

Polibotánica ISSN electrónico: 2395-9525 polibotanica@gmail.com Instituto Politécnico Nacional México http://www.polibotanica.mx

CARACTERISTICAS TAXONÓMICAS DE LAS ESPECIES DE *Colubrina* (Rhamnaceae) EN MEXICO, BASADAS EN LA ARQUITECTURA Y SUPERFICIES EPIDÉRMICAS

TAXONOMIC CHARACTERISTICS OF Colubrina SPECIES (Rhamnaceae) IN MEXICO, BASED ON FOLIAR ARCHITECTURE AND EPIDERMAL SURFACES

Fernández-Nava, R.; M.L. Arreguín-Sánchez y C.Y. Jorge Cruz

CARACTERÍSTICAS TAXONÓMICAS DE LAS ESPECIES DE Colubrina (Rhamnaceae) EN MEXICO, BASADAS EN LA ARQUITECTURA Y SUPERFICIES EPIDERMICAS.

TAXONOMIC CHARACTERISTICS OF Colubrina SPECIES (Rhamnaceae) IN MEXICO, BASED ON FOLIAR ARCHITECTURE AND EPIDERMAL SURFACES.

POLIB®TÁNICA

Instituto Politécnico Nacional

Núm. **57**: 1-22 México. Enero 2024 DOI: 10.18387/polibotanica.57.1

Este es un artículo de acceso abierto bajo la licencia Creative Commons 4.0 Atribución-No Comercial (<u>CC BY-NC 4.0 Internacional</u>).

Caracteristicas taxonómicas de las especies de *Colubrina* (Rhamnaceae) en México, basadas en la arquitectura y superficies epidérmicas

Taxonomic characteristics of *Colubrina* species (Rhamnaceae) in Mexico, based on foliar architecture and epidermal surfaces.

Fernández-Nava, R.; M.L. Arreguín-Sánchez y C.Y. Jorge Cruz

CARACTERÍSTICAS TAXONÓMICAS DE LAS ESPECIES DE Colubrina (Rhamnaceae) EN MEXICO, BASADAS EN LA ARQUITECTURA Y SUPERFICIES EPIDERMICAS.

TAXONOMIC CHARACTERISTICS OF Colubrina SPECIES (Rhamnaceae) IN MEXICO, BASED ON FOLIAR ARCHITECTURE AND EPIDERMAL SURFACES.

POLIB®TÁNICA

Instituto Politécnico Nacional

Núm. 57: 1-22. Enero 2024

DOI: 10.18387/polibotanica.57.1 Rafael Fernández-Nava¹ María de la Luz Arreguín-Sánchez¹ / luzma1950ipn@gmail.com Coral Yamileth Jorge Cruz Escuela Nacional de Ciencias Biológicas, Departamento de Botánica, Instituto Politécnico Nacional, Plan de Ayala y Carpio, Col. Santo Tomás, CDMX, CP 11340 ¹Becarios de COFAA del IPN

RESUMEN: Se describe e ilustra la arquitectura y las superficies epidérmicas de: *Colubrina angustior* (M. C. Johnston) Nesom, *C. greggii* S. Wats., *C. lanulosa* (M. C. Johnston) Fernández & Arreguín, *C. macrocarpa* (Cav.) G. Don var. *macrocarpa*, *C. stricta* Engelm. ex Blankinship, *C. texensis* (Torrey & Gray) A. Gray y *C. yucatanensis* (M. C. Johnston) Nesom, pertenecientes a la Familia Rhamnaceae. Los caracteres usados para la separación de los taxones fueron los diferentes tipos de venación, la inserción de los tricomas, forma de las células epidérmicas y paredes de las mismas en las superficies adaxial y abaxial, la presencia o ausencia de venas libres en las venas de tercera y cuarta categoría, así como los tipos de estomas; en ninguno de los taxones se encontraron glándulas en los dientes marginales. Además de las descripciones y fotomicrografías de los taxones se elaboró una clave dicotómica para diferenciar las especies y variedades. Así también se propone que *C. macrocarpa* var. *lanulosa* tenga un estatus de especie nueva, debido a que se encontraron diferencias marcadas con la variedad tipo de *C. macrocarpa* var. *macrocarpa*; se propone a *Colubrina lanulosa* (M. C. Johnston) Fernández & Arreguín, comb. et stat. nov.

Palabras clave: morfología de las hojas, venación foliar, clave dicotómica, especie nueva, subgénero *Serratifolia*.

ABSTRACT: The architecture and epidermal surfaces of: *Colubrina angustior* (M. C. Johnston) Nesom, *C. greggii* S. Wats., *C. lanulosa* (M. C. Johnston) Fernández & Arreguín, *C. macrocarpa* (Cav.) G. Don var. *macrocarpa*, *C. stricta* Engelm. ex Blankinship, *C. texensis* (Torrey & Gray) A. Gray and *C. yucatanensis* (M. C. Johnston) Nesom, belonging to the Family Rhamnaceae are described and illustrated. The characters used for the separation of the taxa were the different types of venation, the insertion of the trichomes, the shape of the epidermal cells and their walls on the adaxial and abaxial surfaces, the presence or absence of free veins in the veins of third and fourth category, as well as the types of stomata; in none of the taxa were glands found in the marginal teeth. In addition to the descriptions and photomicrographs of the taxa, a dichotomous key was developed to differentiate the species and varieties. It is also proposed that *C. macrocarpa* var. *lanulosa* has a status of new species, because marked differences were found with the type variety of *C. macrocarpa* var. *macrocarpa*; *Colubrina lanulosa* (M. C. Johnston) Fernández & Arreguín is proposed as comb. et stat. nov.

Key words: leaf morphology, leaf venation, dichotomous key, new species, subgenus *Serratifolia*.

INTRODUCCIÓN

Las Rhamnaceae fueron descritas por Antonio Laurent de Jussieu en 1789 y Brongniart en 1827 subdivide a la familia en cinco tribus donde *Colubrina* es incorporada en la Rhamnaceae (Fernandez, 1993 p.8). Johnston (1963), publica nuevas combinaciones, nuevos taxones y dos subgéneros denominados Colubrina y Serrataria, en el primero se incluye a *Colubrina gregii* S. Wats. var. *yucatanensis* M. C. Johnst. y en el segundo a *Colubrina texensis* (T. & G.) A. Gray var. *pedunculata* M. C. Johnst. y *Colubrina texensis* (Cav.) G. Don var. *lanulosa* (Blake) M. C. Johnston (1971) publica la revisión de *Colubrina*, y propone la subdivisión de subgéneros y secciones de esta entidad taxonómica.

Para la circunscripción de Colubrina (Johnston, 1971) refiere los siguientes caracteres: árboles y arbustos, raramente trepadores, espinosos o sin espinas, caducifolios o siempre verdes, tallos generalmente pubescentes; hojas alternas u opuestas, pecioladas, penninervadas o triplinervadas desde la base, frecuentemente con pequeñas manchas glandulares redondeadas, ya sea en el margen o cerca de la base o raramente con pocas glándulas dispersas, margen entero, serrados o crenado; estípulas laterales y basales generalmente caducas; inflorescencias cimosas sésiles y umbeliformes o pedunculadas corimbiformes, con el eje ocasionalmente modificado en una espina; flores pequeñas, verdosas o amarillentas, con copa floral donde están insertos el cáliz, la corola y el androceo, dicha copa después de la polinización se acrescenta y permanece sujeta a la parte inferior a la mitad del fruto; sépalos 5 caducifolios, pétalos 5 más cortos que los sépalos, estambres 5, casi tan largos como los pétalos, nectarios, casi llenando la copa y en las primeras etapas ocultan al ovario que lleva tres óvulos (raramente cuatro), estigmas tres; fruto en forma de cápsula subglobosa, dehiscente en la madurez, semillas por lo general ventralmente angulosas y dorsalmente fuertemente convexas, de color marrón oscuro o negro (Johnston, 1971, p. 7-8); este mismo autor consideró a los géneros Cormonema e Hybosperma como afines a Colubrina, por lo cual se consideraron dentro de este último género (Johnston, 1971, p. 7).

Los taxones que se estudiaron en este trabajo corresponde al subgénero Serrataria (Johnston, 1971. p.8) en donde se conjuntan aquellas especies que presentan los márgenes de las láminas foliares aserrados, con más de diez dientes en cada lado y cada uno asociado con una glándula marginal con distribución en América y Asia, incluye los siguientes taxones (Cuadro 1).

