between plants of 0. 25 m, for a density of 40 000 plants 

ha-1. The selected plot had flat topography, without any factor that could cause systematic 

variability. 

 

The uniformity trial technique described by Rodríguez et al. (1993) was used. According to this 

method, a corn plot of 26 m × 26 m (676 m2) was sown, in which a three-meter border was left 

around its entire perimeter; thus, an area of 20 m × 20 m (400 m2) was obtained to carry out the 

uniformity trial. All base units were indexed according to a Cartesian coordinate system. Then, 110 

days after sowing, the whole corncob (production in grams) belonging to each base unit was 

harvested. 

 

Spatial variation 

 

To estimate the parameters of spatial correlation (‘nugget’, ‘sill’ and ‘range’) of the uniformity 

trial, two of the most used spatial correlation models were fitted to the data: exponential and 

spherical (Cressie, 1993; Bivand et al., 2013), these two models assume that observations that are 

close are more likely to have similar magnitudes and model this spatial structure with distance 

functions (Fortin et al., 2016). The model of independent errors was also adjusted, this assumes 

that the distance does not affect the similarity between the observations. 

 

In the case of models with correlation, a structure of means that included the fixed effect as a first- 

and second-order trend of the Cartesian coordinates was also modeled in order to discount, if any, 

large-scale trends. Therefore, the models shown in Table 1 were adjusted by restricted maximum 

likelihood (REML). 

 
Table 1. Models adjusted to the uniformity trial of corn (Zea mays). Santa Cruz, Costa Rica 2018. 

Model Correlation structure Nugget effect First-order trend Second-order trend 

0 no no no no 

1 Spherical yes no no 

2 Spherical yes yes yes 

3 Spherical yes no yes 

4 Spherical no no no 

5 Spherical no yes no 

6 Spherical no no yes 

7 Exponential yes yes no 

8 Exponential yes yes yes 

9 Exponential yes no yes 

10 Exponential no no no 

11 Exponential no yes no 

12 Exponential no no yes 
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Then, for the comparison between the adjusted models, the Akaike Information Criterion (AIC) 

and the Bayesian Information Criterion (BIC) were used. Lower values of AIC or BIC indicate 

better fit of the statistical model (West et al., 2015). To compare the models with and without fixed 

effect of the coordinates (different structure of means, but same covariance), the likelihood ratio 

test (LRT), based on estimates of maximum likelihood (ML), was used. Finally, the estimated 

values for the ‘nugget’, ‘sill’ and ‘range’ of the model, which, in comparative terms, had a better 

fit to perform the simulation of the respective random fields, were used. 

 

Simulation of random fields 

 

The uniformity trial of this work, due to the size, has limitations to overlap a set of experimental 

units for different number of repetitions of the experiment. The spatial correlation parameters 

estimated in the uniformity trial were then used to simulate larger plots (random fields), so that 

it could achieve greater flexibility to overlap more repetitions in the design of the experiment.  

 

The geoR package (Ribeiro and Diggle, 2001) of the R language (R Core Team, 2017) was 

used to simulate 10 000 random fields, each corresponding to a grid of 160 m × 20 m, with a 

space between points of 1 m × 1 m. Each point of the grid was a realization of the random 

variable, in this case yield in grams, parameterized with the estimated parameters of the 

uniformity trial. 

 

In each of the 10 000 random fields, experimental units of dimensions 8 m long by 4 m wide (32 

m2), size defined by (Vargas-Rojas and Navarro-Flores, 2020), were formed by aggregation of 

realizations of each point in the grid, resulting in the formation of 10 000 sets of 100 experimental 

units, arranged in five columns and 20 rows. Within each set, all experimental units were indexed 

with Cartesian coordinates that defined the spatial location of their centroid. Once these were 

formed, the average yield in kilograms per experimental unit was estimated and the presence or not 

of spatial correlation was evaluated. 

 

Statistical power 

 

Estimation of variance components 

 

By having a set of 100 experimental units, arranged in 20 rows and five columns, it was possible 

to recreate different numbers of repetitions for the CRD. For example, to randomize five 

treatments with two repetitions each, over the 100 experimental units, the columns were 

considered as fixed, then two rows were taken, thus ten experimental units were obtained to 

randomize the treatments. 

