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Abstract—The central idea of principal component analysis 
(PCA) is to reduce the dimensionality of a dataset consisting of a 
large number of interrelated variables, while retaining as much 
as possible of the variation present in the dataset. In this paper, 
we use PCA based algorithms in two diverse genres, qualitative 
spatial reasoning (QSR) to achieve lossless data reduction and 
health informatics to achieve data reduction along with 
improved regression analysis respectively. In an adaptive hybrid 
approach, we have employed PCA to traditional regression 
algorithms to improve their performance and representation. 
This yields prediction models that have both a better fit and 
reduced number of attributes than those produced by using 
standard logistic regression alone. We present examples using 
both synthetic data and real health datasets from UCI 
Repository.  

Index Terms—Principal component analysis, regression 
analysis, healthcare analytics, big data analytics, region 
connection calculus. 

I. INTRODUCTION 
CA is a way of identifying patterns in data, and 
expressing the data in such a way as to highlight their 

similarities and differences. Since patterns in data can be hard 
to find in data of high dimension, where the luxury of 
graphical representation is not available, PCA is a powerful 
tool for analyzing data. The other main advantage of PCA is 
that once we have found these patterns in the data, then we 
compress the data, i.e., by reducing the number of dimensions, 
without much loss of information. 

PCA and Singular Value Decomposition (SVD) are 
interchangeably used for data reduction/compressions 
whereas statistical techniques such as regression analysis are 
used for approximation and analysis of data. Such 
applications include data mining, health informatics, 
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oceanography, meteorology, natural language processing, 
machine learning, image analysis, geometry visualization.  

A. Qualitative Spatial Reasoning 
Reasoning about spatial data is a key task in many 

applications, including geographic information systems, 
meteorological and fluid flow analysis, computer-aided 
design, and protein structure databases. Such applications 
often require the identification and manipulation of qualitative 
spatial representations, for example, to detect whether one 
“object” will soon occlude another in a digital image, or to 
determine efficiently relationships between a proposed road 
and wetland regions in a geographic dataset. QSR provides 
representational primitives (a spatial “vocabulary”) and 
inference mechanisms. 

Much QSR work has studied purely topological 
descriptions of spatial regions and their relationships. One 
representative approach, the Region-Connection Calculus 
(RCC), provides predicates for expressing and reasoning 
about the relationships among topological regions (arbitrarily 
shaped chunks of space). RCC was originally designed for 2D 
[1, 2]; later it was extended to 3D [3]. Herein we introduce 
PCA to reduce 9-Intersection model to 4-intersection model in 
both 2D and 3D. The performance of QSR can be improved 
by reducing the number of intersections, but PCA connection 
to QSR is non-existent in the literature. Herein we show how 
(1) PCA can be applied to intersection dimension reduction 
for QSR spatial data, and (2) the 9-Intersection can be reduced 
to 4-Intersection for all spatial as well as non-spatial objects. 

For example, of item-attribute-concept in RCC, spatial 
objects are items, their intersections are attributes, and 
relations are concepts. There are five RCC5 and eight RCC8 
concepts in RCC, see Figure 1, and [2, 3].  

B. Health Informatics 
The Big Data revolution has begun for many industries. 

The healthcare industry has been playing catch up and has 
finally reached a consensus on the value of Big Data as a 
transformative tool. Statistical linear and logistic regression 
that have been the popular mining techniques, but their ability 
to deal with inter dependent factors is limited. The 
understanding of principal components, however, has been 
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lacking in the past by non-academic clinicians. It is no 
surprise that keeping people healthy is costing more money. 
From the price of medications and the cost of hospital stays to 
doctors’ fees and medical tests, health-care costs around the 
world are skyrocketing. Much of this is attributed to wasteful 
spending on such things as ineffective drugs, futile procedures 
and redundant paperwork, as well as missed disease-
prevention opportunities. This calls for mechanism for 
efficient data reduction and diagnostic tools as pointed out by 
some of the examples in the literature cited in the next 
paragraph. 