Nombre de la especie y cambios nomenclaturales	Distribución en América
<i>C. berteroana</i> Urb.	República Dominicana
C. cubensis (Jacq.) Brongn.	Florida y Cuba
C. californica I. M. Johnst.	Baja California, California y Arizona
C. celtidifolia (Cham. & Schltdl.) Schltdl.	Veracruz, Jalisco, Michoacán y Guerrero
Según Johnston (1971) C. greggii S. Wats. var. angustior	San Luis Potosí, Tamaulipas y Veracruz
M. C. Johnston	
Según Nesom (2013) C. angustior (M. C. Johnston) Nesom	
Según Johnston (1971) C. greggii S. Wats. var. greggii	Texas, Coahuila, Nuevo León, Tamaulipas,
	Guanajuato, Hidalgo, Puebla, Oaxaca, Querétaro, San
Según Nesom (2013) C. greggii S. Wats.	Luis Potosí y Veracruz
C. greggii S. Wats. var. yucatensis M. C. Johnston	Campeche, Quintana Roo, Yucatán y Guatemala
Según Nesom (2013) C. yucatanensis (M. C. Johnston) Nesom	
C. macrocarpa (Cav.) G. Don var. lanulosa (S. F. Blake) M.	Guerrero
C. Johnston	

Cuadro 1. Especies de *Colubrina* subgénero Serrataria, distribución mundial y cambios nomenclaturales. **Table 1.** Species of *Colubrina* subgenus Serrataria, worldwide distribution, and nomenclatural changes.

Nombre de la especie y cambios nomenclaturales	Distribución en América
C. macrocarpa (Cav.) G. Don var. macrocarpa	Morelos y Puebla
C. macrocarpa (Cav.) G. Don var. macrocarpoides	Querétaro
(Suessenguth ex Suessenguth & Overkott) M. C. Johnston	
C. sordida M. C. Johnston	Guerrero
C. stricta Engelm. ex Blankinship	Texas, Nuevo León, Coahuila, Nesom (2013) la cita
	también para Durango
Según Johnston (1971) Colubrina texensis (Torrey & Gray)	Texas y Coahuila
A. Gray var. pedunculata M. C. Johnston	
Según Nesom (2013) C. stricta Engelm. ex Blankinship	
Según Johnston (1971) C. texensis (Torrey & Gray) A. Gray	Texas, noreste de Coahuila, Nuevo León y Tamaulipas
var. texensis	
Según Nesom (2013) C. texensis (Torrey & Gray) A. Gray	Texas, Coahuila y Nuevo León
	Distribución en Asia, África y Australia
C. anomala King	Malasia
<i>C. asiatica</i> (L.) Brongn.	África (Mozambique y Kenia), India, Nueva Guinea y
	Caribe
<i>C. beccariana</i> Warb.	Nueva Guinea y Borneo
C. pedunculata Baker	India
<i>C. travancorica</i> Bedd.	India

Nesom (2013), en las notas del género *Colubrina* considera que las variedades de *C. greggii* y *C. texensis* deben tratarse como especies y no como variedades como las describe Johnston (1971). Nesom (2013) sustenta estos cambios con base en datos morfológicos y de distribución geográfica. De esta manera *Colubrina texensis* var. *texensis* queda como *C. texensis* (Torrey & Gray) A. Gray con distribución en Texas, noreste de Coahuila, Nuevo León y Tamaulipas, mientras que *Colubrina texensis* var. *pedunculata* se valida como *Colubrina stricta* Engelm. ex Blankinship quedando como sinónimo *C. texensis* (Torrey & A. Gray) A. Gray var. *pedunculata* M. C. Johnston.

En este mismo contexto, Nesom (2013), eleva a rango de especies las variedades de *Colubrina greggii (sensu* Johnston, 1971) y así separa a *Colubrina greggii* S. Wats., *Colubrina angustior* (M. C. Johnston) Nesom y *Colubrina yucatensis* (M. C. Johnston) Nesom por la forma de las hojas y caracteres florales y por la distribución geográfica. La primera especie presente en Texas, Coahuila, Nuevo León, Tamaulipas, Guanajuato, Hidalgo, Puebla, Oaxaca, Querétaro, San Luis Potosí y Veracruz; la segunda en San Luis Potosí, Tamaulipas y Veracruz y la tercera en Campeche, Quintana Roo, Yucatán, y Guatemala.

La familia Rhamnaceae ha sido estudiada desde el punto de vista taxonómico-florístico por autores como: Standley (1923), Johnston (1963, 1969 y 1971), Wiggins (1964 y 1980) Martínez (1979), Fernández (1993, 1996, 2010) y Nesom (2013). Entre los trabajos relacionados con la anatomía y arquitectura foliar de la familia Rhamnaceae encontramos los de Meyer y Meola (1978) que citan el tamaño de los estomas y la densidad por mm² de *Colubrina texensis*; Schirarend (1991) investiga la anatomía del tallo de la Tribu Zizipheae; Colares y Arambarri (2008) describe la anatomía de *Ziziphus mistol* Griseb.; Shisode y Patil, (2011) estudiaron la anatomía del tallo de algunas Rhamnaceae; Hernández *et al.* (2021) describen la arquitectura foliar y la anatomía epidérmica de las especies mexicanas del género *Gouania*. El interés de este trabajo fue describir la arquitectura foliar y las superficies epidérmicas de las variedades de *Colubrina greggii, C. texensis y C. macrocarpa sensu* Johnston (1971) que prosperan en México, así como apoyar o denegar algunos de los cambios nomenclaturales propuestos en los últimos años.

MATERIALES Y MÉTODOS

El material utilizado se encuentra depositado en el Herbario de la Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional (ENCB) y del Herbario del Instituto de Biología de la Universidad Nacional Autónoma de México (MEXU). La identificación de los taxones fue confirmada por el Dr. Rafael Fernández Nava especialista en Rhamnaceae. Los ejemplares de herbario de los que se tomaron muestras fueron los siguientes:

Colubrina angustior (M. C. Johnston) Nesom; J. Rzedowski 10321 (ENCB); J. Rzewdoski 7032 (ENCB); P. A. Fryxell y W.R. Anderson 3428 (ENCB).

Colubrina greggii S. Wats.; R. Fernández 1650 (ENCB); H. Puig 7255 (ENCB); R. Fernández 2406 (ENCB).

Colubrina yucatensis (M. C. Johnston) Nesom; L. M. Arias 649 (ENCB); E. Estrada E-110, (ENCB); M. García y A. Vargas 3777 (ENCB).

C. macrocarpa (Cav.) G. Don var. macrocarpa; R. Fernández. 2621 (ENCB); R. Fernández 4984 (ENCB); R. Weber 307 (ENCB).

C. lanulosa (M. C. Johnston) Fernández & Arreguín; Blanco, Toledo y Cabrera 765 (ENCB); E. Halbinger s/n (ENCB), J. Chavelas GR 22 (ENCB).

C. stricta Engelm. ex Blankinship; J. García INEGI 3.2V (ENCB).

C. texensis (Torrey & Gray) A. Gray; A. Rodríguez y M. A. Carranza s/n (ENCB), M. Martínez 44266 (ENCB), E. Torrecillas 176 (ENCB).

Se utilizaron las siguientes técnicas para transparentar las láminas foliares, sugeridas por Aguirre Claverán y Arreguín Sánchez (1988) y el método químico de decoloración foliar de Payne, Sheffy y Potter (1969) modificado por Dilcher (1974).

De cada espécimen se tomaron cuatro hojas maduras totalmente extendidas situadas entre el tercero y quinto nudo de las ramas montadas en las muestras de herbario y de preferencia de tres ejemplares de cada especie y variedad, aunque de *C. stricta* solo fue posible obtener muestras de un solo espécimen debido a que hay pocos ejemplares representados en los herbarios o bien los ejemplares estaban adheridos a la cartulina a través de pegamento blanco y no se pudieron obtener muestras. En las láminas de las fotografías de cada especie incluye la hoja antes de diafanizar.

Una vez que se obtuvo el material foliar, se prosiguió con la técnica de Aguirre-Claverán y Arreguín-Sánchez (1988) para lo cual se colocaron dos hojas completas de cada uno de los taxones los cuales se diafanizadas con NaOH al 5% hasta cubrir el material; se hirvieron de 5 a 10 minutos, dependiendo de la textura de la hoja, luego se pasaron a una caja de Petri con agua por 10 a 15 minutos, posteriormente se colocaron en una solución de hipoclorito de sodio al 30% y se dejaron hervir hasta que los tejidos se transparentaron por completo, se colocaron en agua hasta el día siguiente. Las láminas aclaradas siempre permanecieron en cajas de Petri con agua y se tomaron fotografías de este material.

Posteriormente una de las hojas contenidas en la caja de Petri, se tiñó con dos gotas de azul de metileno comercial "fish care" por un minuto y después se pasó a otra caja con agua. A la segunda hoja se les añadió dos gotas de safranina por dos minutos y se colocaron en cajas de Petri con agua. Se tomaron fotografías de este material (Hernández *et al.*, 2021).

