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Abstract—This paper proposes an approach for optimally
accessing data by coordinating services according to Service
Level Agreements (SLA) for answering queries. We assume
that services produce spatio-temporal data through Application
Programming Interfaces (API’s). Services produce data
periodically and in batch. Assuming that there is no full-fledged
DBMS providing data management functions, query evaluation
(continuous, recurrent or batch) is done through reliable
service coordinations guided by SLAs. Service coordinations are
optimized for reducing economic, energy and time costs.

Index Terms—Data service, query optimization, workflow,
service composition, SLA.

I. INTRODUCTION

PERVASIVE denotes something “spreading throughout,”
thus a pervasive computing environment is the one that

is spread throughout anytime anywhere and at any moment.
From the computing science point of view what is interesting
to analyze is how computing and software resources are
available and provide services that can be accessed by different
devices. For facilitating availability to these resources, they
are wrapped under the same representation called service. A
service is a resource handled by a provider, that exports an
application programming interface (API). The API defines a
set of method headers using an interface definition language.
Consider a scenario where multiple users evolve within
an urban area carrying GPS-enabled mobile devices that
periodically transmit their location. For instance, the users
location is notified by a stream data service with the following
(simplified) interface:

subscribe() → {location:〈nickname, coor〉}

consisting of a subscription operation that, after invocation,
will produce a stream of location tuples, each with a
nickname that identifies the user and her coordinates. A stream
is a continuous (and possibly infinite) sequence of tuples
ordered in time.

The rest of the data is produced by the next two on-demand
data services, each represented by a single operation:
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profile(nickname) → {person:〈age, gender,
email〉}

interests(nickname)→ {s_tag:〈tag, score〉}

The first provides a single person tuple denoting a profile
of the user, once given a request represented by her nickname.
The second produces, given the nickname as well, a list
of s_tag tuples, each with a tag or keyword denoting a
particular interest of the user (e.g. music, sports, fashion, etc.)
and a score indicating the corresponding degree of interest.

Users access available services for answering some
requirement expressed as a query. For instance, assume that
Bob needs to find friends to make decisions whether he can
meet somebody downtown to attend an art exposition. The
query can be the following:

Find friends who are no more than
3 km away from me,
who are over 21 years old
and that are interested in art

But issuing the query from a mobile device, is not enough
for evaluating it, some Service Level Agreements (SLA) need
to also be expressed. For example, Bob wants the query
to be executed as soon as possible, minimizing the battery
consumption and preferring free data services.

Of course, the query cannot be solved by one service,
some information will come for Google maps and Google
location, other by Bob’s personal directory, the availability
of Bob’s friend in their public agendas. Thus, the invocation
to the different services must be coordinated by a program
or script that will then be executed by an execution service
that can be deployed locally on the user device or not. In
order to do so, other key infrastructure services play an
important role particularly for fulfilling SLA requirements.
The communication service is maybe the most important one
because it will make decisions on the data and invocation
transmission strategies that will impact SLA.

Focussing on the infrastructure that makes it possible to
execute the services coordination by making decisions on the
best way to execute it according to given SLAs, we identify
two main challenges:

– Enable the reliable coordination of services (infrastruc-
ture, platform and, data management) for answering
queries.



– Deliver request results in an inexpensive, reliable,
and efficient manner despite the devices, resources
availability and the volume of data transmitted and
processed.

Research on query processing is still promising given the
explosion of huge amounts of data largely distributed and
produced by different means (sensors, devices, networks,
analysis processes), and the requirements to query them to
have the right information, at the right place, at the right
moment. This challenge implies composing services available
in dynamic environments and integrating this notion into query
processing techniques. Existing techniques do not tackle at
the same time classic, mobile and continuous queries by
composing services that are (push/pull, static and nomad) data
providers.

Our research addresses novel challenges on data/services
querying that go beyond existing results for efficiently
exploiting data stemming from many different sources in
dynamic environments. Coupling together services, data
and streams with query processing considering dynamic
environments and SLA issues is an important challenge in
the database community that is partially addressed by some
works. Having studied the problem in a general perspective led
to the identification of theoretical and technical problems and
to important and original contributions described as follows.
Section II describes the phases of hybrid query evaluation,
highlighting an algorithm that we propose for generating
query workflows that implement hybrid queries expressed in
the language HSQL that we proposed. Section III describes
the optimization of hybrid queries based on service level
agreement (SLA) contracts. Section V discusses related work
and puts in perspective our work with existing approaches.
Section VI concludes the paper and discusses future work.

