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Abstract—Memetic algorithms (MA), explored in recent
literature, are hybrid metaheuristics formed by the synergistic
combination of a population-based global search technique with
one or more local search algorithms, which in turn can be
exact or stochastic methods. Different versions of MAs have
been developed, and although their use was focused originally
on combinatorial optimization, nowadays there are memetic
developments to solve a wide selection of numerical type
problems: with or without constraints, mono or multi objective,
static or dynamic, among others. This paper presents the design
and application of a novel memetic algorithm, MemMABC,
tested in a case study for optimizing the synthesis of a four-bar
mechanism that follows a specific linear trajectory. The proposed
method is based on the MABC algorithm as a global searcher,
with the addition of a modified Random Walk as a local
searcher. MABC is a modified version of the Artificial Bee Colony
algorithm, adapted to handle design constraints by implementing
the feasibility rules of Deb. Four-bar mechanisms are a good
example of hard optimization problems, since they are used in a
wide variety of industrial applications; simulation results show a
high-precision control of the proposed trajectory for the designed
mechanism, thus demonstrating that MemMABC can be applied
successfully as a tool for solving real-world optimization cases.

Index Terms—Four-bar mechanism, hard optimization,
memetic algorithm, random walk.

I. INTRODUCTION

METAHEURISTICS are algorithms designed to solve
a wide variety of hard optimization problems in an

approximate way, using trial and error techniques. The general
characteristics of a metaheuristic are: it is inspired on natural
or artificial processes, uses stochastic components (involving
random variables), and has a series of parameters that must
be adjusted to the specific case [1].
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Population-based metaheuristics start from an initial set of
solutions or proposed individuals to find the optimal value or
values of a problem, and there are two general groups of these
algorithms: evolutive computing and swarm intelligence. The
two main tasks of modern metaheuristics are diversification
(exploration) and intensification (exploitation) [2]. Techniques
based on population are good for exploring, but usually are
deficient when exploiting [1]. Several alternatives have been
developed in order to solve this weakness, and Memetic
Algorithms (MAs) highlight between them for synergically
combining the global search dynamics of a population
metaheuristic with the refinements of a local search (LS), in
order to obtain a hybrid method of solution [3], [4].

The first MAs were taken with suspicion because of their
metaheuristic nature, but in the last decade these techniques
have been applied successfully to solve different problems
including numerical cases with constraints, and dynamic
multi-objective optimization [3], [5]–[7]. In the real world,
they have been used in security and cryptanalysis [8], control
systems [9], task scheduling and routing [10], and data
classification [11], among others.

In mechanical engineering, synthesis is the design process
of machines or mechanical systems [12]. The purpose of the
mechanism determines the type of synthesis to carry out:
generation of motion, function or trajectory. In the synthesis
for function generation, an input motion to the mechanism is
correlated with another for output; in trajectory generation,
a point is controlled to track a line in a plane, such that it
assumes a prescribed set of sequential positions [13]. This
work addresses the dimensional synthesis of a mechanism:
calculate the length of the necessary links for tracking a
specific trajectory.

The four-bar mechanism has been widely used in
engineering design, since it is the simplest articulated
mechanism for controlled movement with a degree of freedom.
The synthesis of four-bar mechanisms for trajectory tracking is
a well-known numerical problem previously explored in depth,
and classical approaches have been used for this synthesis,
including graphical and analytical methods; however, they
have a limitation regarding the number of points to be tracked,
since solutions are extremely complicated for problems with
more than four points. For this reason, the design of these



mechanisms is a typical case of hard numerical optimization.
Hard optimization problems can’t be solved in an optimal

way or to a guaranteed limit using deterministic methods and
with normal computing resources. Taking into account that
most real-world optimization cases are hard problems, it is
necessary to develop alternative methods for their solution.
In the search of new ideas for improving the performance of
metaheuristics several models have been implemented, based
on natural or artificial processes.

In this work, the design of a new memetic algorithm
(MemMABC) is presented, with its application to the
optimal synthesis of a four-bar mechanism for the control
of a trajectory delimited by a set of N precision points
tracked by the coupler. MemMABC is a combination of
MABC and a version of the Random Walk algorithm (RW)
modified for handling design constraints by implementing
the feasibility rules of Deb. Although these building blocks
are well-known methods usually they are applied only in an
individual way; this is a novel approach to solve constrained
problems of numerical optimization by combining synergically
two strategies of different nature, applied to a real-world
engineering case.