Con la técnica de Payne, Sheffy y Potter (1969) tomada de Dilcher (1974, p. 60) dos hojas del material seco se colocaron sobre una caja Petri adicionando NaOH al 5%, en seguida se calentó por 5 minutos y después se realizó un lavado con agua de la llave, posteriormente se blanqueó con hipoclorito de sodio al 5% por 10-15 minutos, checando el material frecuentemente hasta que se transparentó y se lavó con agua dos veces. Después el material se deshidrató en series de alcoholes al 50% y 75% durante de 10 a 15 minutos en cada solución en alcohol al 95% durante 20 minutos y finalmente en alcohol al 100% para alcanzar la completa deshidratación de las muestras, después se transfirieron a una solución de alcohol absoluto y xileno 1:1, posteriormente se transfiere a xilol al 100%. Para la tinción se pasaron a una caja de Petri con agua y se siguió el procedimiento referido por Hernández *et al.* (2021). Se tomaron fotografías con una cámara digital Samsung Hmx-e10 con 8 megapixeles.

El propósito de utilizar azul de metileno y safranina acuosa como colorantes permitió visualizar mejor diferentes características anatómicas y contrastar algunas de ellas. El utilizar dos técnicas de transparentación permitió que con la técnica de Aguirre-Claverán y Arreguín-Sánchez (1988) permitió mejores observaciones para hojas membranáceas y subcoriaceas y la de Payne, Sheffy y Potter (1969) para material coriáceo.

La arquitectura foliar se describió bajo un microscopio estereoscópico American Optical utilizando diferentes aumentos para describir las venas de primera, segunda, tercera y cuarta categoría, posición de los tricomas y la posible presencia de estructuras glandulares. Las fotografías se tomaron con una cámara digital Samsung Hmx-e10 con 8 megapixeles.

En cuanto a la superficie epidérmica se hicieron cortes de 1 cm de porciones de las hojas teñidas con azul de metileno y safranina que se colocaron en diferentes portaobjetos y como medio de montaje se utilizó una solución de miel de maíz con agua 1:1 y trazas de fenol, después se cubrieron con los cubreobjetos y se sellaron con barniz transparente, una vez seco el esmalte las preparaciones se etiquetaron. Las descripciones de los caracteres de la superficie epidérmica se realizaron con un microscopio óptico binocular Zeiss y las fotomicrografías se obtuvieron con una cámara digital Samsung Hmx-e10 con 8 megapixeles adaptada al microscopio.

Con base en las preparaciones semipermanentes que se elaboraron se midieron cinco tricomas de cada especie y espécimen en relación al largo de los mismos, las medidas que se presentan es el promedio de ellos, así también se contó el número de tricomas por mm². Para los estomas se midieron cinco de cada especie y espécimen y se tomó en consideración la longitud y el ancho, las medidas que se citan es el promedio de estas mediciones. La densidad estomática se calculó según la fórmula de (Salisbury, 1927 mencionado en Colares y Arambarri (2008, p. 570). Número de estomas + número de células epidérmicas x 100.

Los términos que se utilizaron para describir los tricomas fueron los de Dilcher (1974, p. 110-111), este autor realizó una clasificación de los mismos en relación a varios criterios como: número de células que los forman; si los tricomas son simples o agrupados; glandulares o eglandulares; la forma por la que se unen a las células epidérmicas con un pie apenas modificado, en forma de pija, a través de dos células o de varias; con base engrosada o no, con células epidérmicas no modificadas o modificadas.

En el caso de este trabajo todos los taxones presentaron tricomas unicelulares, simples, eglandulares y con relación a la base se encontraron dos tipos: uno en *Colubrina greggii* y *C. angustior* con base engrosada y células epidérmicas no modificadas (Figura 1A). El dibujo corresponde al trabajo de Dilcher (1974, p.110) y las fotomicrografías a las bases de las especies antes citadas. El otro tipo se muestra en la (Figura 1B) presentes en el resto de las especies, donde la base está engrosada y las células epidérmicas modificadas y a esto le nombra radial (R). El dibujo corresponde a Dilcher (1974, p. 111) y la fotomicrografía corresponde a *Colubrina macrocarpa*. En las descripciones de este trabajo, el primer tipo se describió como

tricomas con base engrosada y células epidérmicas no modificadas (Figura 1A) y al segundo como base radial (Figura 1B).

Figura 1. Base de los tricomas. A, tricoma con base engrosada y células epidérmicas no modificadas. B, tricoma con base radial de células epidérmicas modificadas. Referencias: BT inserción de la base de los tricomas. Ep células epidérmicas no modificadas. R Células epidérmicas modificadas en forma radial.

Figure 1. Trichome bases. A, trichome with thickened base and unmodified epidermal cells. B, trichome with radial base of modified epidermal cells. References: BT trichome base insertion point. Ep unmodified epidermal cells. R Radially modified epidermal cells.

Para las descripciones de la arquitectura foliar se tomaron en consideración los trabajos de (Hickey, 1973 y 1974), Dilcher (1974), Hickey y Wolfe (1975), Gomes *et al.* (2011) y fundamentalmente se siguieron los términos y criterio de Ash, *et al.* (1999). Para la epidermis foliar se consideraron los criterios de Gola *et al.*, (1965); Dilcher (1974), Cortés (1982) y Azcárraga et *al.*, (2010). Los caracteres que se tomaron en consideración son los siguientes:

Caracteres exomorfológico y de arquitectura foliar: tipos de hojas (simples o compuestas), simetría, forma, medidas de largo y ancho, ápice, base, textura, margen, presencia o ausencia de glándulas, peciolo, tipo de arquitectura foliar, venas de primera, segunda, tercera y cuarta categoría.

Caracteres de epidermis foliar: tipos de tricomas, tamaño, base de los mismos y densidad por mm²; forma de células epidérmicas adaxial y abaxial y tipos de paredes; tipos de estomas, longitud, ancho y densidad estomática.

RESULTADOS

A continuación, se describe e ilustra la arquitectura y superficie foliar de las especies de las especies de *Colubrina* estudiadas.

1. - Colubrina greggii S. Wats. (Figura 2)

Láminas foliares simples, simétricas, ovadas a lanceoladas-ovadas o elíptico-ovadas de 4 a 18 cm de largo y 3 a 10 cm de ancho, ápice claramente acuminado, agudo acuminado, acuminado

corto a agudo, base redondeada a truncada a cordada, textura membranosa a semicoriácea, margen serrado con 60 a 130 dientes de cada lado (Figura 2A, B, C, D), sin glándulas (Figura 2E). Peciolo de 4 a 20 mm de largo y 1 a 2 mm de diámetro. Venación acródroma basal imperfecta donde se observan tres venas primarias basales que se originan en un punto de la hoja, la central sigue un curso recto, las dos externas ligeramente curveadas (Figura 2C, D), par inferior de las venas primarias laterales se ramifican (Figura 2C, D), y estas forman arcos en el margen de la lámina foliar y de ahí deriva una vena corta que alimenta a los pequeños dientes marginales (Figura 2E), venas secundarias craspedódromas, ligeramente curveadas y en el margen forman arcos (Figura 2C, D) venas terciarias reticuladas superadyacentes (Lám. 1F), las de cuarta categoría reticuladas (Figura 2F).

Epidermis en vista superficial. Células epidérmicas hexagonales con paredes rectas para ambas superficies (Figura 2G, H). Estomas de tipo anomocíticos en la superficie abaxial de 26.1 μ m de longitud y 17.3 μ m de ancho (Figura 2J), densidad estomática 39/ mm². Tricomas eglandulares en las superficies adaxial y abaxial, unicelulares de 32.3 μ m, de largo, base engrosada y células epidérmicas no modificada, presentes en ambas superficies con una densidad de 12/mm² (Figura 2G, H, I).

Figura 2. *Colubrina greggii.* A.- Lámina foliar de un ejemplar de herbario. B.- Detalle del margen de la lámina foliar, el círculo muestra, la zona donde se ampliaron los pequeños dientes. C y D.- Hojas diafanizada de diferentes formas mostrando las tres venas primarias basales ramificadas. E.- Venas de primera, segunda, tercera y cuarta categoría, venas secundarias formando arcos en el margen de donde deriva una pequeña vena que alimenta a los diminutos dientes (VRD). F.- Venas secundarias, terciarias y cuaternarias reticuladas. G.- Superficie adaxial mostrando un diente, tricomas con base engrosada y células epidérmicas hexagonales no modificadas. H.- Detalle superficie abaxial con tricomas y células epidérmicas hexagonales. I.- Detalles de las bases de los tricomas engrosadas. J.- Estomas anomocíticos. Referencias: BA bases de las láminas foliares donde parten las tres nervaduras de primera categoría. R ramificación del primer par basal de las venas primarias. P vena de primera categoría. S vena de segunda categoría. T vena de tercera categoría. C vena de cuarta categoría. RS ramificación de las venas secundarias que en el margen forma arcos. VRD Vena corta de la ramificación de la vena secundaria que alimenta a un diente marginal. Tr tricoma. BT base del tricoma. E Estoma. El círculo en D corresponde a la porción de la lámina

foliar que se muestra a mayor aumento en la fotomicrografía de la letra E donde también se muestra un mayor acercamiento en la alimentación de la vena que alimenta a los dientes.