 

Each time a repetition was required, another row from the set of one hundred experimental units 

was taken. In each of the 10 000 simulated random fields, different numbers of repetitions (from 

two to 20) were recreated and the variance components, in this case only the residual variance, 

were estimated for the different plans. The procedure was performed with the nlme package 

(Pinheiro et al., 2016) of the R language (R Core Team, 2017). Once the components of variance 
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were estimated, the calculations of the statistical power for the hypothesis test of mean difference 

were made under the approach of the classical linear model, described below. The notation 

proposed by Stroup (2002) was followed. 

 

Classical linear model 

 

The classical linear model is defined as follows: y=Xβ+e     1). Where: y= is the vector of 

observations, of dimension n × 1; X= is the design matrix, of dimension n × p; β= is the vector of 

parameters, of dimension p × 1; e= is the vector of random errors, of dimension n × 1. Under this 

approach, the null hypothesis (H0) is defined in the form K'β= 0, where K'β is an estimable function. 

This hypothesis can be tested with the use of the F statistic, defined below: F= 

(K'β̂)
'
[K'(X'X)

-1
K]

-1

(K'β̂)/range (K)

σ̂
2
/(n-range(X))

        2). 

 

This statistic has a distribution F[range(K),ν,λ], where the range of K are the degrees of freedom of the 

numerator, -range (X) are the degrees of freedom of the denominator (𝜈) and 𝜆 is the non-centrality 

parameter, which has the following expression: λ= 
(K'β)

'
[K'(X'X)

-1
K]

-1

(K'β)

σ2
    3). Under H0, λ is equal 

to 0; when H0 is false, λ will take values greater than 0. Next, the power will be determined as 

P{F[range(k),ν,λ]>F[critical]}. 

 

For the estimation of power, first, the critical value (F
[critical]

) was calculated. Then, λ was estimated, 

defined according to the structure of the design that matrix X determined; the vector of treatment 

means that β determined; the contrast vector that K defined and the estimated residual variance. 

Once 2 and 3 were obtained, the power was estimated as: P{F[range(k),ν,λ]> F[critical]}. 

 

Each power estimate was made from two to 20 repetitions in each of the 10 000 sets of experimental 

units, with the components of variance previously estimated. In the non-centrality parameter 

defined in (3), it was necessary to specify the contrasts of interest in the matrix K, and the means 

of treatments in the vector of parameters β. The foregoing is operationally difficult since there are 

infinite possible contrasts. To facilitate the calculation of the non-centrality parameter, the contrast 

matrix K was restricted to a single contrast that consisted of the comparison of an (arbitrary) pair 

of means, as suggested by Kuehl (2001). As a result, equation (3) only had the contrast related to 

the selected pair of means. 

 

Thus, if K'β is replaced in the non-centrality parameter of the F distribution, the distribution of the 

test statistic under the alternative hypothesis is obtained, from where the power of the test can be 

calculated for a difference between pairs of means greater than or equal to the assumption for K'β, 

which generates a lower bound for lambda. The significance level (α) used was 0.05. The minimum 

difference to detect (effect size) was determined by a practical-statistical consensus with 

Agricultural engineers specialized in the crop in question; it was agreed that a difference of 10% 

with respect to the general mean was the most frequent situation they face in the practice of trials 

in Costa Rica. Due to the methodology used, the power estimates are invariant to the number of 

treatments in question, arbitrarily, five treatments were used as a reference. 
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Therefore, the matrices K and β were defined as follows: K=

[
 
 
 
 
-1

0

0

0

1 ]
 
 
 
 

 ; β=

[
 
 
 
 
µ

1

µ
2

µ
3

µ
4

µ
5]
 
 
 
 

. Each element μ
i
 of the 

vector β corresponds to the mean of each treatment. Where: μ
i
 = μ+ τi; μ denotes the general mean 

and 𝜏𝑖 denotes the difference between the i-th treatment mean and μ. For this work, μ would be the 

general mean of the variable production; however, this was assigned a value of 0. Then, arbitrarily, 

𝜏1  was defined as the effect of an induced treatment that generated a deviation of 0, that is, the size 

of the effect that is desired to be detected. 