II. HYBRID QUERY EVALUATION

We consider queries issued against data services, i.e.,
services that make it possible to access different kinds of
data. Several kinds of useful information can be obtained by
evaluating queries over data services. In turn, the evaluation
of these queries depends on our ability to perform various
data processing tasks. For example, data correlation (e.g. relate
the profile of a user with his/her interests) or data filtering
(e.g. select users above a certain age). We must also take into
consideration restrictions on the data, such as temporality (e.g.
users logged-in within the last 60 minutes).

We denote by “hybrid queries” our vision of queries
over dynamic environments, i.e. queries that can be mobile,
continuous and evaluated on top of push/pull static or nomad
services. For example, in a mobile application scenario, a user,
say Mike, may want to Find friends who are no more than
3 km away from him, who are over 21 years old and that
are interested in art. This query involves three data services
methods defined above. It is highly desirable that such query
can be expressed formally through a declarative language

named Hybrid Service Query Language (HSQL)1. With this
goal in mind we adopt a SQL-like query language which is
similar to CQL [1], to express the query as follows:

SELECT p.nickname, p.age, p.sex, p.email
FROM profile p, location l [range 10 min],

interests i
WHERE p.age >= 21 AND

l.nickname = p.nickname AND
i.nickname = p.nickname AND
′art′ in i.s_tag.tag
AND dist(l.coor, mycoor) <= 3000

The conditions in the WHERE clause enable to correlate
profile, location, and interests of the users by
their nickname, effectively specifying join operations between
them. Additional conditions are specified to filter the data.
Thus, users who are older than 21 and whose list of interests
includes the tag ′art′, and whose location lies within the
specified limit are selected. For the location condition, we rely
on a special function dist to evaluate the distance between
two geographic points corresponding to the location of users,
the current location of the user issuing the query is specified
as mycoor. Since a list of scored tags is used to represent the
interests of an user, we use a special in operator to determine
if the tag ′art′ is contained in the list, while the list in
question is accessed via a path expression.

Since the location of the users is subject to change and
delivered as a continuous stream, it is neither feasible nor
desirable to process all of the location data, therefore temporal
constraints must be added. Consequently, the location
stream in the FROM clause is bounded by a time-based window
which will consider only the data received within the last 10
minutes. Given that the query is continuous, this result will be
updated as the users’ location changes and new data arrives.
This is facilitated by a special sign attribute added to each
tuple of the result stream, which denotes whether the tuple is
added to the result (positive sign) or removed from it (negative
sign).

In order to evaluate a declarative hybrid query like the one
presented in the example we need to derive an executable
representation of it. Such executable representation in our
approach is a query workflow.

A. Query Workflow

A workflow fundamentally enforces a certain order among
various activities as required to carry out a particular task. The
activities required to evaluate a hybrid query fall into two basic
categories: data access and data processing. Both of these types
of activities are organized in a workflow following a logical
order determined by the query. The execution of each of the
activities, in turn, is supported by a corresponding service; data

1This language was proposed in the PhD dissertation of V. Cuevas Vicenttin
of University of Grenoble.



access activities by data services and data processing activities
by computation services.

Following our service-based approach, the workflow used to
evaluate a hybrid query consists of the parallel and sequential
coordination of data and computation services. For example,
the workflow representation for the query in the example is
depicted in Figure 1.

The data services are represented by parallelograms,
whereas computation services are represented as rounded
rectangles and correspond to traditional query operators
such as join or selection. The arrows indicating sequential
composition not only imply order dependencies among the
activities but also data dependencies; in particular, tuples that
need to be transmitted between the different activities that
produce and consume them.

Since the workflow enabling the evaluation of a given hybrid
query acts in fact as a service coordination (comprising data
and computation services), we refer to it as query workflow.
Evaluating a hybrid query from a given query coordination
depends first on finding the adequate (data and computation)
services, second on their invocation, and finally on their
communication and interoperation.