Figure 2. *Colubrina greggii.* A. Leaf blade of a herbarium specimen. B. Detail of the leaf blade margin, with a circle indicating the area where small teeth were magnified. C and D. Diaphanized leaves of different shapes showing the three branched primary basal veins. E. First, second, third, and fourth-order veins, secondary veins forming arcs on the margin from which a small vein feeds the tiny teeth (VRD). F. Reticulated secondary, tertiary, and quaternary veins. G. Adaxial surface showing a tooth, trichomes with thickened bases, and unchanged hexagonal epidermal cells. H. Detail of the abaxial surface with trichomes and hexagonal epidermal cells. I. Details of thickened trichome bases. J. Anomocytic stomata. References: BA bases of leaf blades where the three first-order veins originate. R branching of the first basal pair of primary veins. P first-order vein. S second-order vein. T third-order vein. C fourth-order vein. RS branching of secondary veins that form arcs on the margin. VRD Short vein of the branching of the secondary vein that feeds a marginal tooth. Tr trichome. BT trichome base. E Stoma. The circle in D corresponds to the portion of the leaf blade shown at higher magnification in the photomicrograph in letter E, where a closer view of the vein feeding the teeth is also shown.

2. - Colubrina angustior (M. C. Johnston) Nesom (Figura 3) Colubrina greggii S. Wats. var. angustior M. C. Johnston

Láminas foliares simples, simétricas (Figura 3B), ocasionalmente asimétricas en la base (Figura 3A); oblongo lanceoladas de 3 a 10 cm de largo y 2 a 4 cm de ancho, ápice agudo a levemente acuminado, base redondeada, textura membranosa, margen dentado con 50 a 70 pequeños dientes de cada lado (Figura 3D), sin glándulas (Figura 3D). Peciolo de 1 a 2 cm de largo y 1 a 2 mm de diámetro. Vena de primera categoría pinnada de curso recto (Figura 3A, B, C) las secundarias craspedódromas libres con 6 a 7 venas de cada lado, primer par basal ramificado, las terciarias reticuladas superadyacentes, en el margen estas venas alimentan los dientes que pueden o no formar arcos (Figura 3C, D), las de cuarta categoría reticuladas (Figura 3D).

Epidermis en vista superficial. Células de la epidermis adaxial hexagonales con paredes rectas (Figura 3E), las abaxiales con paredes onduladas (Figura 3G). Estomas en la superficie adaxial ausentes, en la abaxial anomocíticos de 26.1 µm de longitud y 17.3 µm de ancho, densidad estomática en promedio de cinco ejemplares 37/mm² (Figura 3G, H). Tricomas eglandulares, con la base engrosada y células epidérmicas no modificada, se presentan en ambas superficies de 34.32 µm de largo con una densidad de 18/mm² (Figura 3F, H).

Figura 3. *Colubrina angustior*. A y B.- Láminas foliares de diferentes formas tomadas de ejemplares de herbario. C.- Detalle de las venas de primera, segunda y tercera categoría. D.- Detalles de las venas marginales de segunda categoría, las de tercera formando o no arcos que alimentan a los pequeños dientes y venas de cuarta categoría reticulada. E.- Células de la epidermis adaxial hexagonales. F.- Detalle de la base de los tricomas engrosada y las células epidérmicas no modificadas. G.- Células de la epidermis abaxial con paredes onduladas. H.- Epidermis abaxial con tricomas y estomas. Referencias: P vena de primera categoría. S venas de segunda categoría. T venas de tercera categoría. C venas de cuarta categoría. Tr tricoma. BT base del tricoma. Di diente del margen. CAd Células de la superficie adaxial. CAb Células de la superficie abaxial. E Estoma.

Figure 3. *Colubrina angustior*. A and B. Leaf blades of different shapes taken from herbarium specimens. C. Detail of first, second, and third-order veins. D. Details of second-order marginal veins, those of the third forming arcs or not that feed the small teeth, and reticulated fourth-order veins. E. Hexagonal cells of the adaxial epidermis. F. Detail of the thickened trichome bases and unmodified epidermal cells. G. Abaxial epidermal cells with undulating walls. H. Abaxial epidermis with trichomes and stomata. References: P first-order vein. S second-order veins. T third-order veins. C fourth-order veins. Tr trichome. BT trichome base. Di marginal tooth. CAd Cells of the adaxial surface. CAb Cells of the abaxial surface. E Stoma.

3. - Colubrina yucatensis (M. C. Johnston) Nesom (Figura 4). Colubrina greggii S. Wats. var. yucatanensis M. C. Johnston

Hojas simples, simétricas, oblongo-lanceoladas de 6.5 a 12 cm de largo y 3 a 7 cm de ancho, ápice agudo, acuminado a corto acuminado, base redondeada a truncada, textura membranácea (Figura 4A, B, C) margen serrulado con más de 80 dientes de cada lado (Figura 4B), sin glándulas (Figura 4D). Peciolo 4 a 20 mm de largo y 1 a 1.5 mm de diámetro. Vena primaria pinnada de curso recto (Figura 4A, C), las secundarias craspedródroma con 6 a 7 venas del lado izquierdo y derecho de la lámina foliar, primer par basal ramificado (Figura 4C), las de tercera categoría reticuladas superadyacentes, en el margen, estas venas alimentan a los pequeños dientes, a veces forman arcos (Figura 4D), las de cuarta categoría reticuladas (Figura 4D).

Epidermis en vista superficial: Células de la epidermis adaxial poligonales con paredes rectas y algunas más gruesas (Figura 4E), en la abaxial las células poseen paredes onduladas (Figura 4G). Estomas ausentes en la superficie adaxial, en la abaxial de tipo anomocíticos de 21.1 µm de longitud y 27 µm de ancho, densidad estomática en promedio de cinco ejemplares de 45/mm² (Lám. 4G). Tricomas eglandulares unicelulares, con base radial de 5 células

pentagonales presentes en ambas superficies de 27.2 μm de largo, con densidad de 27/mm² (Figura 4F).

Figura 4. *Colubrina yucatensis.* A.- Lámina foliar de un ejemplar de herbario. B.- Detalle de la venación de la lámina foliar del ejemplar de herbario y del margen con pequeños dientes. C.- Lámina foliar diafanizada mostrando venas de primera, segunda y tercera categoría. D.- Detalle del margen con venas de tercera categoría alimentando un pequeño diente y venas de cuarta categoría reticuladas. E.- Células epidérmicas adaxiales poligonales con paredes rectas y algunas con paredes más gruesas. F.- Detalle de los tricomas con base radial (nótese la base engrosada y las células epidérmicas modificadas). G.- Células epidérmicas con paredes onduladas, estomas anomocíticos y tricomas. Referencias: P vena de primera categoría. S vena de segunda categoría. T vena de tercera categoría. C vena de cuarta categoría. Tr tricoma. BT base del tricoma. Di diente. CAd Células de la superficie adaxial. CAb Células de la superficie abaxial. E Estoma.

Figure 4. *Colubrina yucatensis*. A. Leaf blade of a herbarium specimen. B. Detail of the leaf blade venation from the herbarium specimen and the margin with small teeth. C. Diaphanized leaf blade showing first, second, and third-order veins. D. Detail of the margin with third-order veins feeding a small tooth and reticulated fourth-order veins. E. Adaxial polygonal epidermal cells with straight walls and some with thicker walls. F. Detail of trichomes with radial base (note the thickened base and modified epidermal cells). G. Abaxial epidermal cells with undulating walls, anomocytic stomata, and trichomes. References: P first-order vein. S second-order vein. T third-order vein. C fourth-order vein. Tr trichome. BT trichome base. Di tooth. CAd Cells of the adaxial surface. CAb Cells of the abaxial surface. E Stoma.

4.- Colubrina macrocarpa (Cav.) G. Don var. macrocarpa (Figura 5).