 

The power estimate was made for each of the 10 000 sets of simulated experimental units, so the 

power and statistics shown correspond to an average. All respective procedures were done with the 

R language (R Core Team, 2020). 

 

Results 
 

Inference 

 

The models that had the best fit were 10, 11 and 12. The estimated spatial correlation parameters 

together with the AIC and BIC criteria for these models are shown in Table 2. 

 
Table 2. Estimated parameters and goodness of fit criteria for adjusted models of the uniformity 

trial of corn (Zea mays). Santa Cruz, Costa Rica 2018. 

Model 
Estimate  Information criterium 

Nugget Sill Range  AIC BIC 

10 0 1.23 E-01 0.72  256.3 272.3 

11 0 1.2 E-01 0.68  252.8 276.8 

12 0 1.18 E-01 0.65  252.4 288.3 

 

Model 12 was the one that had the lowest AIC of all the adjusted models. In order to evaluate 

whether the estimation of more parameters was justified, this model was compared with models 10 

and 11, the results are shown in Table 3. The comparison with model 11 was not significant (p< 

0.05), on the other hand, the comparison with model 10 was significant (p< 0.05), which suggests 

that model 11 is the right one. Despite this, because the comparison with model 10 had a p-value 

close to the decision limit and since, relatively, a small neighborhood was used to simulate the 

uniformity trials, local seasonality was assumed. For these reasons, model 10 was considered the 

right one, also because it was the one that had the lowest BIC. 

 
Table 3. Statistics and likelihood ratio test for the models adjusted with ML in corn (Zea mays) 

cultivation. Santa Cruz, Costa Rica 2018. 

Model Test Reference log L AIC BIC Test df -2log (L)  p-value 

10 10 vs 12 10 -124.61 257.21 273.18 5 11.67 0.04 

11 11 vs 12 11 -118.77 254.92 278.87 3 5.38 0.14 

12   -121.46 255.54 291.46    
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Simulation of uniformity trials 

 

Simulations of the largest 10 000 uniformity trials were performed based on the parameters 

estimated with model 10. 

 

Experimental units 

 

The evaluation of the spatial correlation structure, once the experimental units were formed, 

showed that the simulated experimental units can be considered independent, so the statistical 

power was estimated without taking into account the spatial correlation. 

 

Statistical power 

 

With eight repetitions, 80% power was reached. Table 4 presents the results of the estimation of 

the power and other statistics for the different numbers of repetitions. 

 
Table 4. Statistical power reached for a given number of repetitions in a completely randomized 

design in yield trials with corn (Zea mays). Santa Cruz, Costa Rica 2018. 

Repetitions df F SEMD λ Power σ2
Res 

2 5 6.61 6.3 E-02 2.67 0.26 4.19 E-03 

3 10 4.96 5.2 E-02 3.64 0.4 4.21 E-03 

4 15 4.54 4.54 E-02 4.63 0.51 4.23 E-03 

5 20 4.35 4.08 E-02 5.64 0.6 4.24 E-03 

6 25 4.24 3.73 E-02 6.65 0.68 4.25 E-03 

7 30 4.17 3.46 E-02 7.66 0.75 4.26 E-03 

8 35 4.12 3.24 E-02 8.67 0.8 4.26 E-03 

9 40 4.08 3.06 E-02 9.69 0.84 4.27 E-03 

10 45 4.06 2.91 E-02 10.72 0.88 4.27 E-03 

11 50 4.03 2.77 E-02 11.75 0.91 4.26 E-03 

12 55 4.02 2.66 E-02 12.76 0.93 4.27 E-03 

13 60 4 2.55 E-02 13.78 0.94 4.27 E-03 

14 65 3.99 2.46 E-02 14.79 0.96 4.27 E-03 

15 70 3.98 2.38 E-02 15.82 0.97 4.27 E-03 

16 75 3.97 2.3 E-02 16.84 0.98 4.27 E-03 

17 80 3.96 2.24 E-02 17.87 0.98 4.27 E-03 

18 85 3.95 2.17 E-02 18.89 0.99 4.27 E-03 

19 90 3.95 2.12 E-02 19.92 0.99 4.27 E-03 

20 95 3.94 2.06 E-02 20.93 0.99 4.28 E-03 

df= degrees of freedom of the denominator; F= critical F; SEMD= standard error of the mean difference; = non-

centrality parameter; 2
res= residual variance. 
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Discussion 
 

