
213

Revista Chapingo Serie Horticultura 14(2): 213-222, 2008.Recibido: 3 de diciembre, 2007
Aceptado:

PROBLEMAS
Y MÉTODOS COMUNES

DEL ANÁLISIS
DE EXPERIMENTOS FACTORIALES

J. Sahagún-Castellanos1¶; A. Martínez-Garza2†; J. E. Rodríguez-Pérez1

1Programa Universitario de Investigación en Olericultura, Departamento de Fitotecnia.
Universidad Autónoma Chapingo. Km. 38.5 Carretera México-Texcoco.

Chapingo, Estado de México. MÉXICO. C. P. 56230.
Tel. (01595 9521500 Ext. 6185) Fax (01595 9521642)

Correo-e: jsahagun@correo.chapingo.mx (¶Autor responsable)
2Instituto de Socioeconomía, Estadística e Informática. Colegio de Postgraduados.

Km. 36.5 Carretera México-Texcoco, Montecillo,
Estado de México. C. P. 56230. MÉXICO.

RESUMEN

En la investigación agronómica frecuentemente se hacen experimentos factoriales; éstos constituyen herramientas que hacen un
uso óptimo de recursos, producen estimaciones de contrastes de medias de tratamientos más precisas y hacen posible el estudio de
las interacciones entre los factores. Sin embargo, el aprovechamiento integral de estas ventajas no siempre se obtiene debido a uno
o varios de los problemas siguientes: interpretación deficiente del concepto de interacción; abuso de las comparaciones múltiples de
medias; subutilización y hasta omisión de técnicas de regresión, contrastes y polinomios ortogonales, etc. Para contribuir a la
solución de esta problemática, y con ello mejorar la calidad de los artículos científicos que se pretende publicar, en este estudio se
analizan varias acepciones del concepto de interacción, incluyendo desde aspectos etimológicos hasta su significado como fuente
de variación en el análisis de varianza. Además, en el contexto de factoriales, se analizan tópicos relacionados con la pertinencia,
aplicación y ventajas de las técnicas de regresión, contrastes y polinomios ortogonales. Para hacer más objetiva la presentación se
recurrió a ejemplos hipotéticos. Se espera que el lector mejore su percepción conceptual y su capacidad para asociar exitosamente
casos de experimentación factorial con metodologías de análisis apropiadas, y que esto redunde en un mejor análisis de la información
experimental, interpretación de sus resultados y en una mayor calidad de sus publicaciones científicas.

PALABRAS CLAVE ADICIONALES: experimentos factoriales, interacción, contrastes, contrastes ortogonales, comparaciones
múltiples de medias.

COMMON PROBLEMS AND METHODS
 OF THE ANALYSIS OF FACTORIAL EXPERIMENTS

ABSTRACT

In the agronomic research, factorial experiments are frequently carried out. These are tools that make an optimus use of resources;
produce more precise estimates of contrasts of treatment means, and make it possible the study of the interactions among factors.
The full release of these advantages, however, is not always obtained due to one or several of the following common problems: Poor
interpretation of the interaction concept; abuse of multiple comparison procedures; subutilization and even omission of regression
techniques, orthogonal contrasts and polynomials, etc. To contribute to solve these problems and thereby to improve the quality of the
scientific articles to be published, in this paper several meanings of the interaction concept, including since its etymological aspects
until its meaning as a source of variation in the analysis of variance, were analyzed. In addition, cases related with the pertinence,
use and advantages of regression, contrasts, and orthogonal contrast and polynomial techniques were analyzed in the context of
factorial experiments. To make a more objective presentation, hypothetical cases of factorial experiments were considered. It is
hoped that the reader’s conceptual perception and capacity to successfully associate cases of factorial experiments and statistical
methods to analyze them properly will be improved and thereby will enable them to increase the quality of the interpretation of the
results and their scientific publications.

ADDITIONAL KEY WORDS: factorial experiments, interaction, contrasts, orthogonal contrasts, multiple comparisons.
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Problemas y métodos...

INTRODUCCIÓN

El estudio de varios factores en un experimento facto-
rial permite ahorrar recursos; incrementa la precisión de las
estimaciones de medias de efectos, y hace posible el estu-
dio de la interacción entre tales factores. Precisamente, uno
de los conceptos más distintivos de los experimentos facto-
riales, aunque no siempre bien entendido por el usuario, es
el de la interacción entre factores. En el Diccionario de la
Real Academia Española (DRAE) del 2001, la interacción
se define como “la acción que se ejerce recíprocamente en-
tre dos o más objetos, agentes, fuerzas, funciones, etc.”
En el contexto estadístico, particularmente en el de la investi-
gación agrícola, frecuentemente la interacción entre dos
factores se define como una medida de la variación de las
diferencias observadas entre los efectos de los niveles de
un factor a través de los niveles del otro (v.g., Knight, 1970;
Mather y Caligari, 1976). Al parecer, referirse a la interacción
en formas diferentes contribuye a dificultar su entendimiento
y, con ello, a incrementar la ocurrencia de errores en la
elección y aplicación de métodos para analizar los datos de
un experimento factorial e interpretar y manejar debidamente
los resultados de su análisis de varianza (ANAVA).

En el ANAVA, la magnitud de la suma de cuadrados
de la interacción entre dos factores A y B se relaciona directa-
mente con la variación de las diferencias entre las medias
de los niveles de A a través de los niveles de B (o viceversa).
A pesar de que está bien definida la peculiaridad de la interac-
ción en el ANAVA, su interpretación no siempre es apropiada.
Por ejemplo, supóngase que dos variedades de jitomate
(Lycopersicon esculentum Mill.) se evaluaron en dos dosis
de una solución nutritiva y que en la dosis baja (D

1
) el rendi-

miento de una variedad (V
1
) superó al de la otra (V

2
).

Supóngase además que con la dosis alta (D
2
) V

2
, por su

capacidad genética, respondió con un incremento en
rendimiento que la hizo superar al rendimiento que produjo
V

1
 con esa misma dosis. Si, por lo que respecta a

tratamientos, el ANAVA sólo detectará significancia de la
interacción entre los factores, sería erróneo afirmar que
estadísticamente no hay diferencia entre efectos de las
variedades (entre medias de variedades) ni entre efectos de
dosis (entre medias de dosis). Lo que procedería sería la
comparación de los rendimientos de las variedades en cada
dosis y viceversa. Con esta estrategia se podría determinar
si una variedad es estadísticamente superior en rendimiento
a la otra cuando se aplica D

1
 (o bien cuando se aplica D

2
).