The paper is organized as follows: Section 2 shows the
basic model of memetic algorithms and the implementation of
local search stages. In Section 3, the MemMABC algorithm
is introduced, with an analysis of both its global and local
searchers. Section 4 describes the problem of mechanism
synthesis, with a brief explanation of the kinematics. A case
study with a specific optimization problem is analyzed in
Section 5, including the description of the design variables.
Section 6 presents the applied algorithm, with special emphasis
on its computational implementation. Finally, experimental
results are reported in Section 7, while the conclusions of this
paper are included in Section 8.

II. MEMETIC ALGORITHMS

Early work on MAs dates from the 80s [1], [14]; as a
consequence of the strengthening in evolutive algorithms, new
ideas were implemented in order to improve their performance,
once that their limitations were known. In 1989, Moscato [15]
proposed the memetic algorithms, to simulate the cultural
evolution process derived from Lamarck’s evolution theory and
the meme, presented by R. Dawkins as the equivalent to the
gene in natural evolution. MAs constitute a general method
based on the sinergetic combination of algorithms for global
and local search, in a new optimization philosophy [16]. A
meme corresponds to recurrent patterns in real world or to
specific knowledge, and is coded for the effective solution of
problems as the building block of cultural know-how that is
transmissible and reproducible [17], [18].

Three stages can be identified in the evolution of MAs [4]:
1) Applications are made by simple combination of an

evolutive algorithm and a specialized method of local
search.

2) Multiple memes are used, and the developments include
any population-based algorithm as a global search tool.

3) Explicit mechanisms of learning are incorporated
(adaptive MAs), with the use of exact methods in tandem
configuration for local search.

MAs of first and second stages are still being developed
because of their simplicity and efficiency, with an improve-
ment over the performance of previously applied single
metaheuristics.

A. Basic Model of a Memetic Algorithm

Figure 1 shows the block diagram of a basic population
metaheuristic, indicating the four points where a local search
can be included in order to form a MA [19], [20]:

1) On the population, to simulate the cultural development
that will be transmitted from one generation to another;
it can be applied to the whole set of agents or to specific
elements, and even to the initial group.

2) On the parent or selected parents, before reproduction
stage.

3) When new solutions are generated, to produce a better
offspring.

4) On the offspring, before selecting a survivor according
to fitness criteria.

Population (1)

Parent(s) (2)

Offspring (4)

Reproduction
Operators

(3)

Survivors
selection

Generation
of

the initial
solution set

Parents
selection

Fig. 1. Block diagram of a basic population metaheuristic

From this basic model several versions of MAs have been
developed, differing between each other in at least one of the
following aspects:

– Population metaheuristic used as a base.
– Selected algorithm for local search (exact method or

metaheuristic, number of memes to consider.)
– Conditions for local search (trigger event, frequency,

intensity, number of individuals to improve, etc.) [18],
[21].

Originally MAs were based on evolutive algorithms but
nowadays their implementation with swarm intelligence
methods is common, using algorithms such as Particle Swarm
Optimization (PSO) [11], Artificial Bee Colony (ABC) [22],
Harmony Search (HS) [23], and Fire Fly (FF) [24].



B. Local Search

Local search algorithms are stochastic or deterministic
methods that take as an input a solution generated randomly
or by a specific algorithm, looking for transitions with the
neighbors to this point at a given time. The goal is to find a
better individual and to convert it in the next configuration,
maintaining the original element if no improvement is
detected [25]. The concept of vicinity is fundamental for LS
since it represents the search area for individual refinement; in
the case of combinatorial optimization this area is formed by
the set of all solutions that can be reached by a unitary change
in the current individual, while in continuous or numerical
problems it is a dense set formed by an infinite number of
points, and a modification strategy is required to find the
neighbors [20].

Finding a good balance between the components of global
and local search is one of the main design goals in a MA, and
can be seen as an optimization process per se. From the way a
memetic algorithm is compounded and in the implementation
of its LS, it is seen that the equality MA = GS + LS is
incorrect, since both searches are interrelated and are not
designed as independent stages [14].