Analysis of this Big Data offers unlimited opportunities 
for healthcare researchers and it is estimated that developing 
and using prediction models in the health-care industry could 
save billions by using big-data health analytics to mine the 
treasure trove of information in electronic health records, 
insurance claims, prescription orders, clinical studies, 
government reports, and laboratory results. According to the 
Harvard School of Public Health publication entitled The 
Promise of Big Data, petabytes of raw information could 
provide clues for everything from preventing tuberculosis to 
shrinking health care costs—if we can figure out how to apply 
this data [4]. Improving the care of chronic diseases, 
uncovering the clinical effectiveness of treatments, and 
reducing readmissions are expected to be top priority use 
cases for Big Data in healthcare [5]. 

In this paper, we will give general guidelines to address 
various issues. We explore an adaptive hybrid approach (1) 
how PCA can be used to reduce data in the original space in 
addition to transformed space, (2) how PCA can be used to 
improve standard line regression and logistic regression 
algorithms, (3) how to use logistic regression in conjunction 
PCA to yield models which have both a better fit and reduced 
number of variables than those produced by using logistic 
regression alone.  

The paper is organized as follows. Section II describes 
the background on linear regression, logistic regression, and 
principle of component analysis. Section III describes PCA in 
detail, along with our suggested representational 
improvements. Section IV presents the hybrid algorithms for 
regression using PCA. Section V discusses PCA’s improved 
role in dimensionality reduction followed by additional 
experimental support in Section VI. Section VII concludes the 
paper. 

II. BACKGROUND 

A. Mathematical Notation 

In this section, we describe the mathematical notation for 
terms whose definitions will follow in the paper. A vector is a 
sequence of elements. All vectors are column vectors and 
are in lower case bold letters such as x. The n-tuple [x1,..., 
xn] denotes a row vector with n elements in lowercase. A 
superscript T is used to denote the transpose of a vector x, 

so that xT is a row vector whereas x = [x1,..., xn]T is a column 
vector. This notation is overloaded at some places where the 
ordered pair [x1, x2] may be used as a row vector, a point in 
the plane or a closed interval on the real line. The matrices are 
denoted with uppercase letters, e.g. A, B. For vectors x, y, the 
covariance is denoted by cov(x, y), whereas cov(x) is used for 
cov(x, x) as a shortcut [6].  

If we have m vector values x1,...,xm of an n-
dimensional vector x = [x1,..., xn]T, these m row vectors are 
collectively represented by an m × n data matrix A. The kth 
row of A is the row vector xk

T.  Thus the (i, j) element of A 
becomes the jth element of the ith row/observation, xi

T.  
There are several ways to represent data so that 

implicit information becomes explicit. For linear 
representation of vector data, a vector space is equipped 
with a basis of linearly independent vectors. Usually in 
data mining, the data is represented as a matrix of row 
vectors or data instances. Two of the methods for efficient 
representation of data are regression and PCA. 

B. Qualitative Spatial Reasoning 
Much of the foundational research on QSR is related to 

RCC that describes two regions by their possible relations to 
each other. RCC5/RCC8 can be formalized by using first 
order logic [2] or by using the 9-intersection model [1]. 
Conceptually, for any two regions, there are three 
possibilities: (1) one object is outside the other; this results in 
the RCC5 relation DR (interiors disjoint) and RCC8 relation 
DC (disconnected) or EC (externally connected). (2) One 
object overlaps the other across boundaries; this corresponds 
to the RCC5/RCC8 relation PO (proper overlap). (3) One 
object is inside the other; this results in topological relation 
EQ (equal) or RCC5 relation PP (proper part). To make the 
relations jointly exhaustive and pairwise distinct (JEPD), there 
is a converse relation denoted by PPc (proper part converse), 
PPc(A,B) ≡ PP(B,A). For a close examination, RCC8 
decomposes RCC5 relation PP (proper part) into two 
relations: TPP (tangential proper part) and NTPP (non-
tangential Proper part). Similarly for RCC5 relation PPc, 
RCC8 defines TPPc and NTPPc. The RCC5 and RCC8 
relations are pictorially described in Figure 1. 

 
Fig. 1. RCC5 and RCC8 relations in 2D 



Each of the RCC8 relations can be uniquely described by 
using the 9-Intersection framework. It is a comprehensive way 
to look at any relation between two regions. The 9-
Intersection matrix for two regions A and B is given in 
Table 1, where Int represents the region’s interior, Bnd 
denotes the boundary, and Ext represents the exterior. The 
predicate IntInt(A,B) is a binary relation that represents the 
intersection between the interiors of region A and region B; 
the value of this function is either true (non-empty) or false 
(empty). Similarly, there are other predicates for the 
intersection of A’s interior, exterior, or boundary with those of 
B. In QSR, we are only concerned with the presence/absence 
of an intersection. The actual value of the intersection is not 
necessary. 