También se podría definir, en su caso, qué variedad aumenta
significativamente su rendimiento cuando se fertiliza con D

2
.

El tipo de error de interpretación anterior no es el único
posible; con frecuencia se hacen evidentes algunas
deficiencias conceptuales y metodológicas en los análisis
de datos de experimentos factoriales.

Entre los errores que más frecuentemente ocurren en
los análisis de datos de experimentos factoriales se
encuentran: 1) Ignorar indebidamente la estructura factorial
y, en caso de significancia de los tratamientos, comparar

sólo las medias de todas las combinaciones de niveles; 2)
Hacer sólo comparaciones entre las medias de los efectos
de los niveles de cada factor (efectos principales) cuando la
interacción es significativa; 3) Omitir análisis ad hoc cuando
se estudian factores cuantitativos (por ejemplo, análisis de
regresión o, en su caso, de polinomios ortogonales), y en
su lugar hacer comparaciones múltiples de medias, y 4)
Omisión no pertinente de técnicas de análisis de factores
cualitativos (contrastes y estimación de diferencias de me-
dias mediante intervalos de confianza, por ejemplo).

Toda investigación experimental debe incluir una defini-
ción clara de los métodos de experimentación y de análisis
de datos utilizados, congruentes con la consecución de los
objetivos perseguidos. El final de la investigación debe ser
una publicación cuya responsabilidad no recae exclusiva-
mente en los investigadores y en sus asesores; los revisores
técnicos, editores, etc., también tienen injerencia en la
calidad del documento científico que se pretende producir.

Reconociendo su responsabilidad en la calidad de sus
publicaciones, el Comité Editorial de la Revista Chapingo
Serie Horticultura, ha promovido acciones cuyo objetivo es
contribuir a mejorar la calidad de sus artículos. En particu-
lar, con este trabajo se pretende mejorar la percepción de
los investigadores con respecto al concepto de interacción
y a la debida correspondencia entre métodos de análisis y
casos de experimentación factorial.

Los métodos de análisis a que se hará referencia no
son nuevos, han sido descritos en numerosas ocasiones
desde hace tiempo (v.g., Cochran y Cox, 1973; Steel y Torrie,
1960; Chew, 1976; Nelson y Rawlings, 1983; Lindman, 1992).
En primera instancia se trabajará el aspecto conceptual y
posteriormente el de los métodos estadísticos. Todo con un
enfoque, eso sí, propio de los autores.

MODELOS Y CONCEPTOS BÁSICOS

Para definir un modelo que explique el dato de cada
parcela de un experimento factorial en términos de los
efectos de las combinaciones de los a niveles de un factor A
con los b niveles de un factor B se considerará que,
independientemente del diseño experimental utilizado, será
posible hacer comparaciones entre los niveles de un factor
libres de los efectos de los niveles del otro u otros factores
(condición que se denomina ortogonalidad entre los efectos
de los factores). Por esta consideración, los efectos de los
niveles de los factores A y B y de su interacción podrán ser
estudiados más fácilmente con base en un modelo que no
incluya factores adicionales aunque los haya (como bloques,
por ejemplo). Así, con las suposiciones usuales (distribución
normal, independencia de errores, homogeneidad de
varianzas, etc.), la observación de la parcela que recibe los
niveles i y j de A y B, respectivamente, en su repetición k
(Y

ijk
) se explica como:
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( )
r ..., 2, 1, k b; ..., 2, 1, j a; ..., 2, 1,i 

;εαββαμY ijkijj1ijk

===

+++=        (1)

en donde ì  es la media general; α
i
, β

j
 y (αβ)

ij
 son los efectos

(fijos) de los niveles i de A, j de B y de la interacción entre α
i

y β
j
, respectivamente, y ε

ijk
 es el efecto aleatorio de error

asociado a Y
ijk
.

Para facilitar el entendimiento de conceptos, en esta
parte se eliminará el ruido que causan los efectos aleatorios
del error. Para ello, los efectos de los niveles de los factores
y su interacción se describirán en términos de valores
esperados de las Y

ijk
 del modelo 1 (que ya no incluyen error)

y éstos se expresarán de acuerdo con la expresión general
E(Y

ijk
) = y

ijk
. En estas y’s se usará la notación en que un

punto puesto en el lugar de un subíndice querrá decir que se
han promediado las y’s que corresponden a los valores de
ese subíndice. Así, para los términos de la Ecuación 1:

μ = y... ,   α
i
 = y

i.. 
-y

...
,    β

j
 = y

.j.
-y

...     
 y,   consecuentemente,

( ) ( ) ( )....j.i.ij.jiij.ij yyyyβαμyαβ −−−=−−−=     (2)

De acuerdo con las expresiones en (2) resulta que:

( ) 0αβ0,β0,iα
b

1j

b

1j
ijj

a

ji
∑ ∑ ===∑
= ==

 para i = 1, 2, 3, ...,

a, ( ) 0αβy 
a

1i
ij =∑

=
 para j = 1, 2, 3, ..., b

Por ejemplo, ( ) 0ayayyyα ......

a

1i
...i..

a

li
i =−=∑ −=∑

==

Como consecuencia, las medias de los efectos son siempre
iguales a cero. Como se expresó en (2), el efecto de interac-
ción (αβ)

ij
 es una diferencia entre dos efectos del nivel j de

B: El primero es en presencia del nivel i de A, (y
ij.
-y

i..
), y el

segundo es el efecto promedio general, (y
.j.
-y

...
). Por otra parte,

el intercambio de y
i..
 y y

.j.
 hace que (αβ)

ij
 también sea expre-

sable como una diferencia entre dos efectos del nivel i de A:

( ) ( ) ( )...i...j.ij.ij yyyyαβ −−−=

Ambas expresiones se reflejan en la suma de
cuadrados de la interacción:

( )[ ]2
i j

...i...j.ij. YYYYr∑ ∑ −−−

Ésta a su vez se relaciona directamente con la variación
del comportamiento relativo de los niveles de A a través de
los niveles de B (o viceversa).