C. Classification of MAs

A MA can be classified as simple (canonical) or
adaptive [26]. Simple MAs are characterized for a priori
knowledge of the problem domain, that is incorporated to the
algorithm design and produces a static behavior; in spite of
belonging to the first generation of MAs, canonical hybrids
are still popular for their easy implementation, particularly
because of the use of genetic algorithms as global searchers.

On the other hand, adaptive MAs acquire information during
their execution (learning), so they are able to reconfigure not
only their parameters but their operators at run time, in order
to adapt themselves to specific circumstances or instances of
the problem [18]. The design of an adaptive MA requires to
consider such aspects as the selection of subsets with agents
for applying the fine search, the frequency and intensity of LS
stages, the selection of procedures for the improvement, and
the convergence of the population [6], [22].

III. MEMMABC ALGORITHM

The Artificial Bee Colony is a swarm intelligence
algorithm introduced by Karaboga as a method for numerical
optimization [27], inspired on the behavior of bee hives in two
natural processes: the recruitment of bees for the exploitation
of food sources and the abandonment of exhausted sources.
In ABC, the bees in a hive are divided in three groups:
employed, onlookers and scouts, and each group represents
an evaluation stage. There is an employed bee assigned to
each source, and from this point the bee calculates a new
solution and keeps the best of both. The number of onlookers
is the same as the employed bees, and their assignation to
sources is determined by the performance of such sources.

The onlookers also calculate new solutions from their assigned
source. Finally, when a source can’t improve after a specified
number of cycles, it is abandoned and replaced by a new one
found by a scout bee.

Several versions of ABC have been developed; the
modification proposed in [28], MABC, has an adaptation for
constrained numerical optimization with a tournament-type
selection based on the feasibility rules of Deb [29]. These
criteria improve the process for selecting solutions at each
iteration, by choosing the most feasible individual instead of
the one with the best value for the objective function:

1) Between two feasible solutions, the best objective
function value is preferred.

2) Between a feasible solution and another infeasible, the
feasible is selected.

3) Between two infeasible solutions, the lowest sum of
constraint violations (CVS) is preferred.

In this development a novel canonical MA, MemMABC,
was designed taking as a base the MABC algorithm for
global searching, with a modification to include a LS
activated by time; Algorithm 1, A1, shows this memetic.
The trigger for the LS stages is controlled by the variable
Frequency, which indicates the period between an event of
LS and the next one, in terms of a number of cycles or
generations (line 39, A1). Although the iterations in original
ABC and MABC are controlled by the number of cycles,
MemMABC uses a variation to stop after a fixed number of
objective function evaluations. This implementation permits a
fair comparison [30] of MemMABC with other algorithms,
specifically with MABC for the purposes of this work.

Algorithm 2, A2, shows the implementation of the local
search method in MemMABC. It is a version of RW, modified
to handle constraints by implementing the rules of Deb (line
21, A2). RW was chosen because of their easy implementation,
since this method does not require the derivative of the
objective function to calculate its gradient or its Hessian.
Another modification was introduced to the original RW in
order to reduce the computing effort and execution time, taking
into account the complexity and high dimensionality of some
real-world problems. RW requires the random generation of
a number set R with values in the interval [-1,1], whose
cardinality corresponds to the number of design variables, n.
The values in R are transformed into search directions, so
it is necessary to avoid a bias toward the diagonals of the
unit hypercube surrounding the initial search point [31]. The
random numbers generated are accepted only if R < 1, with
R being computed as

R = (r21 + r22 + ...+ r2n)1/2 (1)

But when the problem to solve has a high dimensionality
the algorithm can take several iterations to find a valid
combination. This can be avoided if the elements on R are
downsized when generated, using a constant divider (line 10,
A2). The resultant array is a subset of R, so it is a valid
combination. Finally, the LS depth or intensity is controlled by



Algorithm 1. MemMABC

1 begin
2 set Frequency,MaxEvs ;
3 Evaluations = 0, g = 1;
4 initialize the set of food sources x0i , i = 1, ..., SN ;
5 evaluate CVS and objective function for

x0i , i = 1, ..., SN ;
6 if there are equality constraints then initialize ε(g);
7 repeat
8 if there are equality constraints then
9 evaluate each x0i , i = 1, ..., SN with ε(g);