For two non-empty bounded regions A and B, the 
intersection of their exteriors is always non-empty. This is 
represented in the last column of Table 2. Since it adds no 
new information, it has been proposed in the literature [2] to 
replace the 9-Intersection with the 8-Intersection model to 
define the spatial relations. The values of the 8-Intersection 
framework for the RCC8 framework are given in the first 
eight columns in Table 2.  

In this paper, we show that PCA provides a better 
alternative to conventional methods of dimensionality 
reduction in QSR. The analysis is equally applicable to both 
non-spatial discrete web objects as well as conventional 
spatial objects such as cuboids and spheres.  

In such applications, some threshold may be required to 
interpret the resulting dimensions. One can simply ignore 
variation below a particular threshold to reduce the data and 
still preserve the main concepts of original intent.  

C. Health Informatics 
There is a significant opportunity to improve the 

efficiencies in the healthcare industry by using an evidence-
based learning model, which can in turn be powered by Big 
Data analytics [7]. A few examples are provided below. The 
company Asthmapolis has created a global positioning system 
(GPS) enabled tracker that monitors inhaler usage by patients, 
eventually leading to more effective treatment of asthma [8]. 
Center for Disease Control and Prevention (CDC) is using Big 
Data analytics to combat influenza. Every week, the CDC 
receives over 700,000 flu reports including the details on the 
sickness, what treatment was given, and whether not the 
treatment was successful.  

The CDC has made this information available to the 
general public called FluView, an application that organizes 
and sifts through this extremely large amount of data to create 
a clearer picture for doctors of how the disease is spreading 
across the nation in near real-time [9]. GNS Healthcare, a Big 
Data analytics company, has come together with the health 
insurance company Aetna to help combat people at risk or 
already with metabolic syndromes. The company has 
developed a technology known as Reverse Engineering and 
Forward Simulation that will be put to work on the data of 
Aetna insurance subscribers. Essentially, the technology will 
search for the presence of five warning signs: large waist size, 
high blood pressure, high triglycerides, low High density 
Lipoprotein, and high blood sugar. A combination of any 
three of these lead to the conclusion that the patient is 
suffering from the condition [10].  

Researchers at Allazo Health are creating systems 
designed to improve on medication adherence programs by 
using predictive analytics. For example, predict what 
interventions are mostly likely to work for that patient based 
on what interventions already worked for other patients with 
similar demographics, behavioral profiles, and medical 
history [11]. Another area of interest is the surveillance of 
adverse drug reactions (ADRs) which has been a leading 
cause of death in the United States [12]. It is estimated that 
approximately 2 million patients in USA are affected by 
ADRs and the researchers in [13], [14] and [15] propose an 
analytical framework for extracting patient–reported adverse 
drug events from online patient forums such as DailyStrength 
and PatientsLikeMe. 

Simplistically speaking, in all the above examples the 
researchers are trying to model and predict a dependent 
phenomenon based on a number of predictors that have been 
observed. The dependent parameter can be discrete, nominal, 
or even binary / logical. There are two problems at hand: 
dimension reduction and prediction. First problem is data 
optimization. The optimization problem is data cleaning, and 
how we can reduce the set of predictors while still 
maintaining a high prediction accuracy for the dependent 
variable. The second problem is the prediction of the 
dependent variable from the reduced dataset. This problem is 

TABLE 1. 
9-INTERSECTION MATRIX FOR CALCULATING RCC8 RELATIONS 

  Interior Boundary Exterior 
Interior Int(A)∩Int(B) Int(A)∩Bnd(B) Int(A)∩Ext(B) 

Boundary Bnd(A)∩Int(B) Bnd(A)∩Bnd(B) Bnd(A)∩Ext(B) 
Exterior Ext(A)∩Int(B) Ext(A)∩Bnd(B) Ext(A)∩Ext(B) 

TABLE II 
BOOLEAN VALUES FOR 9-INTERSECTIONS REQUIRED 

TO DISTINGUISH EACH RCC8 RELATION 

RCC8 Int 
Int 

Bnd 
Bnd 

Bnd 
Int 

Int 
Bnd 

Int 
Ext 

Bnd 
Ext 

Ext 
Int 

Ext 
Bnd 

Ext 
Ext 

DC F F F F T T T T T 
EC F T F F T T T T T 
EQ T T F F F F F F T 

NTPPc T F F T T T F F T 
TPPc T T F T T T F F T 

NTPP T F T F F F T T T 
TPP T T T F F F T T T 
PO T T T T T T T T T 

 



analyzing whether some event occurred or not given the 
success or failure, acceptance or rejection, presence or 
absence of observed simulators. This is where PCA comes 
into the picture. 