En el ANAVA la suma de cuadrados debida a la
variación entre los efectos de las ab combinaciones de los
a niveles de A con los b niveles de B (Ecuación 1) puede ser
descompuesta en tres partes debidas a la variación entre

las medias experimentales de: 1) Los efectos de los niveles
de A; 2) los efectos de los niveles de B, y 3) los efectos de
la interacción AB. Cada una de estas tres partes a su vez
puede ser descompuesta en porciones asociadas a
contrastes, deseablemente congruentes con los objetivos
de la investigación.

En un experimento con los factores A, B y C con a, b
y c niveles, respectivamente, la suma de cuadrados de las
abc combinaciones puede ser dividida en siete partes debi-
das a: Los efectos principales de los tres factores (A, B y
C); las tres interacciones entre dos factores (AB, AC y BC),
y la interacción entre los tres factores (ABC). El modelo bá-
sico para explicar el valor de la observación de la repetición
l que recibió los niveles i, j y k de los factores A, B y C (Y

ijkl
),

respectivamente, es:

( )
( ) ( ) ( ) ijklijkjkik

kijjiijkl

εαββα

αββαμY

++++

++++=

ΓΓΓ

Γ

              (4)

i = 1, 2, ..., a;  j = 1, 2, ..., b;  k = 1, 2, ..., c;  l = 1, 2, ..., r

En donde α
I
, β

J 
 y Γ, son los efectos (fijos) de los

niveles i, j y k de A, B y C; (αβ)
ij
, (αΓ)

ik
, (βΓ)

jk
 y (αβΓ)

ijk
 son

las interacciones entre los efectos indicados y ε
ijkl

 es el
término aleatorio de error correspondiente a Y

ijkl
. Por

extensión de las expresiones en (2), resulta que, por ejemplo:

( ) ( ) ( )  yyyyyαβ,yyα .....j..i...ij..ij....i...i −−−=−=

( ) ( ) ( )[ ]
( ) ( )[ ]......k..j...jk.

i....kij.ijk.ijk

yyyy

y.iyyyαβ

−−−−

−−−=Γ
           (5)

Del conjunto de expresiones en (5) y (2) y en sus
extensiones se obtiene que:

( ) ( )
( ) ( )jkik

ijkjiijk.ijk

βα

αββαμyαβ

ΓΓ

ΓΓ

−−

−−−−−=

         (6)

En la Ecuación 5 el efecto de interacción (αβΓ)
ijk

es
interpretable como la diferencia entre el efecto (βΓ)

jk
 en

presencia del nivel i de A, (y
ijk.

 - y
ij..

) - (y
i.k.

 - y
i...

), y el efecto
(βΓ)

jk
en todo el experimento, (y

.jk.
 - y

.j..
) -(y

..k. 
- y

....
).

Análogamente, (αβΓ)
ijk
 también puede ser interpretable con

base en (αβ)
i j
 o (αΓ)

ik
 según las expresiones,

respectivamente:

( ) ( ) ( )[ ]
( ) ( )[ ].....j..i...ij..

..k..jk.i.k.ijk.ijk

yyyy

yyyyαβ

−−−−

−−−=Γ

            (7)

( ) ( ) ( )[ ]
( ) ( )[ ]....i.....k.i.k.

.j..ij...jk.ijk.ijk

yyyy

yyyyαβ

−−−−

−−−=Γ             (8)
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Estas dos expresiones del efecto (αβΓ)
ijk

 [Ecuacio-
nes 7 y 8] son una extensión de la definición del efecto de
interacción (αβ)

ij
 (Ecuación 2) en el sentido de que se descri-

ben como una diferencia entre dos efectos. Análogamente,
para cuatro o más factores el efecto de su interacción se
definiría como una diferencia entre dos efectos de interacción
que involucran todos los factores excepto uno.

Para ejemplificar numéricamente los efectos de los
niveles de los factores y de sus interacciones, considérese
un factorial hipotético con dos variedades de tomate de
cáscara (Physalis ixocarpa Brot.) (G

1
 y G

2
), dos dosis de

fertilización (D
1
 y D

2
) y dos formas de regar (R

1
 y R

2
). De

acuerdo con una extensión de las expresiones en la
Ecuación (2), para los rendimientos medios (t·ha-1 x 10)
hipotéticos (sin error) del Cuadro 1, la determinación de la
media (μ), del efecto de la variedad 1 (Γ

1
), de la dosis de

fertilización 1 δ
1
, de la forma de regar 1 λ

1 
y de un efecto de

interacción, Γδ
11

, se hace a continuación:

( ) 5.75,/886647564yμ .... =+++++++==

( ) 0.255.75/47564yy ....1...1 −=−+++=−=Γ

( ) 0.755.75/46464yy .....1..1 −=−+++=−=δ

( )  1005.75/46454yy ......1.1 −=−+++=−=λ

       y

( )
( ) 0.255.755.05.5/264

yyyy ...1....1..11..11

=+−−+=

+−−=Γδ

Con base en estos resultados, como

( ) ( )∑ ∑ ∑ ∑ ===∑==
= = = ==

2

li

2

lj

2

lk

2

li
ikik

2

lk
kji 0ΓδΓδλδΓ debe resultar,

adicionalmente, que:

( )
( )
( ) 0.251.00

0.250.75

0.250.25

222

212

122

==
−==
−==

Γδλ

Γδδ

ΓδΓ

                  (9)

En el Cuadro 2 se muestran las medias de las

combinaciones de niveles de cada dos de los tres factores,
D, R y G, del Cuadro 1. Se puede afirmar que los efectos de
interacción de los tipos (Γλ) y (δ) son iguales a cero, ya que
las diferencias entre las medias de los efectos de los niveles
de cada uno de los factores en RG y DR no cambian cuando
se pasa de uno al otro de los niveles de D y G,
respectivamente. Gráficamente, la ausencia de interacción
entre dos factores hace que las líneas de los niveles de un
factor sean paralelas cuando se grafica contra los niveles
del otro (Figuras 1A y 1B), lo que no sucede para los factores
D y G (Figura 1C), entre los que sí hay efectos de interacción
de la forma (Γδ)diferentes de cero (Ec. 9).