Hojas simples, simétricas, ovadas a ovado-oblongas de 2 a 9 cm de largo y 1 a 7 cm de ancho, ápice redondeado a veces agudo, base redondeada a truncada a levemente cordada, textura subcoriácea, margen serrado, con 50 a 70 dientes de cada lado (Figura 5A, B) sin glándulas (Figura 5C). Peciolo de 2 a 20 mm de largo y 1 a 2 mm de diámetro. Venación acródroma basal imperfecta, en su curso las tres venas parten de un mismo punto que convergen hacia el ápice (Figura 5B), venas de segunda categoría craspedódromas más o menos rectas, no ramificadas a veces 1-ramificadas que alimentan a los pequeños dientes (Figura 5D), las venas terciarias reticuladas superadyacentes, en el margen de la lámina también alimentan a los pequeños dientes (Figura 5D) con venas libres no ramificadas curveadas (Figura 5D, E).

Epidermis en vista superficial: Células de la epidermis adaxial alargadas con paredes rectas (Figura 5F), en la epidermis abaxial las células son pentagonales con paredes rectas (Figura 5G). Estomas en la abaxial mayoritariamente del tipo anisocíticos, ocasionalmente del tipo pericítico de 22.7 a 23.9 μ m de longitud y ancho respectivamente, densidad estomática 21/ mm² (Figura 5G). Tricomas unicelulares, eglandulares, base radial con 7 células epidérmicas pentagonales, dispuestos en ambas superficies de 25.32 μ m de largo con una densidad de 38/mm² (Lám. 5F).

Figura 5. *Colubrina macrocarpa* var. *macrocarpa*. A.- Lámina foliar de material herborizado. B.- Material diafanizado, detalle de la base. C.- Material diafanizado, detalle del ápice y margen. D.- Detalle del margen donde se aprecia la alimentación de venas de segunda y tercera categoria que alimentan a los pequeños dientes. E.- Detalle de una vena de tercera categoría y en el interior una vena libre no ramificada curveada. F.- Detalle de la base radial de los tricomas y células epidérmicas adaxiales alargadas. G. Células epidérmicas abaxiales anticlinales con estomas anisocítos y pericíticos. Referencias: P venas de primera categoría. S vena de segunda categoría. T vena de tercera categoría. VL vena libre. Tr tricoma. BT base del tricoma. CAd Células de la superficie adaxial. E Ani estomas anisocíticos. Peri estomas pericíticos.

Figure 5. *Colubrina macrocarpa* var. *macrocarpa*. A. Leaf blade from herbarium material. B. Diaphanized material, detail of the base. C. Diaphanized material, detail of the apex and margin. D. Detail of the margin showing the feeding of second and third-order veins that nourish the small teeth. E. Detail of a third-order vein with an interior curved unbranched free vein. F. Detail of the radial base of trichomes and elongated adaxial epidermal cells. G. Abaxial epidermal cells with anticlinal walls, anisocytic stomata, and pericytic stomata. References: P first-order veins. S second-order vein. T third-order vein. VL free vein. Tr trichome. BT trichome base. CAd Cells of the adaxial surface. E Ani anisocytic stomata. Peri pericytic stomata.

5.- *Colubrina lanulosa* (M. C. Johnston) Fernández & Arreguín, comb. *et* stat. nov. (Figura 6). *Colubrina macrocarpa* (Cav.) G. Don var. *lanulosa* (S. F. Blake) M. C. Johnston.

Hojas simples, simétricas, oblonga a oblonga-lanceolada de 3 a 9 cm de largo y 2 a 7 cm de ancho, ápice agudo, base redondeada, textura subcoriácea, margen serrado con más de 50 dientes de cada lado o margen crenado (Figura 6A, B), sin glándulas (Figura 6C). Peciolo de 1.2 a 2 mm de largo y 1 a 1.5 mm de diámetro. Vena de primera categoria pinnada de curso recto (Figura 6A, B), las secundarias craspedródromas, cinco de cada lado, curveadas, el primer par inferior ramificado (Figura 6B) las venas secundarias en el margen 1-ramificadas y alimentan a los pequeños dientes y crenaciones (Figura 6D), las de tercera categoría reticuladas superadyacentes, las marginales alimentan los dientes (Figura 6E), las venas de cuarta reticuladas (Figura 6F).

Epidermis en vista superficial: Células en ambas superficies de la lámina foliar anticlinales con paredes rectas (Figura 6G). Estomas abaxiales mayoritariamente de tipo anisocíticos y algunos anomotetracíticos de 27.1 μ m de longitud y 24 μ m de ancho, densidad estomática 29/mm² (Figura 6G, H). Tricomas eglandulares, unicelulares muy densos en ambas superficies de la lámina foliar insertos en las venas de primera, segunda, tercera y cuarta categoría, base radial con 6 células pentagonales dispuestos en ambas superficies de 25.32 μ m con una densidad de 102/mm² (Figura 6G).

Figura 6. *Colubrina lanulosa* (M. C. Johnston) Fernández & Arreguín, comb. et stat. nov. A.- Lámina foliar de un ejemplar de herbario. B.- Lámina foliar diafanizada mostrando detalle de las venas secundarias inferiores ramificadas. C.- venas secundarias del margen que alimentan a los pequeños dientes. D.- Material diafanizado mostrando detalle de las venas de segunda y tercera categoría que en el margen alimentan a las crenaciones. E. Venas de segunda, tercera y cuarta categoría reticuladas. F.- Detalle de venas de cuarta categoría, los puntos brillantes son la base de los tricomas. G. Detalle de un tricoma con base radial. H. Células epidérmicas abaxiales mostrando estomas anisocíticos y anomotetracíticos. Referencias: P vena de primera categoría. S vena de segunda categoría. T vena de tercera categoría. C vena de cuarta categoría. RS Ramificación de vena secundaria. Cr crenación. Tr tricoma. BT base del tricoma. Anomo estoma anomotetracíticos. Ani estoma anisocítico. El círculo en B corresponde a la porción de la lámina foliar que se muestra a mayor aumento en las fotomicrografías de la letra D y E.

Figure 6. *Colubrina lanulosa* (M. C. Johnston) Fernández & Arreguín, comb. et stat. nov. A. Leaf blade of a herbarium specimen. B. Diaphanized leaf blade showing details of branched lower secondary veins. C. Marginal secondary veins feeding the small teeth. D. Diaphanized material showing details of second and third-order veins that feed the marginal crenations. E. Reticulated second, third, and fourth-order veins. F. Detail of fourth-order veins, with the bright points representing trichome bases. G. Detail of a trichome with a radial base. H. Abaxial epidermal cells showing anisocytic and anomotetracytic stomata. References: P first-order vein. S second-order vein. T third-order vein. C fourth-order vein. RS Branching of secondary vein. Cr crenation. Tr trichome. BT trichome base. Anomo anomotetracytic stomata. Ani anisocytic stomata. The circle in B corresponds to the portion of the leaf blade that is shown at a higher magnification in the photomicrographs of letters D and E.

6.- Colubrina stricta Engelm. ex Blankinship (Figura 7). Colubrina texensis (Torrey & Gray) A. Gray var. pedunculata M.C. Johnston

Hojas simples, simétricas, ovadas a ovado-oblongas de 3 a 7.5 cm de largo y 2 a 4 cm de ancho, ápice redondeado a agudo, base redondeada a truncada, textura subcoriácea, margen diminutamente serrado con 15 a 30 dientes a cada lado, muchas veces casi imperceptibles (Figura 7A, B), sin glándulas (Figura 7C). Peciolo de 1 a 2 cm de largo por 1 a 1.5 mm de diámetro. Vena de primera categoría pinnada con curso recto (Figura 7B), las secundarias caspedódromas, con cinco a seis a cada lado de la lámina foliar, no ramificadas (Figura 7B), las de tercera categoría reticuladas supradyacentes y en el margen alimentan a los diminutos dientes (Figura 7C, D), venas de cuarta categoría reticuladas (Figura 7D, E) que incluyen una vena no ramificada curveada (Figura 7E).

Epidermis en vista superficial: Células epidérmicas adaxiales y abaxiales hexagonales con paredes rectas (Figura 7F, H). Estomas restringidos a la superficie abaxial de tipo anomotetraciticos de 26.1 a 17.3 μ m de longitud y ancho respectivamente, densidad estomática 14/mm2 (Figura 7H). Tricomas eglandulares, unicelulares con base radial de 5 a 7 células pentagonales dispuestos en ambas superficies de 19.54 μ m de largo con densidad de 58/mm² (Figura 7F, G).

Figura 7. Colubrina stricta. A.- lámina foliar de ejemplar de herbario. B.- Lámina foliar diafanizada con venas de primera y segunda categoría. C.- Detalle de un pequeño diente marginal alimentado por una vena de tercera

categoría, venas de primera, segunda y tercera categoría. D.- Detalle de las venas de segunda, tercera y cuarta categoría. E.- Vena de cuarta categoría con una vena incluida. F.- Células epidérmicas adaxiales hexagonales con tricomas de base radial. G.- Células epidérmicas abaxiales con células epidérmicas hexagonales y tricomas con base radial. H. Detalle estoma anomotetracítico. Referencias: P vena de primera categoría. S vena de segunda categoría. T vena de tercera categoría. C vena de cuarta categoría. Tr tricoma. BT base del tricoma. Di diente del margen. VL vena libre. CAd Células de la superfície adaxial. CAb Células de la superfície abaxial. E. Estoma anomotetracítico.