III. PRINCIPLE COMPONENT ANALYSIS 

The PCA is a well-known data reduction tool in academia 
for over 100 years. PCA creates a linear orthogonal 
transformation of correlated data in one frame (coordinates 
system) to uncorrelated data in another frame. The huge 
dimensional data can be transformed and approximated with a 
few dimensions. PCA finds the directions of maximum 
variance in high-dimensional data and projects it onto a 
smaller dimensional subspace while retaining most of the 
original information. If the data is noisy, PCA reduces noise 
implicitly while projecting data along the principal 
components. In this paper, we explore an adaptive hybrid 
approach to show that PCA can be used not only for data 
reduction but also for regression algorithm improvement. We 
will describe the hybrid model for both linear and logistic 
regression algorithms. 

Before delving further, we would like to discuss the terms 
PCA and SVD further as they are used interchangeably in the 
literature. There is a clear distinction between them.  

Definition 1. For a real square matrix A, if there is a real 
number λ and a non-zero vector x such that A x = λ x, then λ 
is called an eigenvalue and x is called an eigenvector. 

Definition 2. For a real matrix A (square or rectangular), 
if there a non-negative real number σ and a non-zero vectors x 
and y such that AT x = σ y, and A y = σ x, then σ is called a 
singular value and x and y represent a pair of singular 
vectors [16]. 

Note 1. λ can be negative or positive, but σ is always 
non-negative. 

Note 2. σ2 is an eigenvalue of covariance matrices AAT 
and ATA. This can be quickly seen 

AT x = σ y  AAT x = σ Ay  AAT x = σ σ x = σ2 x 

Therefore  
AAT x = σ2 x 

Similarly, we can see that  

ATA y= σ2 y 

An eigenvector is a direction vector supporting the spread 
of data along the direction of the vector. An eigenvalue 
measures the spread of data in the direction of the 
eigenvector. Technically, a principal component can be 
defined as a linear combination of optimally weighted 
observed variables. The words “linear combination” refer to 
the fact that weights/coefficients in a component are created 
by the contribution of the observed variables being analyzed. 

“Optimally weighted” refers to the fact that the observed 
variables are weighted in such a way that the resulting 
components account for a maximal amount of variance in the 
dataset. 

This will also be a good place to introduce Least Square 
Approximation (LSA). LSA and PCA are both linear 
transformations. However, they accomplish the same task 
differently. In a vector space, for any vector v and a unit 
vector u, we have v= v•u u + (v - v•u u). Finding the vector u 
that minimizes |(v - v•u u)| is the same as finding a vector u 
that maximizes |v•u|. LSA calculates the direction u that 
minimizes the variance of data from the direction u whereas PCA 
computes the direction u (principal component) that 
maximizes the variance of the data along the direction u. This 
concept is applied to all data instance vectors collectively resulting 
in covariance matrix AAT of data matrix and u is the eigenvector of 
AAT with largest eigenvalue. 

If A is a real square symmetric matrix, then eigenvalues 
are real and eigenvectors are orthogonal [17]. PCA computes 
eigenvalues and eigenvectors of a data matrix to project data 
on a lower dimensional subspace. PCA decomposition for a 
square symmetric matrix A is A = UDUT where U is the 
matrix of eigenvectors and D is diagonal matrix of 
eigenvalues of A. Since AU = UD, U is orthogonal, therefore 
A=UDUT. Also PCA orders the eigenvalues in the descending 
order of magnitude. The columns of U and diagonal entries of 
D are arranged correspondingly. Since eigenvalues can be 
negative, the diagonal entries of D are ordered based on 
absolute values of eigenvalues. 