Respecto a la interacción DGR del Cuadro 1, por
analogía con la Ecuación (6), como

( ) ( ) ( ) ( )jkikijkjiijk.ijk y δλΓλΓδλδΓΓδλ −−−−−−=

y como los términos del lado derecho (i = 1, 2,..., a;  j = 1,
2,..., b; k = 1, 2,..., c) de esta expresión ya fueron calculados

 CUADRO 2. Medias hipotéticas (valores paramétricos) de las
combinaciones de los niveles de cada dos
factores del factorial 2x2x2 del Cuadro1. Las me-
dias fueron escogidas para que con respecto a
interacciones, según la Ec. 2, sólo exista la de GD.

G1 G2 D1 D2 D1 D2

R1 4.5 5.0 R1 4.0 5.5 G1 5 5

R2 6.5 7.0 R2 6.0 7.5 G2 6 7

FIGURA 1. Medias paramétricas (sin error) de las combinacio-
nes de los niveles de cada dos factores del factorial
2x2x2 del Cuadro 2. Sólo en la gráfica C hay
interacción entre los factores graficados (las líneas
para G

1
 y G

2
 no son paralelas).

CUADRO 1. Medias hipotéticas (valores paramétricos) de
rendimiento de fruto (t·ha-1x10) de un experimento
factorial con dos variedades de jitomate (G), dos
dosis de fertilización (D) y dos tipos de riego (R).
Las medias fueron seleccionadas para que haya
solamente diferencias entre los efectos de los
niveles de D, R y G y de la interacción DG.

             G
1

            G
2

D
1

D
2

D
1

D
2

R
1

4 5 4 6

R
2

6 7 6 8

4

5

6

7

8

R1

R2

V1 V2

4

5

6

7

8

R2

R1

D2

4

5

6

7

8

V1

V2

D1 D2

A

B

C

G1 G2

G
1

G
2

D1

4

5

6

7

8

R1

R2

V1 V2

4

5

6

7

8

R2

R1

D2

4

5

6

7

8

V1

V2

D1 D2

A

B

C

G1 G2

G
1

G
2

D1
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[resultados en (9)] se puede verificar que todos los efectos
del tipo (Γδ)

ijk
 son iguales a cero, y se dice, en consecuencia,

que no hay interacción DGR. En términos gráficos, el patrón
que se observa entre las líneas R

1
D

1
 y R

1
D

2
 (Figura 2) es el

mismo que hay entre las líneas R
2
D

1
 y R

2
D

2
, lo que significa

que todos los efectos de interacción DGR son iguales a
cero; lo que también refleja el mismo comportamiento relativo
de los efectos de D

1
 y D

2
 al pasar de R

1
 a R

2
. Otra forma de

analizar la interacción entre tres factores se basa en la gráfica
de los niveles de un factor contra los niveles de otro en cada
uno de los niveles del tercer factor; si las líneas de cada
gráfica tienen entre sí niveles de ausencia de paralelismo
que no varían de una gráfica a otra, se concluirá que no hay
interacción entre los tres factores. En cada una de las Figuras
3 y 4, construidas con los datos del Cuadro 1, hay una re-
producción de patrones del comportamiento de las combi-
naciones de niveles de dos parejas de factores: D y R (Figura
3), y D y G (Figura 4), en los dos niveles del tercer factor.

Al lector que considere que ya tiene un buen
entendimiento de lo que es la interacción se le sugiere pasar
al apartado de métodos de análisis.

Un conjunto hipotético de medias paramétricas (sin
error) de un factorial con 2, 3 y 3 niveles de los factores A, B
y C, respectivamente, construido para que sólo haya efectos
diferentes de cero para A(αι), AB(αβι) y ABC [(αβΓ)

ijk
] se

muestra en el Cuadro 3. De esta información, con base en
las expresiones para la media, un efecto de un nivel de un
factor, una interacción entre dos factores y una interacción
entre tres factores (Ecuación 6) se obtiene que:

En el ejemplo hipotético de los datos del Cuadro 3, la
interacción AB y la ausencia de interacción BC son muy
fácilmente discernibles en la forma en que se presenta la
misma información en el Cuadro 4. Las diferencias entre los
efectos de niveles de A cambian cuando se pasa de un nivel
de B a otro de sus niveles, y no hay diferencias entre niveles
de C ante cada nivel de A, respectivamente.

Las representaciones gráficas de los efectos de un
factorial de tres factores no siempre son un instrumento de

FIGURA 2. Medias paramétricas (sin error) de las combinacio-
nes de los niveles de los factores R y D en G

1
 y G

2

(datos del Cuadro 1). No hay interacción GDR, según
lo evidencia la falta de paralelismo entre R

1
D

2
 y R

1
D

1

que es la misma que entre R
2
D

2
 y R

2
D

1
.

FIGURA 4. Medias verdaderas (sin error) de las combinaciones
de niveles de los factores G y D en cada nivel de R,
R

1
(A) y R

2
(B) (datos del Cuadro 1). No hay interacción

GDR ya que el comportamiento relativo de G
1
 y G

2

ante D
1
 y D

2
 no cambia cuando se pasa de R

1
 a R

2
.

FIGURA 3. Medias verdaderas (sin error) de las combinaciones
de niveles de los factores R y D en cada nivel de G,
G

1
(A) y en G

2
 (B) (datos del Cuadro 1). No hay

interacción GDR según la evidencia el paralelismo
entre R

1
 y R

2
, tanto en A como en B.

CUADRO 3. Medias paramétricas (libres de error) de las 18
combinaciones de un factorial 3x3x2. Las medias
fueron escogidas para que, de acuerdo con la Ec.
5 sólo haya efectos de A, AB y ABC.
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fácil manejo para determinar la existencia o inexistencia de
una interacción. Aún en los casos hipotéticos (sin error)
que se está analizando puede suceder que, por lo que sólo
a la figura geométrica concierne, una misma representación
gráfica pueda corresponder a un caso con interacción ABC
o a un caso sin esta interacción. Por ejemplo, en la Figura
5 no existe interacción ABC; sin embargo, si en la gráfica
para A

2
 se intercambiaran los niveles C

1
 y C

2
 (sólo estos

símbolos) no cambiaría la figura geométrica pero sí se
detectaría interacción ABC.