10 end
11 for I = 1 to SN do
12 generate vgi with xg−1

i ;
13 evaluate CVS and objective function for vgi ;
14 Evaluations = Evaluations+ 1 ;
15 if vgi is better xg−1

i (Deb’s criteria) then
16 xgi = vgi ;
17 else
18 xgi =xg−1

i ;
19 end
20 end
21 for I = 1 to SN do
22 select food source xgi based on binary

tournament selection;
23 generate vgi with xgi ;
24 evaluate CVS and objective function for vgi ;
25 Evaluations = Evaluations+ 1 ;
26 if vgi is better than xg−1

i (Deb’s criteria) then
27 xgi = vgi ;
28 end
29 end
30 apply smart flight to those solutions whose limit

to be improved has been reached;
31 make Evaluations = Evaluations+ 1 for

every source improved ;
32 keep the best solution so far x(Best)g;
33 g = g + 1;
34 if there are equality constraints then update ε(g);
35 if ((g)mod(Frequency)) == 0 then
36 apply RW to x(Best)g;
37 TryLimit(Best)g = 0;
38 end
39 until Evaluations >= MaxEvs;
40 end

the parameter MaxEvs, who indicates the maximum number
of evaluations for each activation.

IV. ANALYSIS OF THE FOUR-BAR MECHANISM

A planar four-bar mechanism is formed by a reference bar
(r1), a crank or input bar (r2), a coupler (r3), and a rocker

Algorithm 2. Local search using RW

1 begin
2 set MaxIter,MaxCount;
3 take best solution so far as initial point X0;
4 evaluate CVS and objective function for X0;
5 Iterations = 1, Go = True, Evaluations = 1;
6 while Go==True do
7 repeat
8 R = 0;
9 for J = 1 to V ar do

10 Dir(J) = −0.1 + 2 ∗ rand(1, V ar)/10;
11 R = R+Dir(J)2;
12 end
13 R = sqrt(R);
14 until R < 1;
15 for J = 1 to V ar do
16 U(J) = Dir(J)/R;
17 XTry(J) = X1(J) + λ ∗ U(J);
18 end
19 evaluate SVR and objective function for XTry;
20 Evaluations = Evaluations+ 1 ;
21 select best from XTry and X0 using Deb’s

criteria;
22 if MaxIter < Iterations then
23 λ = λ/2;
24 Iterations = 1;
25 if λ <= ε then
26 Go = False;
27 end
28 else
29 Iterations = Iterations+ 1;
30 end
31 if Evaluations >= MaxCount then
32 Go = False;
33 end
34 end
35 end

or output bar (r4), as is shown in Figure 2. Two coordinate
systems are proposed in order to analyze this mechanism: a
system fixed to the real world (OXY ) and another for self
reference (OXrYr), where (x0, y0) is the distance between the
origin of both systems, θ0 is the rotation angle of the reference
system and θi (i = 2, 3, 4) corresponds to the angles for the
bars in the mechanism; finally, the coordinate pair (rcx, rcy)
indicates the length of the support bars to position the coupler
C.

A. Kinematics of the mechanism

The kinematics of four-bar mechanisms have been
extensively treated, detailed explanations are in [32] and [33].
For analyzing the mechanism position the closed loop equation
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Fig. 2. Four-bar mechanism

can be established as:

~r1 + ~r4 = ~r2 + ~r3 (2)

Equation (2) can be expressed in polar notation as:

r1e
jθ1 + r4e

jθ4 = r2e
jθ2 + r3e

jθ3 (3)

After applying Euler’s equation to (3), the real and imaginary
parts are:

r1cosθ1 + r4cosθ4 = r2cosθ2 + r3cosθ3

r1sinθ1 + r4sinθ4 = r2sinθ2 + r3sinθ3 (4)

Left side of equation system (4) can be expressed in terms of
θ4 to obtain the angular position θ3:

r4cosθ4 = r2cosθ2 + r3cosθ3 − r1cosθ1
r4sinθ4 = r2sinθ2 + r3sinθ3 − r1sinθ1 (5)