Figure 7. *Colubrina stricta*. A. Leaf blade from a herbarium specimen. B. Diaphanized leaf blade with first and second-order veins. C. Detail of a small marginal tooth fed by a third-order vein, first, second, and third-order veins. D. Detail of second, third, and fourth-order veins. E. Fourth-order vein with an included vein. F. Hexagonal adaxial epidermal cells with trichomes with radial bases. G. Abaxial epidermal cells with hexagonal epidermal cells and trichomes with radial bases. H. Detail of an anomotetracytic stomata. References: P first-order vein. S second-order vein. T third-order vein. C fourth-order vein. Tr trichome. BT trichome base. Di marginal tooth. VL free vein. CAd Cells of the adaxial surface. CAb Cells of the abaxial surface. E. Anomotetracytic stomata.

7. - Colubrina texensis (Torrey & Gray) A. Gray (Figura 8).

Hojas simples, simétricas, estrechamente obovadas, obovado-oblongas a anchamente ovadas, de 1 a 3.7 cm de largo y 0.5 a 2 cm de ancho, ápice redondeado, base redondeada a ancha decurrente, textura subcoriacea, margen serrulado con 10 a 30 dientes a cada lado de la lámina foliar (Figura 8A, B, C) sin glándulas (Figura 8D). Peciolo de 1 a 4 mm de largo y 0.25 a 0.50 mm de diámetro. Vena de primera categoría pinnada con curso recto (Figura 8A, B, C), las secundarias craspedródromas, con tres o cuatro venas a cada lado de la lámina foliar, el par inferior ramificado (Figura 8C), en el margen algunas venas no ramificadas y otras 1-ramificadas que alimentan a los pequeños dientes (Figura 8C, D), venas de tercera categoría reticuladas superadyacentes (Figura 8E), las de cuarta reticuladas con venas 2 o más ramificadas (Figura 8F).

Epidermis en vista superficial: Células epidérmicas adaxiales y abaxiales con paredes onduladas (Figura 8H, I). Estomas en la superficie adaxial ausentes, en la abaxial de tipo anomocítico de 21.1 a 18.4 μ m de longitud y ancho respectivamente, densidad estomática 55/mm² (Figura 8I). Tricomas eglandulares, unicelulares con base radial de 3 a 5 células pentagonales dispuestos en ambas superficies de 18.24 μ m de largo con una densidad de 42/mm² (Figura 8G).

Figura 8. Colubrina texensis. A y B.- Láminas foliares de ejemplares de herbario. C.- Lámina de la hoja diafanizada mostrando venas de primera, segunda y tercera categoría. D.- Detalle de un diente del margen alimentado por la

ramificación de una vena de segunda categoría. E.- Detalle de venas de tercera y cuarta categoría. F.- Detalle de venas de tercera y cuarta categoría con venas ramificadas. G. Detalle de tricomas con la base radial. H.- Detalles de la base radial de los tricomas. I.- Células epidérmicas adaxiales con paredes onduladas. J.- Células epidérmicas abaxiales con paredes onduladas y estomas anomocíticos. Referencias: P vena de primera categoría. S vena de segunda categoría. T vena de tercera categoría. Tr tricoma. VR venas ramificadas. BT base del tricoma. BR base radial de los tricomas. CAd células de la superficie adaxial. CAb células de la superficie abaxial. E estomas anomocíticos.

Figure 8. *Colubrina texensis.* A and B. Leaf blades from herbarium specimens. C. Diaphanized leaf blade showing first, second, and third-order veins. D. Detail of a margin tooth fed by the branching of a second-order vein. E. Detail of third and fourth-order veins with branched veins. G. Detail of trichomes with radial bases. H. Details of the radial base of trichomes. I. Adaxial epidermal cells with undulating walls. J. Abaxial epidermal cells with undulating walls and anomocytic stomata. References: P first-order vein. S second-order vein. T third-order vein. Tr trichome. VR branched veins. BT trichome base. BR radial base of trichomes. CAd cells of the adaxial surface. CAb cells of the abaxial surface. E anomocytic stomata.

En el cuadro 2 se muestra la comparación entre la arquitectura y superficie foliar de las especies estudiadas del género *Colubrina*.

Cuadro 2. Comparación de la arquitectura y anatomía foliar de las especies estudiadas del género *Colubrina*. **Table 2**. Comparison of the leaf architecture and anatomy of the studied species of the genus *Colubrina*.

Especie	Primera	Segunda	Tercera	Cuarta	Alimentación	Celulas	Celulas	Tipos de	Base de los
	categoría	categoría	categoría	categoría	diente	adaxiales	abaxiales	estomas	tricomas
C. greggii	Acrodroma basal imperfecta, par inferior lateral ramificadas	Craspedó- dromas, en el margen forman arcos	Reticuladas super- adyacentes	Reticuladas	De los arcos marginales de las venas de segunda cate- goría sale una vena que alimenta a los dientes	Hexago- nales paredes rectas,	Hexago- nales, paredes rectas	Anomo- cíticos	Base engrosada y células epidérmicas no modificadas
C. angustior	Pinnada	Craspedó- dromas, primer par basal ramificado	Reticuladas super- adyacentes	Reticuladas	Venas tercera categoria alimentan los dientes del margen, pueden o no formar arcos	Hexago- nales, paredes rectas	Paredes onduladas	Anomo- cíticos	Base engrosada y células epidérmicas no modificadas
C. yucatensis	Pinnada	Craspedó- dromas, primer par basal ramificado	Reticuladas super- adyacentes	Reticuladas	Venas tercera categoría alimentan los dientes del margen a veces forman arcos	Poligona- les, paredes rectas	Paredes onduladas	Anomo- cítico	Radial
C. macrocarpa	Acrodroma basal imperfecta	Craspedó- dromas no ramificadas o 1- ramificadas	Reticuladas, super- adyacentes, incluyen venas libres		Venas de segunda y tercera categoría alimentan los dientes del margen	Alargadas paredes rectas	Pentago- nales, paredes rectas	Aniso- cíticosy peri- cítico	Radial
C. lanulosa	Pinnada	Craspedó- dromas,	Reticuladas, en el	Reticuladas	Venas de segunda y	Anticlina- les con	Anticlina- les con	Anomo- citicos	Radial

		par inferior lateral ramificadas	margen alimentan los dientes		tercera categoría alimentan los dientes del margen	paredes rectas	paredes rectas	y anomo- tetra- citicos	
C. stricta	Pinnada	Craspedó- dromas, primer par basal no ramificado	Reticuladas, super- adyacentes	Reticuladas con 1 vena no ramificada	Venas de tercera categoría alimentan los dientes del margen	Hexago- nales paredes rectas	Hexago- nales paredes rectas	Anomo- tetra- citicos	Radial
C. texensis	Pinnada	Craspedó- dromas, primer par basal ramificado	Reticula- das super- adyacentes	Reticula- das con venas 2 o más ramificadas	Venas de segunda categoría y muy pocas de tercera alimentan los dientes del margen	Paredes onduladas	Paredes onduladas	Anomo- cítico	Radial

Al analizar el resultado de la arquitectura y anatomía foliar de las especies y variedades estudiadas se encontraron algunos patrones que las relacionan, pero a la vez, se observaron diferencias que permitieron separarlas como se muestra en la siguiente clave dicotómica.

Clave dicotómica para separar las especies y variedades del género *Colubrina* que crecen en México, según su arquitectura y anatomía foliar

- 1.- Venas de primera categoría acródroma basal imperfecta, las secundarias craspedódromas
- 2.- Tricomas de la lámina foliar con base engrosada y células epidérmicas no modificadas, venas de tercera y cuarta categoría reticuladas, estomas anomocíticos

.....C. greggii

2.- Tricomas de la lámina foliar con base radial, venas de tercera categoría, incluye venas libres no ramificadas, estomas de tipos pericíticos y anomocíticos

.....C. macrocarpa var. macrocarpa

1.- Vena de primera categoría pinnadas, las secundarias craspedódroma

- 3.- Tricomas de la lámina foliar con base radial
- 4.- Par basal de las venas secundarias ramificadas
- 5.- Venas de cuarta categoría reticuladas con venas dos o más veces ramificadas, células epidérmicas adaxiales y abaxiales con paredes onduladas*C. texensis*
- 5.- Venas de tercera y cuarta categoría reticuladas sin venas libres incluidas

DISCUSIÓN

La base de los tricomas es un carácter importante que permitió separar las especies, la mayoría de ellas presentan tricomas con base radial y solo *Colubrina greggii* y *C. angustior* muestran tricomas con base engrosada y células epidérmicas no modificada semejantes a los que presentan el género *Gouania*, Rhamnaceae (Hérnández *et al.*, 2021).