MÉTODOS DE ANÁLISIS

A diferencia de los datos hipotéticos de los Cuadros 1
a 4 y de las Figuras 1 a 5, los datos obtenidos en la
investigación experimental, además de los efectos de los
niveles de los factores y de sus interacciones, también
reflejan efectos aleatorios de error. Éstos generan la
necesidad de diseñar experimentos y métodos de análisis
de datos que tiendan a contrarrestar los efectos aleatorios
que enmascaran los verdaderos efectos de los niveles de
los factores y los de sus interacciones.

Comparaciones de medias

En este apartado sólo se considerarán los casos, poco
frecuentes, en que por la naturaleza de los factores la compa-
ración de cada media con cada una de las restantes es
apropiada. Esto puede ocurrir con factores de carácter cuali-

tativo cuyos niveles no poseen características que hagan
más importantes algunas comparaciones (a nivel individual
o de grupos) que otras.

Cuando en un factorial la interacción entre dos factores
es estadísticamente significativa, las medias experimentales
de los niveles de cada factor se deben comparar en cada
uno de los niveles del otro, independientemente de que los
factores sean estadísticamente significativos. Se debe proce-
der así porque con interacción significativa las magnitudes
de las diferencias observadas entre las medias de los niveles
de un factor no son iguales a través de los niveles del otro
factor. Y esto puede hacer que las diferencias que no son
estadísticamente significativas ante un nivel del segundo
factor sí lo sean ante otro(s) nivel(es) de este segundo fac-
tor y viceversa. Además, se genera información que permite
un mejor acercamiento para detectar e interpretar las causas
de la interacción.

Sin la variación aleatoria de error, cuando no hay
interacción ABC cada una de las diferencias entre las me-
dias de cada par de niveles de C (por ejemplo) en cada una
de las combinaciones de los b niveles de B con el mismo
nivel de A, tienen cambios de una misma magnitud cuando
se pasa a otro nivel de A. Cuando esto no suceda habrá
interacción ABC. Así, sólo cuando los cambios referidos
sean siempre de una magnitud igual a cero, con datos
experimentales las comparaciones estadísticas de las me-
dias de los niveles de C deben producir los mismos
resultados en cada uno de los niveles de A.

Estrictamente, comparar los niveles de C en cada una
de las ab combinaciones de los a niveles de A con los b ni-
veles de B también puede visualizarse como la consecuencia
de la existencia de interacción significativa entre C y el “fac-
tor” cuyos niveles fueran las ab combinaciones de los niveles
de A con los de B. Pasar de tres a dos factores puede tener
valor aplicado si el manejo de cada combinación de niveles
de los factores A y B tuviera sentido para el investigador o
para el usuario de la tecnología que se llegara a derivar. Un
ejemplo hipotético de la ocurrencia de este tipo de interacción
es la información del Cuadro 3 con respecto a la comparación
de los dos niveles de A en cada combinación de niveles de
B y C.

Varios autores (v.g., Chew, 1976; Petersen, 1977; Car-
mer y Walker, 1982; Lindman, 1992) han descrito numerosos
procedimientos para hacer inferencia sobre contrastes que
involucran medias de tratamientos; destacan el de Tukey
para la comparación de todas las medias entre sí; el de
Dunnett para comparar la media de un testigo con cada una
de las medias restantes; el de Scheffé para probar y estimar
contrastes que resultan interesantes después de un exa-
men preliminar de datos de experimentos exploratorios, etc.
Carmer y Walker (1982) discuten el valor relativo de algunos
procedimientos para comparar medias.

En general, no siempre (y en realidad en menos casos

CUADRO 4. Medias paramétricas (libres de error) de los efectos
de las combinaciones de dos niveles de A con los
tres de B y de éstos con los tres de C (datos del
Cuadro 3). Se evidencia la presencia y la ausencia
de interacción AB y BC, respectivamente.

A1 A2 C1 C2 C3

B1 2 1 B1 1.5 1.5 1.5

B2 4/3 5/3 B2 1.5 1.5 1.5

B3 8/3 1/3 B3 1.5 1.5 1.5
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B2B1 B3
0

1

2

3

C1

C2

B2B1 B3

A2A1

A B

G1

0

1

2

3

C1
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G1

FIGURA 5. Medias paramétricas (sin error) de cada combinación
de niveles de un factorial 2x3x2 con efectos de inte-
racción AB y BC. En A y en B se repite el patrón de
comportamientos relativos entre las combinacio-
nes de niveles de cada nivel de C con cada nivel de
B; por ello no hay interacción ABC.



219

Revista Chapingo Serie Horticultura 14(2): 213-222, 2008.

de los que los usuarios lo hacen) las comparaciones de
medias son el procedimiento estadístico que se debe aplicar.
Cómo proceder después de que el análisis de varianza se
ha efectuado depende de la naturaleza de los factores y de
los objetivos de la investigación.

Factores cuantitativos

Para un factor cuyos niveles pueden asociarse con
puntos en una escala numérica, como distancia entre
plantas, dosis de fertilización, etc., un análisis estadístico
más adecuado que la comparación de medias se basa en
el ajuste de una función de respuesta mediante técnicas de
regresión. Es usual que la relación entre la variable respuesta
(Y) y los niveles de un factor cuantitativo (X) se aproxime
mediante un polinomio de la forma:

p
p

2
21o Xβ...XβXββY ++++=

El proceso se puede iniciar con el polinomio de orden
más bajo, aumentándolo sucesivamente hasta que se en-
cuentre uno que explique la mayor parte de la variabilidad.
Con frecuencia, un polinomio de segundo grado es suficiente
[cuando esta metodología se extiende a más de un factor
cuantitativo se puede recurrir al concepto de superficie de
respuesta (v.g., Martínez, 1988; Montgomery, 1991)]. Con
este enfoque, la interpretación cambia radicalmente; en lugar
de comparar las medias asociadas a niveles de factores se
recurre a la estimación. Por ejemplo, para sólo un factor
cuantitativo se puede estimar el efecto que para la variable
respuesta (Y) tiene un valor cualquiera de la variable indepen-
diente X (de preferencia dentro del intervalo explorado con
los niveles del factor). Por ejemplo, si se adoptara el modelo:

Y = 13.2 + 2.5X,

se estimaría que por cada unidad en que se incremente X,
Y experimentaría un aumento de 2.5 unidades. Similarmente,
si, por ejemplo, los niveles del factor fueran 6, 8, 10, 12, 16,
para X=14, el valor estimado de Y sería 48.2 [calculado como
13.2+2.5(14)]. Además, cualquier cambio de X (dentro del
intervalo explorado) debe producir un cambio en la variable
respuesta Y, por pequeño que éste sea. Si, en cambio, el
modelo adoptado fuera:

Y = 3.17 + 20X – 2X2

se estimaría que con X = 5 la variable respuesta Y alcanzaría
su máximo valor (esto se debe a que X = 5 es la solución de
la ecuación que resulta al igualar con cero la derivada de Y
con respecto a X, además de que la segunda derivada es
negativa).