The compact form of Freudenstein’s equation is obtained by
squaring the system (5) and adding its terms, as:

A1cosθ3 +B1sinθ3 + C1 = 0 (6)

with:

A1 = 2r3 (r2cosθ2 − r1cosθ1) (7)
B1 = 2r3 (r2sinθ2 − r1sinθ1) (8)
C1 = r21 + r22 + r23 − r24 − 2r1r2cos (θ1 − θ2) (9)

θ3 can be obtained as a function of the parameters A1, B1,
C1 and θ2, expressing sinθ3 and cosθ3 in terms of tan (θ3/2)
as follows:

sinθ3 =
2tan(θ3/2)

1 + tan2(θ3/2)
, cosθ3 =

1− tan2(θ3/2)

1 + tan2(θ3/2)
(10)

A second-order lineal equation is obtained by substitution on
(6):

[C1 −A1] tan2
(
θ3
2

)
+[2B1] tan

(
θ3
2

)
+A1+C1 = 0 (11)

Solving (11), the angular position θ3 is given by:

θ3 = 2arctan

[
−B1 ±

√
B2

1 +A2
1 − C2

1

C1 −A1

]
(12)

B. Kinematics of the coupler

Since C is the point of interest in the coupler, to determine
its position in the system OXrYr it has to be established that:

Cxr = r2cosθ2 + rcxcosθ3 − rcysinθ3
Cyr = r2sinθ2 + rcxsinθ3 + rcycosθ3 (13)

Translated to the global coordinate system, this point is
expressed as:[

Cx
Cy

]
=

[
cosθ0 −sinθ0
sinθ0 cosθ0

] [
Cxr
Cyr

]
+

[
x0
y0

]
(14)

As can be observed, equations (13), (14) and the expressions
corresponding to mechanism kinematics are sufficient to
calculate the position of C along the trajectory.

V. CASE STUDY

The problem addressed in this work is the length synthesis
of a four-bar mechanism, designed for tracking a vertical
linear trajectory indicated by a set of N precision points,
without prescribed synchronization; that is, the point C of
the coupler must pass over every point consecutively, without
a pre-established sequence for such positions. The case study
was selected because of its complexity; a measure for this
complexity is the parameter ρ, which stands for the ratio
between the feasible zone and the search space and can be
represented by the percentage of feasible solutions found in
an arbitrarily large set of randomly-generated vectors [34]. As
the value of ρ diminishes, the computational effort required by
the solving algorithm increases, since there are fewer available
solutions. In order to evaluate ρ for this case a million of
proposed solutions were taken, and only forty-three of them
were feasible, resulting in a value of ρ = 0.0043%.

Without loss of generality, the constrained optimization
problem can be defined as to:

minimize f(~x) (15)

subject to:
gj(~x) ≤ 0, j = 1, 2, ..., p (16)

hk(~x) = 0, k = 1, 2, ..., q (17)

where ~x is the vector of variables with dimension n, f(~x) is the
objective function, gj(~x) is the set of p inequality constraints
and hk(~x) is the set of q equality constraints.

A. Objective function

As a result of the mechanism synthesis will be calculated
the length of the bars, the distance and rotation angle between
the coordinate systems, and the angle set for the input bar. In
the global coordinate system OXY , the precision point Cid is
indicated as:

Cid =
[
Cixd, C

i
yd

]T
(18)

The set of precision points is defined as:

Ω =
{
Cid|i ∈ N

}
(19)



Given a set of values of the mechanism bars and their
parameters x0, y0, θ0, each position of the coupler can be
expressed as a function of the input bar angle:

Ci =
[
Cx(θi2), Cy(θi2)

]T
(20)

It is desired to minimize the distance between the calculated
and the precision points, Ci and Cid respectively; the function
in (21) is proposed to quantify this error:

f(θi2) =

N∑
i=1

[
(Cixd − Cix)2 + (Ciyd − Ciy)2

]
(21)

B. Design constraints

The fulfillment of the performance constraints related
to dimensions and mobility criteria of the mechanism is
fundamental in its design, since these limits establish the
physical reproducibility and esthetic.