Based on the results obtained in this research, if one wants to obtain a statistical power of 80% to 

detect a difference of means of 10% with respect to the general mean, at a level of significance of 

5% in yield trials, it is recommended to use eight repetitions. With less than the recommended 

repetitions, the power of the trial may not be sufficient. In this sense, Cohen (1992); Murphy et al. 

(2014) mention that, if the probability of rejecting the null hypothesis is the same as that of not 

rejecting it, it will generate an inconsistency between the results of studies; a trial with a power 

close to or less than 50% should not be carried out. 

 

On the other hand, Gent et al. (2018) argue that 90% could be a more appropriate power level, 

when the effects of the treatment are significant, as is the case with experiments where the yields 

of promising varieties are evaluated. It is worth noting that the recommendation made is applicable 

under experimental conditions similar to those of the present study and that this may vary. Each 

specific trial must be planned in an appropriate manner. However, the information that was 

generated can be used as a basis for other experiments, information that would otherwise be very 

difficult to obtain. 

 

For example, if based on previous experiments or pilot studies, there is information on the spatial 

variability of a site, the estimates of ‘sill’ and ‘range’ can be compared with the estimated values 

of Table 2 and depending on the comparison, adapt the number of repetitions for that particular 

site. The estimation of the ‘sill’ parameter is an estimate of the residual variance of the regionalized 

variable (Diggle and Ribeiro, 2010; Guedes et al., 2020), therefore, if it is smaller, the number of 

repetitions recommended in this work could be reduced. 

 

The same happens with the ‘range’, Lapeña et al. (2011) studied, through simulations, factors 

that affect statistical power in the presence of spatial correlation and determined that an increase 

in the spatial dependence of the data, reflected in the ‘range’, increases the variance of the 

distribution of the test statistic, which reduces the power. So, if one has a lower ‘range’, fewer 

repetitions could be used, otherwise, no. On the other hand, if hybrids with less variability in 

yield than that reported for the HS5G hybrid are to be evaluated, reducing the number of 

repetitions could be evaluated, in case of materials with greater variability, reducing the number 

of repetitions would not be an option. 

 

The results presented in this paper highlight the importance of considering statistical power when 

testing hypotheses. Formal consideration of the statistical power of an experiment should therefore 

be a routine and indispensable component of experimental design prior to data collection and 

analysis. Another motivation for conducting a power analysis in the early stages of planning an 

experiment is to ensure that resources are available to ensure that the proposed objectives can be 

achieved. Erroneous conclusions can be avoided only if experiments, through prospective analysis, 

ensure adequate power (Gent et al., 2018). 

 

Carrying out more studies on this subject would be beneficial for the Costa Rican agricultural 

sector, knowing in depth the conditions in which an experiment is going to be executed will allow 

it to be properly designed. It is necessary that with this information there can be a dialogue between 
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the developers of trials and the statisticians, so that the former communicate their needs and the 

latter can transfer them to the corresponding statistical terms, this helps to make clear the objectives 

and the true scope of an investigation. 

 

As Quinn and Keough (2002) mention, one of the most valuable aspects of a priori power analysis 

is that, in order to make the calculations, the alternative hypothesis (this is the effect size) and, most 

importantly, the statistical model that will be applied to the data must be specified. Specifying the 

model makes one think about analysis before collecting the data, a recommended habit. 

 

Conclusions 
 

Within the framework of the conditions that this work was carried out, it is considered that: If it is 

desired to detect a difference of means of 10% at a level of significance 5%, it is not recommended 

to use less than eight repetitions for yield trials in corn. Fewer repetitions could be plausible 

depending on the conditions of the experiment. This work provides information that is little 

available, which can be taken as a basis for planning future works. 
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