Con niveles igualmente espaciados se puede obtener
las sumas de cuadrados de los contrastes [SC(C)] debidas
a los efectos lineal, cuadrático, cúbico, etc. (v.g., Cockerham,
1954; Lindman, 1992) y con base en la significancia de estos
efectos también se puede construir un polinomio ortogonal.

Por ejemplo, para un factor cuantitativo con tres niveles igual-
mente espaciados, si los totales experimentales son T

1
, T

2

y T
3
, se calcula las sumas de cuadrados debidas al efecto

lineal (el promedio de los dos incrementos en la respuesta
que se obtienen cuando se pasa del nivel bajo al intermedio
y de éste al superior) y al efecto cuadrático (desviación de
la respuesta con respecto a la linealidad) según la expresión:

( ) ⎟
⎠
⎞⎜

⎝
⎛

⎥⎦
⎤

⎢⎣
⎡ ∑∑=

==

3

li

2
i

2
3

ji
ii Cn/TCCSC

en donde los conjuntos de coeficientes para estos efectos
son: {C

1
 = 1, C

2
 = 0, C

3
 = -1} y {C

1
 = 1, C

2
 = -2, C

3
=1},

respectivamente, y n es el número de observaciones que
forman cada total. La suma de estas dos sumas de cuadra-
dos representa toda la variabilidad que hay entre las medias
de los tres tratamientos debido a que además de asociarse
a sendos grados de libertad, son ortogonales; es decir, dan
cuenta de variación de origen y significado independiente.
Si el cuadrado medio del error y sus grados de libertad se
representan por CM(E) y GL(E), respectivamente, entonces,
como en cualquier contraste, si

F
c
 = [SC(C)]/ [CM(E)]

igualara o superara al valor de la distribución de F
1, GL(E)

 que
corresponde al nivel α  de significancia, se declararía que el
efecto (lineal o cuadrático) que se pruebe es
estadísticamente significativo. Si ambos efectos fueran
significativos se ajustaría un polinomio cuadrático de la forma

Y = α
0
P

0
(X) + α

1
P

1
(X) + α

2
P

2
(X)

 
                 (11)

donde P
i
(X) es el polinomio ortogonal de orden i (i = 0, 1, 2).

Los primeros tres polinomios ortogonales, para niveles
igualmente espaciados, son (Lindman, 1992):

( ) ( ) ( )

/dXXXP 1,X P 10 −==  y

           ( ) ( )[ ]{ }2/3 /dXX 3XP
2

2 −−=              (12)

en donde d = distancia entre los niveles de X y X  es la
media de estos niveles. Los estimadores de mínimos
cuadrados de α

0
, α

1
 y α

2
 para este caso son (v.g., Mont-

gomery, 1991):

          ∑=
=

3

1i
10 /9Tα̂ , ( )/6TTα 312 −=ˆ  y

 ( )/18T2TTα 3212 +−=ˆ                   (13)

Así, con los valores de T
1
, T

2
, T

3
, X, X  y d se construye

el polinomio según las Ecuaciones (11) a (13)

Para tres o más niveles igualmente espaciados la
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construcción de los polinomios ortogonales correspondien-
tes ha sido descrita por numerosos autores (v.g., Steel y
Torrie, 1960; Montgomery, 1991; Lindman, 1992).

Para dos factores cuantitativos si se tuviera una
regresión significativa para las dos variables independientes
(las asociadas con estos dos factores) cada combinación
de dos niveles cualesquiera (incluidos o no en el estudio)
debe producir efectos en la variable respuesta Y. Por ejemplo,
el modelo de primer grado es de la forma general:

22110 XβXββY ++=

Con mínimos cuadrados se puede estimar β0, β1 y β2,
y con base en la ecuación de predicción construida con los

estimadores 0β̂ , 
1β̂  y 2β̂ ,

22110 XβXββY ˆˆˆˆ ++= ,

se puede predecir el ( )YY ˆ  que corresponda a cualquier

combinación de X
1
 y X

2
; se puede determinar qué valores de

X
1
 y X

2
 maximizan Y, etc. Algo similar se puede hacer con

modelos de mayor grado (v.g., Montgomery, 1991; Lindman,
1992). Si los niveles fueran igualmente espaciados se podría
hacer una descomposición ortogonal de la suma de
cuadrados debidas a las combinaciones de estos factores.
Por ejemplo, si los factores A y B tuvieran tres niveles cada
uno, los ocho grados de libertad de las nueve combinaciones
de niveles podrían ser asignados a los ocho contrastes
ortogonales correspondientes a los efectos: 1) Lineal A, 2)
Lineal B, 3) Cuadrático A, 4) Cuadrático B, 5) Lineal A x
Lineal B, 6) Lineal A x Cuadrático B, 7) Cuadrático A x Lin-
eal B y 8) Cuadrático A x Cuadrático B. Fasoulas y Allard
(1962) generaron los nueve genotipos posibles de cebada
(Hordeum vulgare L.) para dos loci con dos alelos en cada
locus e hicieron el análisis como si se tratara de un factorial
3x3, en donde, por ejemplo para el locus O, los genotipos
OO, Oo y oo fueron los niveles, igualmente espaciados, 2,
1 y 0 (número de genes O en el genotipo); con los contrastes
se determinó para varios caracteres la significancia de los
efectos aditivos (lineales) y de dominancia (cuadráticos) en
cada locus y la de los cuatro efectos epistáticos. Russell y
Eberhart (1970) hicieron un análisis similar para tres loci del
genoma de maíz (Zea mays L.). Por su parte, Montgomery
(1991) muestra un análisis de los datos de un experimento
en que se probó el efecto de la cantidad (15, 20, 25, 30 y 35
%) de algodón (Gossypium hirsutum) en la resistencia de
una fibra; el análisis se hizo mediante técnicas de regresión
y, como los niveles son igualmente espaciados, mediante
polinomios ortogonales; con cada técnica se ajustó un
modelo, y ambos modelos coincidieron.