B. Computing a Query Workflow Cost

In order to use SLA’s to guide query workflows evaluation,
it is necessary to propose a cost model that can be used to
evaluate a query workflow cost. The query workflow cost
is given by a combination of QoS measures associated to
the service methods it calls2, infrastructure services such as
the network and the hosting device it uses. The cost model
considered for query workflows is defined by a combination
of three costs: execution time, monetary cost and battery
consumption. These costs are computed by calculating the cost
of activities of a query workflow.
Query workflow cost: is computed by aggregating its
activities costs based on its structure. The aggregation is
done by following a systematic reduction of the query
workflow such as in [2], [3]. For each sequential or parallel
coordination, the reduction aggregates the activities costs. For
the nested coordinations, the algorithm is applied recursively.
The resulting cost is computed by a pondered average function
of the three values.

Cost = α (temporalc) + β (economicc) + γ (energyc) / 3

We assume that the activity costs are estimated according
to the way data are produced by the service (i.e., batch for
on-demand services, continuous by continuous services).
Cost of an activity calling an on-demand service: For data
produced in batch by on-demand services, the global activity
cost is defined by the combination of three costs:

– Temporal cost given by (i) the speed of the network
that yields transfer time consumption, determined by

2QoS measures are a set of quantitative measures that describe the possible
conditions in which a service method invocation is executed.

the data size and the network’s conditions (i.e., latency
and throughput) both for sending the invocation with its
input data and receiving results; (ii) the execution of the
invoked method has an associated approximated method
response time which depends on the method throughput3.

– Economic cost given by (i) the type of network: indeed,
transmitting data can add a monetary cost (e.g., 3G
cost for mega octets transfer); (ii) the cost of receiving
results from a service method invocation sent to a specific
service provider, for example getting the scheduled
activities from the public agenda of my Friends can have
a cost related to a subscription fee.

– Energy cost produced as a result of using the network and
computing resources in the device hosting the service
provider that will execute the method called. These
operations consume battery entailing an energy cost.

Cost of an activity calling a continuous service cost:
For data produced by continuous services the global activity
cost is defined by the combination of three costs that depend
on the data production rate resulting from the invocation
of a method. The costs are multiplied by the number of
times data must be pulled and transferred. The economic cost
can be associated to a subscription model where the cost is
determined by the production rate. For example receiving data
frequently (e.g., give my current position every five minutes,
where five minutes is the expected production rate) can be
more expensive than receiving data in specific moments (e.g.,
the number of times Bob went to the supermarket during a
month). The temporal and energy costs are also determined by
the frequency in which data are processed (processing rate):
data can be processed immediately, after a threshold defined
by the number of tuples received, or the elapsed time, or
a buffer capacity. Both production rate and processing rate
impact the execution time cost, execution economic cost, and
battery consumption cost.

III. OPTIMIZING HYBRID QUERIES USING SLA
CONTRACTS

Given a hybrid query and a set of services that can be used
for answering it, several query workflows can be used for
implementing it. For example, consider the query workflow
in Figure 2a that is a version of the friend finder example.
The figure shows a query workflow coordinating activities in
parallel for retrieving the profile and the location datasets.
Then, the filtering activity that implements a window operator
is placed just after the activity that retrieves the location. This
activity reduces the input dataset size. Then, both datasets are
correlated and finally the last activity filters the dataset to get
data related only to ’Joe’. Placing the last activity just after of
the retrieval of the profile dataset can reduce the processing
time.

3The method throughput is given by the amount of requests in a period of
time (e.g., each minute) and the state of the device such as memory or CPU.
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Fig. 1. Query coordination for the query the initial example

Now consider the query workflow in Figure 2b that
coordinates activities sequentially. Each activity in the control
flow consumes and produces data that at the end result in a
dataset which is equivalent with the first one.

Optimizing a hybrid query implies choosing the query
workflow that best implements it with respect to a given
SLA. Similar to classic query optimization techniques, we
propose an optimization process that consists in two phases:
(i) generating its search space consisting in “all” the query
workflows that implement a hybrid query and (ii) choosing
the top-k query workflows with costs that are the closest to
the SLA.

A. Generating Potential Query Workflow Space

We use rewriting operations (e.g. split, aggregate,
parallelize, etc.) for generating a set of “semantically”
equivalent query workflows The rewriting process is based on
two notions: function and data dependency relationships.

– Function: represents a data processing operation. We
consider the following functions:

1) fetch for retrieving a dataset from a data provision
service (e.g., get Bob’s friends);

2) projection of some of the attributes of each
item (e.g., tuple) of a dataset (e.g., get name and
location of Bob’s friends assuming that there each
friend has other attributes);

3) filter the items of a dataset according to some
criterion (e.g. Alice’s friends located 3 Km from her
current position); and,

4) correlation of the items of two datasets
according to some criterion (e.g., get friends shared
by Bob and Alice that like “Art”).