The SVD decomposition is applicable to a matrix of any 
size (not necessarily square and symmetric). A = USVT, where 
U is the matrix of eigenvectors of covariance matrix AAT, V is 
the matrix of eigenvectors of covariance matrix ATA, and S is 
a diagonal matrix with eigenvalues as the main diagonal 
entries. Hence, PCA can use SVD to calculate eigenvalues 
and eigenvectors. Also SVD calculates U and V efficiently by 
recognizing that if v is an eigenvector of ATA for non-zero 
eigenvalue λ, then Av is automatically an eigenvector of AAT 
for the same eigenvalue λ where λ≥0. If Av is an eigenvector, 
say, u, then Av is a multiple of eigenvector u (since u and v 
are unit vectors) and it turns out that Av = √λu, or u = σAv, 
where σ = 1/√λ. By convention, SVD ranks the eigenvectors 
on descending order of eigenvalues. If U and V are matrices of 
eigenvectors of AAT and ATA, and S is the matrix of square 
roots of eigenvalues on the main diagonal, then A can be 
expressed as A = USVT [17]. The eigenvalues of a square 
symmetric matrix A are square roots of eigenvalues of AAT. 
We will show that it is sufficient to have S as diagonal matrix 
of only non-zero eigenvalues and U, V to have columns of 
only the corresponding eigenvectors. 

In data mining, the m observations/data points are 
represented as an m × n matrix A where each observation is a 
vector with n components. PCA/SVD help in transforming 



physical world data / objects more clearly in terms of 
independent, uncorrelated, orthogonal parameters.  

The first component extracted in principal component 
analysis accounts for a maximal amount of variance in the 
observed variables. The second component extracted will 
have two important characteristics. First, this component will 
account for a maximal amount of variance in the dataset that 
was not accounted for by the first component. The second 
characteristic of the second component is that it will be 
uncorrelated with the first component. The remaining 
components that are extracted in the analysis display the same 
two characteristics. Visualizing graphically, for the first 
component direction (eigenvector) e1, the data spread is 
maximum m1; for the next component direction e2, the data 
spread is next maximum m2 (m2 < m1 the previous maximum) 
and the direction e2 is orthogonal to previous direction e1.  

Note 3. For the eigenvectors u of A, any non-zero 
multiple of u is also an eigenvector of A. In U, the 
eigenvectors are normalized to unity. If u is a unit 
eigenvector, then -u is also a unit eigenvector. Thus the sign 
can be arbitrarily chosen. Some authors make the first nonzero 
element of the vector to be positive to make them unique. We 
do not follow this convention. Since the eigenvectors are 
ordered, we make the kth element of vector uk positive. If kth 
element is zero, only then first non-zero element is made 
positive. This is a better representation of eigenvectors as it 
represents the data in a right-handed system as opposed to 
asymmetrical ordering, see Figure 2. Using Matlab svd(A) on 
a simple set of only two data points, the algorithm generates 
two orthogonal vectors v1, v2 as given in Figure 2(a, b). Our 
algorithm finds green vectors in Figure 2(c), which is more 
natural and of a right-handed orientation. 

 
(a) 

 
(b) 

 
(c) 

Fig. 2: Gray set of axes are standard xy-system. Blue dots represent a set of 
data points. Red dots are projections of data points on the principal 
components. (a) The axes v1, v2 in red are the eigenvectors that are computed 
by Matlab using the set of data points. (b) The axes v1, v2 in blue are the 
directions so that each eigenvector is unique making the first non-zero 
component positive, used in the literature. (c) The axes v1, v2 in green are 
generated when the sign in an eigenvector is chosen by our scheme. 

A. Properties of PCA/SVD 
In essence, PCA/SVD takes a high dimensional set of 

data points and reduces it to a lower dimensional space that 
exposes the knowledge that is hidden in the original space. 
Moreover, the transformation makes similar items more 
similar, and dissimilar items more dissimilar.  

It is not the goal of SVD to get back the original matrix. 
However, the reduced dimensions do give insight about the 
original matrix, as we will see in the case of QSR and health 
informatics. 

There are three important properties of SVD:  

(1) It can transform correlated variables into a set of 
uncorrelated ones. SVD computes a transformation T 
such covariance of TA is diagonal matrix D, e.g. TA(TA)T 

is D. It can extract some relationships hidden in the 
original data. It can also reduce noise in the data [18]. 