Johnston (1971, p. 8) en las claves para separar los taxones de los subgéneros de *Colubrina*, en especial el subgénero Serrataria incluye a los siete taxones estudiados en este trabajo, menciona que las especies presentan el margen de las hojas serrado con más de diez dientes y cada uno de ellos está asociados con glándulas marginales, sin embargo, en los materiales diafanizados de este trabajo no se apreciaron glándulas en los dientes y las pequeñas protuberancias corresponden a las venas secundarias o terciarias que alimentan a cada uno de ellos.

En este mismo trabajo de Johnston (1971, p. 37) reconoció tres grupos de especies con sus respectivas variedades; *Colubrina greggii* con tres, *C. texensis* con dos y *C. macrocarpa* con tres. Sin embargo, Nesom (2013 p. 11) consideró las tres variedades de *C. greggii* como tres especies y las separa por la forma de las hojas, el tamaño de la planta y por el número de flores que presentan las inflorescencias así como la distribución geográfica. A partir de los caracteres de arquitectura foliar y anatomía de la epidermis fue posible separar estos taxones por los siguientes caracteres:

En los resultados de este trabajo *C. greggii* mostró venación acródroma basal imperfecta, tricomas de la lámina foliar con la base engrosada y células epidérmicas no modificadas, además presenta células de la epidermis adaxiales y abaxiales hexagonales con paredes rectas. *C. angustior* con venación craspedódroma, tricomas con base engrosada y células epidérmicas no modificadas, células adaxiales y abaxiales hexagonales con paredes rectas y *C. yucatanensis* con el mismo tipo de venación, tricomas de la lámina foliar con base radial, células epidérmicas adaxiales poligonales con paredes rectas y las abaxiales con paredes onduladas. Lo anterior justifica el reconocimento de las especies propuestas por Nesom (2013); en donde el complejo de *C. greggii* presenta caracteres en común como los estomas anomocíticos y las venas de tercera y cuarta categoría reticuladas.

Johnston (1971, p. 43) reconoció las variedades de *Colubrina texensis* var. *texensis* y *C. texensis* var. *pedunculata*, aunque anteriormente Johnston (1969) consideró a este último taxón de origen híbrido entre *C. texensis* y *C. greggii*, pero decidió dejarla como la variedad de *C. texensis* var. *pedunculata*. Posteriormente Engelmann decide describirla como *C. stricta* Engelmann ex M.C. Johnston (1969, p. 257), por lo que *Colubrina texensis* var. *pedunculata* pasa a ser sinónimo de *C. stricta*.

Posteriormente Nesom (2013, p. 1) las consideró como dos especies, una de ellas como *C. texensis* antes considerada como la variedad tipo y la segunda la valida como *Colubrina stricta* argumentando que *C. texensis* y *C. stricta* son parcialmente simpátricas, pero morfológicamente distintas.

Con respecto al punto anterior, Nesom (2013) separa a C. texensis y C. stricta por las características del tamaño de las flores, largo del pedicelo, tipos de inflorescencia, ramas

derechas o en zigzag y la distribución geográfica. Desde el punto de vista de la arquitectura foliar y las características epidérmica se separan por los siguientes caracteres: *C. texensis* con el par basal de venas secundarias ramificadas, venas terciarias reticuladas y las cuaternarias con venas dos o más veces ramificadas, células epidérmicas adaxiales y abaxiales con paredes onduladas, estomas anomocíticos; mientras que *C. stricta* no presenta el par basal de venas secundarias ramificadas, venas de cuarta categoría con una vena no ramificada, células epidérmicas adaxiales y abaxiales y abaxiales hexagonales con paredes rectas, estomas anomotetracitico.

Lo anterior justificaría la separación de las especies propuestas por Nesom (2013). El complejo de *C. texensis* tiene en común las venas de primera categoría pinnadas y las venas de segunda categoría craspedódromas, las venas de tercera categoría reticuladas y las de cuarta incluyen venas no ramificadas o dos o más veces ramificadas, tricomas con base radial.

Con lo que respecta a las variedades de *Colubrina macrocarpa*, Johnston (1971, p. 41) reconoce tres, la variedad tipo y las otras son *C. macrocarpa* var. *lanulosa* y *C. macrocarpa* var. *macrocarpiodes*, esta última conocida solo de la localidad tipo en Querétaro entre San Juan del Río y Hacienda Ciervon en el municipio de Cadereyta, recolectada por Rose *et al.* en 1905 y no se ha vuelto a encontrar, por lo que se excluye en este trabajo por la falta de material foliar. Las variedades de *Colubrina macrocarpa* var. *macrocarpa* y *C. macrocarpa* var. *lanulosa*, Johnston (1971, p. 42) las separa por las siguientes características:

C. macrocarpa var. *macrocarpa* son arbustos de 1 a 1.5 m, lámina foliar 1.1 a 1.4 veces más largas que anchas, superficie adaxial con pubescencia uniforme, diminuta, estrigosa, sólo cerca de las venas con un tomento algo apretado de tricomas sedosos rojizos; pecíolos de 1 a 1.5 mm de espesor; inflorescencia tirsoide de10 a 30 flores, de alrededor de 1 cm de largo, en cambio *C. macrocarpa* var. *lanulosa* son arbustos de hasta 3 m de altura, láminas foliares 1.3 a 1.6 veces más largas que anchas, superficie adaxial densamente rojizo-estrigoso, superficie abaxial con un tomento denso, suelto, rojizo-sedoso; pecíolos de 1.5 a 2 mm de espesor; inflorescencia tirsoide de 20 a 50 flores, de alrededor de 2 cm de largo.

Las características de arquitectura y anatomía foliar que se encontraron es este trabajo son las siguientes:

C. macrocarpa var. *macrocarpa* con venación acródroma basal imperfecta, venas de tercera categoría con una vena libre incluida, estomas anisocíticos con algunos pericíticos y *C. macrocarpa* var. *lanulosa* presenta venación craspedródroma, venas de tercera y cuarta categoría reticuladas, estomas anisocíticos y algunos anomotetracíticos. La arquitectura y anatomía foliar permite separar estas dos variedades, por lo que se propone una combinación y estatus de una nueva especie de *Colubrina lanulosa* (M. C. Johnston) Fernández & Arreguín y como sinónimo a *C. macrocarpa* var. *lanulosa*.

Colubrina lanulosa (M. C. Johnston) Fernández & Arreguín, comb. et stat. nov. *Colubrina macrocarpa* (Cav.) G. Don var. *lanulosa* (S. F. Blake) M. C. Johnston, Brittonia 23: 41. 1971. Tipo: MEXICO. Guerrero. Volcanic soil, Tlacotepec, ca. 17°40' N lat., 100°00' W long., 1600 m, 10 jun 1899, Langlassé 1053 (HOLOTYPO GH!).

Arbustos de hasta 3 m de altura, hojas simples, simétricas, oblonga a oblonga-lanceolada de 3 a 9 cm de largo y 2 a 7 cm de ancho, ápice agudo, base redondeada, textura subcoriácea, margen serrado con más de 50 dientes de cada lado o margen crenado, sin glándulas. Peciolo de 1.2 a 2 mm de largo y 1 a 1.5 mm de diámetro, superficie adaxial densamente rojizo-estrigoso, superficie abaxial con un tomento denso, suelto, rojizo-sedoso; pecíolos de 1.5-2 mm de espesor; inflorescencia tirsoide de 20-50 flores, de 2 cm de largo.

Venas de primera categoría pinnada de recorrido recto, las secundarias craspedródromas, cinco de cada lado, curveadas, el primer par inferior ramificado, las venas secundarias en el margen son 1-ramificada y alimentan a los pequeños dientes o crenaciones, las terciarias reticuladas

superadyacentes y las marginales alimentan los dientes, las venas cuaternarias reticuladas. Epidermis en vista superficial con células en ambas superficies de la lámina foliar anticlinales. Estomas abaxiales mayoritariamente de tipo anisocítocos y algunos anomotetracíticos de 27.1 μ m de longitud y 24 μ m de ancho, densidad estomática 29/mm². Tricomas eglandulares, unicelulares muy densos en ambas superficies de la lámina foliar insertos en las venas de primera, segunda, tercera y cuarta categoría, con base radial de 6 células pentagonales dispuestos en ambas superficies de 25.32 μ m con 102/ mm².

Distribución: Se le conoce solo del estado de Guerrero.

Colubrina lanulosa (M. C. Johnston) Fernández & Arreguín, comb. et stat. nov.