– Data dependency relationships between functions. Intu-
itively, given two functions with input parameters and an
output of specific types, they are

1) F1 independent F2 if they do not share input
datasets;

2) F1 concurrent F2 if they share common input
datasets;

3) F1 dependent F2 if they use common input
datasets.

We propose rewriting rules and algorithms for generating a
representation of an HSQL expression as a composite function
and a data dependency tree. This intermediate representation
is used for finally generating a query workflow search space.
This generation is based on composition patterns that we
propose for specifying how to compose the activities of a
query workflow. Let F1 and F2 be functions of any type
according to their dependency relationship they can give rise to
two activities A1 and A2 related according to the composition
patterns shown in Figure 3.

1) F1 independent F2 leads to three possible compo-
sition patterns: A1 sequence A2 or A1 sequence
A2 or A1 parallel A2.

2) F1 concurrent F2 leads to the same sequential
patterns of the previous case. In the case of the parallel
pattern, it works only if and only if F1 and F2 are
filtering functions or one of them is a filtering function
and the other a correlation function.

3) F1 dependent F2 leads to a sequential composition
pattern A1 sequence A2.

The search space generation algorithm ensures that the
resulting query workflows are all deadlock free and that
they terminate4. Once the search space has been generated,
the query workflows are tagged with their associated three
dimensional cost. Then, this space can be pruned in order
to find the query workflows that best comply with the SLA

4Details on the algorithm can be found in the dissertation of Carlos Manuel
López Enrı́quez of the University of Grenoble.
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expressing the preferences of the user. This is done applying
a top-k algorithm as discussed in the following section.

B. Computing an Optimization Objective

In order to determine which are the query workflows that
answer the query respecting the SLA contract, we compute an
optimization objective taking as input the SLA preferences and
assuming that we know all the potential data and computing
services that can be used for computing a query workflow.
The SLA expressed as a combination of pondered measures,
namely, execution time, monetary cost and energy. Therefore
we propose an equation to compute a threshold value that
represents the lowest cost that a given query can have given
a set of services available and required for executing it
and independently of the form of the query workflow (see
Equation 1).

Opt(Q,R) = min(
∑
j

(f(Aj ,Ωj)− γ(Q,Rj))) (1)

The objective is to find the combination of resources (R
i.e., services) that satisfies a set of requirements (Q, i.e., the
preferences expressed by the user and associated to a query).
Every service participating in the execution of a query exports
information about its available resources and used resources.

For example the number of requests that a service can handle
and the number of requests that are currently being processes.
The principle of the strategy is described as follows: determine
to which extent the required resources by Q can be fulfilled
by a the resources provided by each service. The total result
represents the combination of resources provided by available
services that minimize the use of the global available resources
(A) and the resources currently being used (Ω).

As shown in Figure 4 this value can be represented as
a point in an n dimensional space where each dimension
represents a SLA measure. Similarly, as shown in Figure 4,
the query workflows cost which is also defined as a function
of these dimensions, can be represented as a point in such
n-dimensional space. The optimization process looks for points
that are closest to the objective point by computing the
Euclidean distance.

C. Choosing an Optimum Plan Family

We adopt a top-k algorithm in order to decide which of
the k query workflows that represent the best alternative to
implement a hybrid query for a given SLA. We adopt the
Fagin’s algorithm [4]. The top-k algorithm assumes m inverted
lists L1, . . . , Lm each of which is of the form
[. . . , (qwi, ci,j), . . .] with size |S| where i ∈ [1 . . . |S|], and
j ∈ [i . . .m]. The order of the inverted lists depends on the
algorithm.

The Fagin algorithm assumes that each list Lj is ordered
by ci,j in ascending order. The principle is that the k query
workflows are close to the top of the m lists. In the worst
case, the ck,j is the last item for some j ∈ [1, . . . ,m].
The algorithm traverses in parallel the m lists by performing
sequential access. Once k items have been visited in all the m
lists, it performs random access over the m lists by looking
for the already visited items and computes their scores. The
scores are arranged in a sorted list in ascending order and thus
the first k items are on the top of the score list. The main steps
of the algorithm are:

1) Access in parallel the m lists by performing sequential
access.