(2) Since the eigenvectors are ordered on most variation to 
least variation in descending order of eigenvalues, 
deleting the trailing eigenvectors of smaller variation 
ensures minimal error. It finds the best approximation of 
the original data points by projecting data on a fewer 
dimensional subspace; see Figure 3 of linear data.  

(3) The data can be reduced to any desired size. The 
accuracy of smaller size data depends on the reduction in 
the number of dimensions [19]. By deleting 
eigenvectors corresponding to least variation, we 
effectively eliminate noise in the representation of 
data vectors [20] .  

B. Dimension Reduction using PCA 
There is a multitude of situations in which data is 

represented as a matrix. In fact, most of the real world data is 
expressed in terms of vectors and matrices where each vector 
has a large number of attributes. Matrices are used to 
represent data elegantly, and efficiently. In a matrix, each 
column represents a conceptual attribute of all the items, and 
each row represents all attributes related to individual data 
item. For example, in health informatics, rows may represent 
patients and columns may represent disease diagnostic 
symptoms or the rows may represent medicines and columns 
may represent side effects or adverse reactions. Similarly, in 
spatial-temporal reasoning, rows represent pairs of objects and 
columns represent temporal intersection properties of objects.  

The goal of PCA is to reduce the big data matrix A to a 
smaller matrix retaining approximately the same information 
as the original data matrix and make the knowledge explicit 
that was implicit in the original matrix.  

Example: In this example, we have 20 three-dimensional 
points in 20 × 3 matrix A. Each row of A has three values for 
x-, y-, z- coordinates. Visually we can see that the data points 
have a linear trend, in 3D, but data points have noise 
components in the y, and z coordinates. PCA determines the 



direction and eliminates noise by eliminating the eigenvectors 
corresponding to smaller eigenvalues (see Figure 3). Black 
“+” symbols represent the original data points with noise. As 
can be seen visually, they are almost linear. They can be 
approximated along eigenvector v1 in one dimension of the 
v1v2v3-system. Red lines depict the data trend in the three 
dimensional space along v1, v2 and v3 direction. Blue lines 
depict the data spread in the three dimensional space along v1, 

v2 and v3 direction. Since the data spread or blue line on v2 
and v3 is almost non-existent (closer to the origin), it is an 
indicator of noise in the linear data. We can see that the data 
can be represented satisfactorily using only one direction.  

 
Fig. 3. Data is almost linear along v1 direction in 3D, the noise is along the y 
and z-axis. Blue lines reflect data spread along v1, v2 and v3 directions. 

Table 3 enumerates the numeric values of the PCA 
decomposition. First row lists the eigenvalues, which 
represent the spread of points along the principal components. 
Second row shows the eigenvectors corresponding to the 
eigenvalues. The next three rows represent the error on using 
first, first two, first three eigenpairs. Let newA be the USVT 
based on eigenpairs used. Then Error Original is the |A-
newA|/|A| percentage error in the original space. Error 
Projection is the |AV-newAV|/|AV| percentage error in the 
projection space. Error Eigenvalues is the ∑p=k+1,3 λp/∑p=1,3 λp 

percentage error in the eigenvalue space. 
Table 3 reveals that v1, is the data dimension and v2, v3 

correspond to the noise in this case. If we use two (or three) 
eigenpairs there is no error. Hence, the data can be 
represented in one dimension only instead of three dimensions 

with slight error of 2%. This error is attributed to the 
difference between the non-zero eigenvalues. The third and 
fifth rows in Table 3 indicate that the error metrics are 
equivalent in the original and projection space. 

IV. PRINCIPAL COMPONENT AND REGRESSION ANALYSIS 
There are several ways to model the prediction variables, 

e.g., linear regression analysis, logistic regression analysis, 
and PCA. Each has its own advantages. Though regression 
analysis has been well known as a statistic technique, the 
understanding of principles, however, has been lacking in the 
past by non-academic clinicians [21]. In this paper we explore 
an adaptive hybrid approach where PCA can be used in 
conjunction with regression to yield models which have both 
a better fit and reduced number of variables than those used 
by standalone regression. We will apply our findings to a 
medical dataset obtained from UCI Machine Learning 
Repository about liver patient [22]. We use the records for 
detecting the existence or non-existence of liver disease based 
on several factors such as age, gender, total bilirubin, etc. 