1) Sequence of input angles: The generation of a trajectory
without prescribed synchronization requires an ascendant or
descendant order of the crank angle values, in correspondence
to each precision point. If the angle for the precision point i
is denoted as θi2, this order can be expressed as:

θ12 < θ22 < ... < θN2 (22)

where N is the number of precision points.
2) Grashof’s law: It is a fundamental consideration of

design, since it defines the criteria to ensure complete mobility
for at least one link on a four-bar mechanism. This law
establishes that for a planar four-bar linkage, the sum of the
shortest bar and the largest bar cannot be larger than the sum
of the remaining bars, if a continual relative rotation between
two elements is desired [12]. If the lengths of the shortest and
largest links are denoted as s and l respectively, with p and q
indicating the remaining links, it is established that:

l + s ≤ p+ q (23)

For this synthesis problem, Grashof’s law is given by:

r1 + r2 ≤ r3 + r4 (24)

Consequently the following restrictions are required:

r2 < r3, r3 < r4, r4 < r1 (25)

C. Design variables

Consider the vector of design variables for the four-bar
mechanism, established as:

~p = [p1, p2, ..., p15]
T (26)

=
[
r1, r2, r3, r4, rcx, rcy, θ0, x0, y0, θ

1
2, ..., θ

6
2

]T
(27)

where the first four variables are the mechanism bar lengths,
the following two values represent the length of the supporting
bars of the coupler, the subsequent three variables indicate the
relative position between the coordinate systems, and the last
six values correspond to the angle sequence for the input bar.

D. Optimization problem

Consider the mono-objective numerical optimization pro-
blem described by (28) to (41), to obtain the dimensional
synthesis of a four-bar mechanism for trajectory generation
over N precision points:

min f(~p) =

N∑
i=1

[
(Cixd − Cix)2 + (Ciyd − Ciy)2

]
(28)

subject to:

g1(~p) = p1 + p2 − p3 − p4 ≤ 0 (29)
g2(~p) = p2 − p3 ≤ 0 (30)
g3(~p) = p3 − p4 ≤ 0 (31)
g4(~p) = p4 − p1 ≤ 0 (32)
g5(~p) = p10 − p11 ≤ 0 (33)
g6(~p) = p11 − p12 ≤ 0 (34)
g7(~p) = p12 − p13 ≤ 0 (35)
g8(~p) = p13 − p14 ≤ 0 (36)
g9(~p) = p14 − p15 ≤ 0 (37)

and the precision points:

Ω = {(20, 20), (20, 25), (20, 30), (20, 35), (20, 40), (20, 45)}
(38)

with the bounds:

0 ≤ pi ≤ 60, i = [1, 2, 3, 4] (39)
−60 ≤ pi ≤ 60, i = [5, 6, 8, 9] (40)

0 ≤ pi ≤ 2π, i = [7, 10, 11, ..., 14, 15] (41)

VI. OPTIMIZATION ALGORITHM

Algorithms 1 and 2 correspond to the global and local search
sections of the proposed memetic MemMABC, respectively.
This algorithm requires six user-defined parameters: the
number of sources or possible solutions SN , the maximum
number of cycles or generations MCN , the maximum number
of the objective function evaluations MaxEvs, the frequency
of LS activation Frequency, the LS depth MaxCount, and
the number of consecutive trials for improvement a source is
kept before being replaced TryLimit, that is calculated as:

TryLimit = SN ∗ n (42)

where n is the number of design variables.
The implementation of the proposed algorithm was

programmed in MATLAB R2013a, and the simulations were
carried out on a computational platform with the following
characteristics: Intel Core i7@2.6 GHZ microprocessor, 8Gb
RAM memory and Windows 8 Operating system. All the
algorithm simulations were executed with the following
parameter values: SN = 50, MCN = 8, 000, MaxEvs =
1, 000, 000, Frequency = 1, 750, MaxCount = 40, 000, and
TryLimit = 750, calculated from (42).



VII. ANALYSIS OF RESULTS

Thirty independent runs were executed for the selected
case study with both algorithms, MABC and MemMABC;
a statistical analysis of their results is presented in Table I.
As can be seen, the minimum value for the objective function
was obtained with MemMABC (OF = 0.014667757429261),
with a variance of σ2 = 0.086822826371684, significantly
lesser than the correspondent evaluation for MABC; since the
variance measures the dispersion of a set of random variables
with respect to their arithmetic mean, this value indicates a
steady operation of the algorithm. Additionally, MemMABC
required a 10% less evaluations to find its best result, even
before reaching the stop condition given by MaxEvs. The
results show the synergy formed by the combination of these
global and local searchers, and the inclusion of a technique
for handling of constraints.