2) Stop once k query workflows have been seen in the m
lists.
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Fig. 4. Optimization approach

3) Perform random access over the m lists to obtain the m
scaled attributes of each query workflow that has been
processed and compute its score.

4) Sort in ascending order the scores.
5) Return the k query workflows on the top.
It is applied for obtaining an ordered family of query

workflows that compose the optimum plan family. According
to a descending order, the first query workflow will be
executed. The rest of the queries can be stored as knowledge
and they can be used for further optimizations. We do not
consider learning based optimization [5] but we believe that
such a technique can be applied in this case.

IV. IMPLEMENTATION AND EXPERIMENTS

We developed a proof of concept of our approach by
implementing a service-based hybrid query processor named
HYPATIA for enacting query workflows. Figure 5 left side
presents its architecture. The system is based on the Java
platform. Queries in HYPATIA are entered via a GUI and
specified in our HSQL query language. Once a query is
provided to the system it is parsed and then its corresponding
query workflow is generated according to the algorithm that
we described in Section III-A. The query parser and the query
workflow constructor components perform these tasks. The
parser was developed using the ANTLR5 parser generator. The
GUI also enables the user to visualize the query workflow,
as well as the sub-workflows corresponding to composite
computation services, which is facilitated by the use of the
JGraph6 library.

To implement stream data services we developed a
special-purpose stream server framework, which can be
extended to create stream data services from sources ranging
from text files to devices and network sources. This framework
employs Web Service standards to create subscription services
for the streams. Stream data access operators in query
workflows subscribe to these services and also receive the
stream via special gateway services.

The evaluation of a query is enabled by two main com-
ponents that support the computation services corresponding

5http://www.antlr.org/
6http://www.jgraph.com/

to data processing operations. A scheduler determines which
service is executed at a given time according to a predefined
policy. Composite computation services communicate via
asynchronous queues and are executed by an ASM interpreter
that implements our workflow model.

A. Hybird Query Optimizer

We implemented a HYbrid Query OptimiZer (HYQOZ)
that we integrated to the hybrid query evaluator HYPATIA.
Figure 5 shows the component diagram for processing hybrid
queries with HYQOZ. An application representing a data
consumer expresses hybrid queries based on the information
about service instances provided by the APIDirectory, and
define the SLA to fulfill. Applications may require either the
evaluation of the hybrid query or the optimum query wrkflow
implementing the hybrid query for its further execution. In
such cases applications request either the evaluator HYPATIAor
the optimizer HYQOZ.

Its components are described by REST interfaces and
they exchange self-descriptive messages. The messages
instantiate different coordinations for implementing the hybrid
queries optimization. The interfaces and messages turn our
optimization approach self-contained.

– HYPATIAaccepts the hybrid query evaluation requests.
HybridQP validates the expression according to the
information provided by the APIDirectory. QEPBuilder
derives the optimization objective from the SLA contract
and requests the hybrid query optimization to HYQOZ.
The resulting query workflow is executed by the
QWExecutor.

– HYQOZaccepts hybrid query optimization requests and
looks for the satisfaction of the optimization objectives
derived from the SLA contracts. HYQOZis composed by
a series of components that implement the optimization
stages.

Internally, HYQOZis composed by a series of orthogonal
components that together perform the optimization. Compo-
nents exchange self-descriptive messages carrying the required
information for articulating the optimization.
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B. Validation

We implemented two test scenarios and their corresponding
data services to validate our approach. The first one, mainly
a demonstration scenario, is the location-based application. In
order to implement the Friend Finder scenario described in
the Introduction we developed a test dataset using GPS tracks
obtained from everytrail.com. Concretely, we downloaded 58
tracks corresponding to travel (either by walking, cycling,
or driving) within the city of Paris. We converted the data
from GPX to JSON and integrated it to our stream server
to create the location service. For the profile and interests
services we created a MySQL database accessible via JAX-WS
Web Services running on Tomcat. The profile data is artificial
and the interests were assigned and scored randomly using
the most popular tags used in Flickr and Amazon. For the
nearest-neighbor (NN) points of interest we converted a KML
file7 containing the major tourist destinations in Paris into
JSON, this data is employed by the corresponding NN service
in conjunction with the R-tree spatial indexation service.
Finally, we implemented an interface based on Google Maps
that enables to visualize the query result, which is presented
in Figure 6.