Shrubs up to 3 m high, leaves simple, symmetrical, oblong to oblong-lanceolate, 3 to 9 cm long and 2 to 7 cm wide, acute apex, rounded base, subcoriaceous texture, serrated margin with more than 50 teeth, each side or margin crenate, without glands. Petiole 1.2-2 mm long and 1-1.5 mm in diameter, adaxial surface densely reddish-strigous, abaxial surface with a dense, loose, reddish-silky tomentum; petioles 1.5-2 mm thick; thyrsoid inflorescence of 20-50 flowers, 2 cm long.

First category pinnate veins with a straight course, the secondary ones craspeddromous, five on each side, curved, the first lower pair branched, the secondary veins on the margin are 1-branched and feed the small teeth or crenations, the tertiary reticulated superadjacent and the marginal ones feed the teeth, the quaternary reticulated veins. Epidermis in superficial view with anticlinal cells on both surfaces of the leaf blade. Abaxial stomata, mostly anisocytotic and some anomotetracytic, 27.1 μ m in length and 24 μ m in broad, stomatal density 29/mm². Eglandular, single-celled, very dense trichomes on both surfaces of the leaf blade inserted in the veins of the first, second, third and fourth category, with a radial base of 6 pentagonal cells arranged on both surfaces of 25.32 μ m with 102/mm².

Distribution: It is known only from the state of Guerrero.

Colubrina lanulosa (M. C. Johnston) Fernández & Arreguín, comb. et stat. nov.

Frutices usque ad 3 m alta, foliis simplicibus, symmetricis, oblongis vel oblongo-lanceolatis, 3 ad 9 cm longis et 2 ad 7 cm latis, apice acutis, basi rotundatis, textura subcoriaceis, margine serratis plusquam 50 dentibus. margine crenata, sine glandulis. Petiolum 1.2 ad 2 mm longum et 1 ad 1.5 mm diametro, superficie adaxiali dense rufo-strigore, superficie abaxiali denso, laxo, tomento rubro-sericeo; petioli 1,5 ad 2 mm crassi; inflorescentia thyrsoidea 20 ad 50 florum, 2 cm longa.

Prioris generis venae pinnatae recto cursu, secundariae craspeddromae, utrinque quinque, curvatae, primo inferiores par ramosae, venae secundariae in margine 1-ramosae sunt et dentes vel crenationes parvos, tertiariis reticulatis superadiacentibus pascunt marginales dentes pascunt, venae quaternariae reticulatae. Epidermis in visu superficiali cum cellulis anticlinalibus utrinque foliorum laminae. Stomata abaxialia, plerumque anisocytotica et quaedam anomotetracytica, 27.1 μ m longitudine et 24 μ m lata, densitas stomatalis 29/mm². Eglandulare, unico-cellulatum, trichomatum densissimum in utraque parte laminae folii in venis primae, secundae, tertiae et quartae insertae, cum basi radiali cellularum 6 pentagonarum in utraque superficie 25.32 μ m cum 102/ mm² dispositae.

Distributio: Ex statu Guerrero notum est.

CONCLUSIONES

Fue posible separar los siete taxones estudiados utilizando caracteres de arquitectura y superficie foliar como tipo de venación, base de los tricomas, características de las células epidérmicas adaxiales y abaxiales y los tipos de estomas.

Se apoya la separación de especies propuestas por Nesom (2013) debido a que los datos que aporta la arquitectura foliar y la superficie epidémica permitieron separar estos taxones.

Se propone una combinación y estatus de una nueva especie a *Colubrina lanulosa* (M. C. Johnston) Fernández & Arreguín.

LITERATURA CITADA

- Aguirre Claverán, R., y Arreguín Sánchez, M. L. (1988). Claves de familias, géneros, especies y variedades de Pteridofitas de Nuevo León. *An. Esc. Nac. Cienc. Biól.*(29), 29-41.
- Ash, , A., Ellis, , B., Hickey, L. J., Johnson, K. R., Wilf, P., & Wing, S. L. (199). Manual of Leaf Architecture - morphological description and categorization ofdicotyledonous and net-veined monocotyledonous angiosperms by Leaf Architecture Working Group. 65 p. Institución Smithsonian. https://www.researchgate.net/publication/270216765 Manual of Leaf Architecture -

Morphological description and categorization of dicotyledonous and net-

veined monocotyledonous angiosperms

- Azcárraga, Rosette, M., Bonfil Campos, A., Jácquez Ríos, M., y Sandoval Zapotitla, E. (2010). Atlas de Anatomía Vegetal. (F. d. Cuautitlán, Ed.) Ciudad de México, México: U.N.A.M. Dirección General de Publicaciones y Fomento Editorial.
- Colares, M. N., & Arambarri, A. M. (2008). Ziziphus mistol (Rhamnaceae): Morfoanatomía y Arquitectura Foliar. Lat. Am. J. Pharm., 27(4), 568-577.
- Cortés, F. (1982). Cuadernos de Histología Vegetal. Ed. Marban. Madrid, España.
- Dilcher, D. L. (1974). Approaches to the Identification of Angiosperm Leaf Remains. *Bot. Rev.*, 40(1), 1-157.
- Fernández N., R. (1993). La familia Rhamnaceae en México. Tesis de doctorado. Escuela Nacional de Ciencias Biológicas. Instituto Politécnico Nacional.
- Fernández N., R. (1996). Rhamnaceae. *Flora del Bajío y de Regiones adyacentes* (Fascículo 43), 1-69.
- Fernandez N., R. (2010). Nombres comunes, etnobotánica y distribución geográfica del género *Colubrina* (Rhamnaceae) en México. *Revista Científica UDO Agrícola, 10*(1), 7-22.
- Gola, G., Negri, G., y Cappelletti, C. (1965). *Tratado de Botánica. Segunda edición*. Ed. Labor, S. A. México.
- Gomes Bezerra, K. M., Soares Silva, L. H., y Gomes, S. M. (2011). Arquitectura foliar de las Lauraceae del Distrito Federal, Brasil y nuevos patrones de venación propuesto. *Gayana Bot, 68*(1), 1-15.
- Hernández P., K., Fernández N., R., y Arreguín S., M. L. (2021). Arquitectura foliar y anatomía epidérmica de las especies mexicanas del género *Gouania* (Rhamnaceae). *Polibotánica*(52), 151-176.
- Hickey, L. J. (1973). Classification of the Architecture of Dicotyledonous Leaves. Amer. J. Bot., 60(1), 17-33.
- Hickey, L. J. (1974). Clasificación de la arquitectura de las hojas de dicotiledoneas. *Bol. Soc.* Argent. Bot., 16(1-2), 1-26.
- Hickey, L. J., & Wolfe, J. A. (1975). The Bases of Angiosperms Phylogeny: Vegetative Morphology. Ann. Mo. Bot. Gard. (62), 538-589.
- Johnston, M. (1963). Novelties in *Colubrina* including *Cormonema* and *Hybosperma*. *Wrightia*(3), 91-96.
- Johnston, M. C. (1969). Colubrina stricta Engelmann ex M. C. Johnston (Rhamnaceae), new species from Texas, Nuevo Leon and Coahuila. The Southwestern Naturalist, 14(2), 257. doi:https://doi.org/10.2307/3668886
- Johnston, M. (1971). Revision of Colubrina (Rhamnaceae). Brittonia (23), 2-53.
- Martínez, M. (1979). Las Ramnáceas. En: Flora del Estado de México. Biblioteca Enciclopédica del Estado de México. *Biblioteca Enciclopédica del Estado de México*(1), 282-286.

POLIB®TÁNICA

	Mover P. & Maala S. (1078). Mombalagical characteristics of looves and stome of selected
Recibido: 26/junio/2023	 Neger, K., & Nicola, S. (1978). Morphological characteristics of leaves and stems of selected Texas Woody plants. U.S. Departament of Agriculture Technical Bulletin(1564), 1-200. Nesom, G. (2013). Taxonomic notes Colubrina (Rhamnaceae). Phytoneuron(4), 1-21. Schirgrend, C. (1991). The Systematic Wood anatomy of the Rhamnaceae luss. (Rhamnales). I.
	Tribu Zizipheae. <i>Iawa Bull. n.s.</i> , 12(4), 359-388.
Aceptado: 12/enero/2024	Shisode, S. B., & Patil, D. A. (2011). Petiolar anatomy in some Rhamnaceae. <i>Current Botany</i> , 2(9), 22-25.
	Standley, P. C. (1923). Rhamnaceae. Trees and Shrubs of Mexico. Contr. U.S. Nat. Herb.
	 23(6), 710-727. Wiggins, I. L. (1964). Vegetation and Flora of the Sonoran Desert. Stanford University Press. (2) 856-869
	Wiggins, I. L. (1980). Flora of Baja California. Stanford University Press. Calif. pp 780-787.