TABLE I
STATISTICAL ANALYSIS OF MABC VS MEMABC

Parameter MABC MemMABC

Minimum 0.029598038968931 0.014667757429261

Maximum 6.047393204762160 1.324383428475970

Variance 1.158659308687650 0.086822826371684

Standard Dev 1.076410381168650 0.294657133583566

Evaluations Req 1,000,000 900,000

Figure 3 shows a simulation of the best-solution mechanism
calculated by MemMABC, and its trajectory over the precision
points, marked as C1, C2, ..., C6. As it can be seen, the
mechanism passes over the precision points in its ascending
path and the return loop is quite small. Consequently the
recovering time is short, a plus if the device is analyzed from
an engineering point of view.

Fig. 3. Simulation of MemMABC best solution

A set with five solutions was selected considering the best
values of the objective function; Table II present the solution
vectors included in that set. As can be seen, all the values

TABLE II
BEST FIVE SOLUTION VECTORS

Variable 1 2 3 4 5

r1 47.61022 47.65784 50.59788 50.10518 37.74315

r2 11.29351 10.11871 12.73210 10.64155 11.63338

r3 26.05979 25.87023 23.19406 26.15958 23.60134

r4 44.17324 42.22803 47.15120 43.20891 37.09528

rcx 28.09277 26.33869 21.27262 24.18547 28.33434

rcy 18.09717 20.42422 15.87719 20.65887 7.90358

θ0 3.70672 3.70295 3.57266 3.66212 3.80425

x0 −0.72692 −1.06722 4.14226 0.71014 5.86156

y0 57.39457 57.74773 53.35509 57.35837 58.09489

θ12 2.03045 1.70228 2.09284 1.77039 1.02760

θ22 2.54567 2.44986 2.55090 2.44951 2.14131

θ32 2.97677 2.93643 2.94565 2.91994 2.58235

θ42 3.40864 3.40469 3.35006 3.37768 3.02345

θ52 3.87709 3.90614 3.79183 3.87046 3.53605

θ62 4.45365 4.55469 4.30554 4.50137 4.21593

OF 0.01467 0.02635 0.02968 0.03634 0.04452

fell within the limits marked by design constraints; because
of the table size, quantities are represented using only five
decimal digits in spite of being calculated in the simulation
with a precision of fourteen decimal places. The results
generated after the simulations demonstrate the capability of
MemMABC for balancing diversification over the area of
feasible solutions and intensification for local exploitation.

VIII. CONCLUSION

A novel proposal of a memetic algorithm for solving
real-world engineering design problems is presented in this
paper, using a combination of algorithms with Modified
Artificial Bee Colony and Random Walk. From the obtained
results it is established that: 1) the algorithm improves the
performance of MABC, not only in relation to the search
for the optimal, but in reference to the stability of the
search; 2) considering the point of view of engineering design,
this optimization method produces good solutions since they
are physically and esthetically reproducible; 3) no extensive
computing resources are required for its implementation, and
4) it is a simple algorithm with an easy implementation. It
should be mentioned that wide ranges of values for the design
variables were used for simulating solutions of the proposed
optimization problem, so results can be improved if such
ranges are bounded more closely, accordingly to the physical
specifications of the real model.

Although in this paper a specific case of synthesis for
a four-bar mechanism is addressed, the simplicity of the
proposed algorithm facilitates its use for the designing of
other types of mechanisms and devices. In this sense, the
main difficulty is an adequate interpretation and formulation of
the particular problem and its corresponding constraints. The
initial configuration of the algorithm requires special attention



and is a line that can be the base for future work, considering
both the previous tuning of parameters and their control during
execution.

Finally, the main future work for this development
is its transformation from a canonical memetic to an
adaptive algorithm, with the capability to modify itself by
incorporating knowledge to this process of self adaptation.
This transformation implies the application of new techniques
for local search, and to implement the intelligence required to
process more than one meme for the learning.
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