The second scenario was developed to measure the
efficiency of our current implementation in a more precise
manner; it is based on the NEXMark benchmark8. Our main
goal was to measure the overhead of using services, so
we measured the total latency (i.e. the total time required
to process a tuple present in the result) for a set of six
queries (see Table I); first for our service-based system and
then for an equivalent system that had at its disposal the
same functionality offered by the computation services, but
supported by objects inside the same Java Virtual Machine.

7Keyhole Markup Language https://developers.google.com/kml/
documentation/

8http://datalab.cs.pdx.edu/niagara/NEXMark/

Fig. 6. Friend Finder visualization GUI

NEXMark proposes an auctions scenario consisting of three
stream data services, person, auction and, bid, that export
the following interfaces:

person:〈person_idf, namef, phonef, emailf,
incomef 〉
auction:〈open_auction_idf, seller_personf,
categoryf, quantityf 〉
bid:〈person_reff, open_auction_idf, bidf 〉

Auctions work as follows. People can propose and bid for
products. Auctions and bids are produced continuously. Table I
shows the six queries that we evaluated in our experiment; they
are stated in our HSQL language and for each we provide the
associated query workflow and equivalent operator expression
that implements them (generated by HYPATIA). Queries Q1 -
Q2 mainly exploit temporal filtering using window operators,
filtering and correlation with and/split-join like control flows.
Q3 involves grouping and aggregation functions. Q4 adds a
service call to a sequence of data processing activities with
filtering and projection operations. Finally, Q5 - Q6 address
several correlations organized in and/split-join control flows.



TABLE I
NEXMARK QUERIES

For the last 30 persons and 30 products offered, retrieve the bids of the last 20 seconds greater than 15 euros

For the persons joining and the products offered during the last minute, generate the name and email of the person along with the
id of the product he/she offers

For the last 100 bids, find the maximum and minimum bid for each product

Among the bids made in the last 5 seconds, find those whose amount is between 50 and 100 euros and their dollar equivalent

For the last 100 persons, products and bids; give the id of the seller person, the id of the product, and the amount of the bid

For the last 20 persons, products and bids; give the id of the seller person, the id of the product, and the amount of the bid, whenever
that amount is greater than 30



C. Experimental Results

For our experiments we used as a local machine a Dell
D830 laptop with an Intel Core 2 Duo (2.10 GHz) processor
and equipped with 2 GB of RAM. We also employed as a
remote machine a Dell Desktop PC with a Pentium 4 (1.8
GHz) processor and 1 GB of RAM. In both cases running
JSE 1.6.0 17, the local machine under Windows XP SP3 and
the remote under Windows Server 2008.

As said before, to validate our approach we established a
testbed of six queries based on our adaptation of the NEXMark
benchmark. These queries include operators such as time and
tuple based windows as well as joins. We measured tuple
latency, i.e. the time elapsed from the arrival of a tuple to
the instant it becomes part of the result, for three different
settings. The first setting corresponds to a query processor
using the same functionality of our computation services, but
as plain java objects in the same virtual machine. In the second
we used our computation services, which are based on the
JAX-WS reference implementation, by making them run on a
Tomcat container in the same machine as the query processor.
For the third setting we ran the Tomcat container with the
computation services on a different machine connected via
intranet to the machine running the query processor.

The results are shown in Figure 7, and from them we derive
two main conclusions. First, the use of services instead of
shared memory resulted in about twice the latency. Second,
the main overhead is due to the middleware and not to the
network connection, since the results for the local Tomcat
container and the remote Tomcat container are very similar.
We believe that in this case the network costs are balanced-out
by resource contingency on the query processor machine,
when that machine also runs the container. We consider the
overhead to be important but not invalidating for our approach,
especially since in some cases we may be obliged to use
services to acquire the required functionality.

From our experimental validation we learned that it is
possible to implement query evaluation entirely relying on
services without necessarily using a full-fledged DBMS or a
DSMS (Data Stream Management Systems). Thereby, hybrid
queries that retrieve on demand and stream data are processed
by the same evaluator using well adapted operators according
to their characteristics given our composition approach. The
approach can seem costly because of the absence of a single
DBMS, the use of a message based approach for implementing
the workflow execution, and because there is no extensive
optimization in the current version of HYPATIA. Now that we
have a successful implementation of our approach, we can
address performance issues further in order to reduce cost and
overhead.