Factores cualitativos

Para un factor cualitativo (uno cuyos niveles no pueden
ser ordenados de acuerdo con su magnitud; por ejemplo:

variedades, tipos de sustratos, tipos de herbicidas, etc.) al-
gunas veces es posible planear y efectuar comparaciones
de tratamientos estrechamente relacionados con los objeti-
vos de la investigación. Por ejemplo, considérese el caso
hipotético en que se va a estudiar el rendimiento de fruto de
tres variedades de jitomate en una localidad de El Bajío,
una (V

1
) desarrollada por el Instituto de Horticultura, otra

(V
2
) por el Instituto Nacional de Investigaciones Forestales,

Agrícolas y Pecuarias, en tanto que la tercera (V
3
) es la va-

riedad que más se siembra en la región objeto de estudio.
Supóngase que debido a que el pulgón (Diuraphis noxia)
empieza a ser un problema en la región, la evaluación de
las tres variedades se hará con (I

1
) y sin (I

2
) la aplicación de

un insecticida. Con relación a los 5 grados de libertad corres-
pondientes a variedades (2), insecticidas (1) e interacción
(2), con este trabajo se pretende dar respuesta a las cinco
preguntas siguientes: 1) ¿Rinden igual las variedades nuevas
(en promedio) y la variedad más sembrada?; 2) ¿Rinden
igual las dos variedades nuevas?; 3) ¿Tiene un efecto en el
rendimiento la aplicación del insecticida?; 4) ¿Responden
igual a la aplicación del insecticida las dos variedades nue-
vas?; 5) ¿Afecta la aplicación del insecticida la diferencia
que se observa entre el promedio de las variedades nuevas
y el de la más sembrada cuando no se usa insecticida? El
análisis de los datos de la evaluación de campo debe
orientarse a la producción de respuestas para las cinco
preguntas. Para ellas, en el Cuadro 5 se muestran, en el
orden de las cinco preguntas, sendos contrastes mutuamen-
te ortogonales (dos contrastes son ortogonales si

0CC
k

'
kk =∑ , las C

k
 y '

kC  son los coeficientes de un con-

traste y otro, respectivamente). Por ejemplo, si el contraste
1 fuera significativo querría decir que el promedio de las me-
dias de las variedades nuevas (V

1
 y V

2
) difiere estadística-

mente de la media de la variedad más sembrada (V
3
); simi-

larmente, la significancia del contraste 2 haría concluir que
las medias de los rendimientos de las variedades V

1
 y V

2

difieren estadísticamente, etc.

En general, cuando sea congruente con los objetivos
de la investigación, la formación de contrastes ortogonales
tiene ventajas: a) Cada una de las pruebas de hipótesis
asociadas a contrastes ortogonales aporta información nue-
va, independiente; b) la interpretación de resultados es más
sencilla, y c) el número máximo de contrastes es limitado.
Por ejemplo, para las tres variedades de jitomate el número
máximo de contrastes ortogonales es dos; éstos pueden
ser los contrastes C

1
 y C

2
 ya definidos que no generan proble-

mas de interpretación cualesquiera que sean los resultados
respecto a su significancia estadística. En cambio, si los
contrastes no ortogonales relativos a las comparaciones de
V

1
 con V

2
 y de V

2
 con V

3
 fueran sometidos a prueba y se

concluyera que, estadísticamente, V
1
 = V

2
 y V

2
 = V

3
 se po-

dría interpretar que V
1
 = V

3
; sin embargo, esto no necesaria-

mente es cierto, como si lo sería en el escenario de la más
estricta lógica matemática.
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Por otro lado, si para el mismo ejemplo se recurriera a
las pruebas de F del análisis de varianza para variedades
(V), para insecticidas (I) y para la interacción (IV), con signifi-
cancia estadística para V y para IV no se produciría ninguna
respuesta específica para ninguna de las cinco preguntas.
Con la prueba de F para I, en cambio, se probaría la hipótesis
de igualdad de efectos de los dos niveles del factor I, la mis-
ma que se prueba con el contraste 3. En otro escenario, si
las tres variedades no tuvieran las características menciona-
das y la interacción IV fuera significativa se debería interpretar
que las variedades no responden igualmente a la aplicación
del insecticida y posteriormente se podría determinar las
particularidades de esta respuesta diferencial. Por ejemplo,
se podría comparar las medias de las variedades en cada
nivel del factor I para determinar, en su caso, qué variedades
rinden más cuando no se aplica insecticida y, similarmente,
cuando sí se aplica. Además, con la comparación de las
dosis de insecticida en cada variedad se podría identificar,
en su caso, las variedades que aumentan significativamente
su rendimiento por efecto del insecticida o, aún mejor, se
podría estimar mediante un intervalo de confianza la diferencia
entre las medias de rendimiento de I

1
 e I

2
 en cada variedad

(Steel y Torrie, 1960; Montgomery, 1991). Con esta estima-
ción, además de darse una idea de la magnitud de la diferen-
cia entre estas medias (lo que no se consigue con la prueba
de hipótesis), se determinaría si tal diferencia es estadística-
mente significativa (cuando el intervalo de confianza estimado
no incluya el cero).

En el ejemplo objeto de análisis, ya sea con los contras-
tes o con la comparación de medias de los niveles de un
factor en cada uno de los niveles del otro, se obtiene informa-
ción que no se lograría con la comparación de cada media
con las cinco restantes (son seis medias, una de cada combi-
nación de niveles), cualquiera que fuera el procedimiento de
comparación. Sin embargo, es innegable, particularmente
desde una perspectiva pragmática, que si sólo se deseara
identificar las combinaciones de niveles cuyas medias fueran
las mayores, la comparación de cada media con cada una
de las restantes sería adecuada.