For validating HYQOZ, we developed the testbed that

1) generates synthetic hybrid queries,
2) generates the search space of query workflows following

a data flow or control flow, and

3) estimates either the cost by means of a simulation using
synthetic data statistics.

We used precision and recall measures to determine the
proportion of interesting query workflows that are provided
by the optimizer. The precision and recall are around 70%
and 60% respectively.

V. RELATED WORK

In dynamic environments, query processing has to be
continuously executed as services collect periodically new
information (e.g., traffic service providing information at given
intervals about the current state of the road) and the execution
context may change (e.g., variability in the connection). Query
processing should take into account not only new data events
but also data providers (services) which may change from one
location to another.

Existing techniques for handling continuous spatio-temporal
queries in location-aware environments (e.g., see [6]–[11])
focus on developing specific high-level algorithms that
use traditional database servers [12]. Most existing query
processing techniques focus on solving special cases of
continuous spatio-temporal queries: some like [8], [10], [11],
[13] are valid only for moving queries on stationary objects,
others like [14], [15] (Carney et al. 2002) are valid only
for stationary range queries. A challenging perspective is to
provide a complete approach that integrates flexibility into the
existing continuous, stream, snapshot, spatio-temporal queries
for accessing data in pervasive environments.

The emergence of data services has introduced a new
interest in dealing with these “new” providers for expressing
and evaluating queries. Languages as Pig and LinQ combine
declarative expressions with imperative ones for programming
queries, where data can be provided by services. In general,
query rewriting, optimization and execution are the evaluation
phases that need to be revisited when data are provided by
services and they participate in queries that are executed
in dynamic environments. Query rewriting must take into
consideration the data service interfaces, since some data may
need to be supplied to these in order to retrieve the rest of
the data. The existence of a large number of heterogeneous
data services may also necessitate the use of data integration
techniques. In addition, new types of queries will require the
definition of new query operators.

Traditional query optimization techniques are not applicable
in this new setting, since the statistics used in cost models
are generally not available. Furthermore, resources will be
dynamically allocated via computation services, rather than
being fixed and easy to monitor and control. Finally, query
execution must also be reconsidered. First, the means to access
the data is via services rather than scanning or employing
index structures. Second, to process the data we depend on
computation services, instead of a rigid DBMS.

The work [16] proposes a service coordination approach,
where coordinations can optimized by ordering the service
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calls in a pipelined fashion and by tuning the data size.
The control over data size (i.e., data chunks) and selectivity
statistics are key assumptions adopted by the approach.
Another aspect to consider during the optimization is the
selection of services, which can have an impact on the
service coordination cost. The authors of [3], [17] optimize
service coordinations by proposing a strategy to select services
according to multidimensional cost. Service selection is done
by solving a multi objective assignment problem given a
set of abstract services defined by the coordination. Services
implementing the coordination can change but the control flow
of the coordination remains the same.

The emergence of the map-reduce model, has introduced
again parallelization techniques. Queries expressed in
languages such as Pig9, and SCOPE [18] can be translated
into map/reduce [19] workflows that can be optimized.
The optimization is done by intra-operator parallelization of
map/reduce tasks. The work [20] applies safe transformations
to workflows for factorizing the map/reduce functions,
partitioning of data, and reconfiguring functions. Transfor-
mations hold preconditions and postconditions associated to
the functions in order to keep the data flow consistency.
The functional programming model PACT [21] extends the
map/reduce model to add expressiveness that are black boxes
within a workflow. In [22] the black boxes are analyzed
at build-time to get properties and to apply conservative
reorderings to enhance the run-time cost. The map/reduce
workflows satisfy the need to process large-scale data
efficiently w.r.t. execution time. Although we do not address
query optimization under such context in the present work, we
provide a discussion of its related issues and possible solutions
in [23].

VI. CONCLUSION AND FUTURE WORK

This paper presented our approach for optimizing service
coordinations implementing queries over data produced by

9http://pig.apache.org

data services either on-demand or continuously. Such queries
are implemented by query workflows that coordinate data and
computing services. The execution of query workflows has
to respect Service Level Agreement contracts that define an
optimization objective described by a vector of weighted cost
attributes such as the price, the time, the energy. The weights
define the preferences among the cost attributes for enabling
the comparison among query workflows. Our approach for
generating the search space of query workflows that can
optimize service coordinations, the cost estimation, and the
solution space are oriented to satisfy SLA contracts.
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