En general, cuando se han definido contrastes con-
gruentes con los objetivos del estudio, las pruebas de F pa-
ra los efectos principales e interacciones pierden importan-
cia. Por ejemplo, en el factorial sujeto a análisis no sería
necesaria la prueba de F para determinar si la interacción
IV es significativa puesto que lo interesante de esta interac-
ción ya fue expresado en forma de dos contrastes: el 4 y el
5 (Cuadro 5); además, la prueba de F para I, como ya se
mencionó, es la misma que la del contraste 3. Por otra par-
te, en la construcción de contrastes la guía básica es su
congruencia con los objetivos de la investigación, no importa
que los contrastes resultantes sean o no mutuamente ortogo-
nales, ni que sean tantos como grados de libertad haya
para tratamientos.

Considérese ahora un experimento factorial que involu-
cre dos factores cualitativos; por ejemplo una evaluación de

variedades de papa (Solanum tuberosum L.) en varios
arreglos topológicos. Si de acuerdo con los objetivos se
formara un conjunto de contrastes ortogonales con respecto
a las variedades de papa y la interacción fuera significativa,
las hipótesis asociadas a estos contrastes se podrían probar
en cada arreglo topológico. Si, en cambio, la interacción no
fuera significativa, estas hipótesis se probarían en forma glo-
bal, con los totales o medias calculadas con toda la
información del experimento. Esto es así porque en ausencia
de interacción, se esperaría que la prueba de cualquiera de
estas hipótesis en cada arreglo topológico produzca,
estadísticamente, los mismos resultados.

COMENTARIOS  FINALES

A continuación se presentan algunas reflexiones sobre
el concepto de interacción entre dos factores. Con sólo dos
factores, el efecto verdadero de interacción entre los niveles
i y j de A y B, (αβ)

ij
, es la diferencia entre y

ij.
 (el valor paramétri-

co de la media de los datos de las parcelas que recibieron
la combinación de los niveles i de A y j de B) y μ + α

i
 + β

j

(Ecuación 2) que son los valores esperados de la media de
los niveles i de A y j de B con (y

ij.
) y sin (μ + α

i
 + β

1
) interacción,

respectivamente. Esta acepción de la interacción, que sólo
involucra parámetros, es similar a la de Baker (1988), aunque
ésta involucra un valor experimental (Y

ij.
) en lugar del valor

esperado correspondiente (y
ij
) pero difiere de la que interpreta

a la interacción sólo en tér-minos de su etimología (DRAE,
2001) y de la que la visualiza como una fuente de variación
en el análisis de varianza (v.g., Knight, 1970; Mather y Caliga-
ri, 1976; Martínez, 1988; Sahagún, 1992). De las cuatro acep-
ciones de interacción anteriores, la de diccionario es de ca-
rácter etimológico, y  la de mayor valor lingüístico ya que
hace referencia a una acción; sin embargo, no es propia del
argot estadístico; las dos primeras se refieren al efecto resul-
tante de esa acción que se ejerce recíprocamente entre los
efectos de los niveles de los factores [denotado como (αβ)

ij
]

en tanto que la que la ubica como una fuente de variación
en el análisis de varianza es de tipo estadístico y pragmático
[se refiere a la variabilidad entre los (αβ)

ij’s
, más específica-

mente, se relaciona con la hipótesis nula que se prueba en
el análisis de varianza [(H

0
: (αβ)

11 
= (αβ)

12 
= ... = (αβ)

1b
 =

(αβ)
ab

 vs H
a
: H

0
 es falsa]. Con la prueba de F de esta fuente

de variación se determina, en su caso, su significancia esta-

CUADRO 5. Coeficientes para cinco contrastes ortogonales en
un experimento factorial de tres variedades de
jitomate (V) y dos dosis de un insecticida (I).

Contraste                  Combinaciones de niveles

V
1
I
1

V
2
I
2

V
3
I
3

V
1
I
2

V
2
I
2

V
3
I
2

1 1  1 -2  1  1 -2

2 1 -1  0  1 -1  0

3 1  1  1 -1 -1 -1

4 1 -1  0 -1  1  0

5 1  1 -2 -1 -1  2
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dística, interpretable como un reflejo de la variabilidad entre
los efectos (αβ)

ij’s
. Con la ausencia de tal significancia debe

asumirse que todos los efectos de interacción de la forma
(αβ)

ij
 son iguales a cero.

En la práctica de la investigación experimental común-
mente no se discute la interacción desde un punto de vista
científico, pero su significado estadístico se puede encontrar
con ayuda de una gráfica. Además de su complejidad, proba-
blemente en muchos casos no se tiene suficiente conoci-
miento científico del fenómeno; y conforme se involucra más
factores esta deficiencia aumenta. Sin embargo, no es común
experimentar con más de tres o cuatro factores, ni tampoco
es frecuente la significancia estadística de las interacciones
entre todos ellos (v.g., Montgomery, 1991; Lindman, 1992).

Con los datos hipotéticos de los Cuadros 1 a 4 se de-
terminó los efectos de los niveles de los factores y de sus
interacciones con base en las fórmulas descritas en las ex-
presiones de la Ecuación 2 o en sus extensiones (Ecuacio-
nes 5 a 8). En esta visualización hipotética, no habrá interac-
ción sólo cuando cada combinación de niveles de los factores
involucrados tiene un efecto de interacción igual a cero. En
la realidad, con datos de un experimento, los efectos aleato-
rios de error hacen necesaria la prueba de una hipótesis pa-
ra dictaminar si una interacción es estadísticamente signifi-
cativa (por ejemplo, mediante una prueba de F para una
fuente de variación o para un contraste). Con el conocimiento
del riesgo de rechazar una hipótesis que es cierta (nivel de
significancia), una interacción que se declara estadística-
mente significativa implica que los efectos de interacción
(αβ)

ij
 no son iguales. Para el análisis subsecuente a la signifi-

cancia de la interacción que involucra un factor cuantitativo
difícilmente se pueden justificar las comparaciones de las
medias de sus niveles. Estas comparaciones parecen estar
confinadas mayormente a los niveles de un factor cualitativo
que no admiten la definición de un conjunto pertinente de
contrastes.
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