A. PCA and Linear Regression 
In linear regression, the distance between observed point 

(xi,yi) from the computed point (xi,a+bxi) on line y=a+bx, is 
minimized along the y direction. In PCA, the distance of the 
observed point (xi,yi) is minimized to a line which is 
orthogonal to the line y=a+bx, is minimized. The details of 
linear algebra concepts in this section are found in [17]. We 
assume that data is standardized to mean zero; and normalized 
appropriately by the number of objects. 

For one independent and one dependent variable, the 
regression line is y=a+bx where the error between the 
observed value yi and estimated value a+bxi is minimum. For 
n points data, we compute a and b by using the method of 
least squares that minimizes: 

� (𝒚𝒚𝒊𝒊 − 𝒂𝒂 − 𝒃𝒃𝒙𝒙𝒊𝒊)𝟐𝟐
𝒊𝒊=𝟏𝟏,𝒏𝒏

 

This is a standard technique that gives regression 
coefficients a and b where a is the y-intercept and b is the 
slope of the line.  

�𝒂𝒂𝒃𝒃� =
�𝒄𝒄𝒄𝒄𝒄𝒄(𝒙𝒙) −𝒙𝒙�

−𝒙𝒙� 𝟏𝟏 �

𝒄𝒄𝒄𝒄𝒄𝒄(𝒙𝒙) − 𝒙𝒙�𝟐𝟐
�

𝒚𝒚�
𝒄𝒄𝒄𝒄𝒄𝒄(𝒙𝒙,𝒚𝒚)� 

If the data is mean-centered, then a=0 because x =
∑ 𝑥𝑥𝑖𝑖𝑖𝑖=1,𝑛𝑛

𝑛𝑛
= 0 and 𝑦𝑦 = ∑ 𝑦𝑦𝑖𝑖𝑖𝑖=1,𝑛𝑛

𝑛𝑛
= 0. Alternatively, we can 

replace xi with xi –x and yi with yi -y. The direction of the 

line is always obtained from b as � 1
�1+𝑏𝑏2

, 𝑏𝑏
�1+𝑏𝑏2

�. 

For more than one independent variables, say m, we have 

𝒚𝒚 = 𝒃𝒃𝟎𝟎 + � 𝒃𝒃𝒌𝒌𝒙𝒙𝒌𝒌
𝒌𝒌=𝟏𝟏,𝒎𝒎

 

TABLE III 
EIGENVALUES, EIGENVECTORS AND PERCENT ERRORS 

FOR ONE DIMENSIONAL DATA IN 3D 
 

 Eigenvectors  
Eigenvalues 10.094419 0.213053 0 

Eigenvectors [0.6,0.6,0.6] [-0.8,0.4,0.4] [0.0,-0.7,0.7] 
Error Original 2.110605  0 0 

Error Eigenvalue 2.066979 0 0 
Error Projection 2.110605 0 0 



Then we compute bk by minimizing: 

� (𝑦𝑦𝑖𝑖 − 𝑏𝑏0 − � 𝑏𝑏𝑘𝑘𝑥𝑥𝑘𝑘𝑘𝑘
𝑘𝑘=1,𝑚𝑚

)2
𝑖𝑖=1,𝑛𝑛

 

Thus, it determines a hyper-plane which is a least square 
approximation of data points. If data is mean-centered, then 
b0=0. It is advised to mean-center data to simplify the 
computations. 

It is interesting to note that as a result of linear regression, 
the data points may not be at least distance from the 
regression line. Here we present an algorithm using PCA that 
results in a better least distance line. There are two ways in 
which regression analysis is improved: data reduction and 
hybrid algorithm. As a first step, PCA is used on the dataset 
for data reduction. For improved performance in the second 
step, we create a hybrid linear regression algorithm coupled 
with PCA. 

Example: We have a dataset of randomly created 20 points. 
Matlab computes the regression line as the red line, see Figure 4. 
PCA computes the blue line. As can be visually seen, the blue 
line is the least distance line instead of the red regression line. 
For direction vectors and approximation error of data points 
from the line, see Table 4. 

Both linear regression and PCA compute vectors so 
that the variation of observed points from the computed 
vector is minimum. However, as shown in Figure 4, they 
give two different vectors, red via linear regression, and 
blue via PCA. The approximation error indicates the PCA 
adapted regression line is a better approach than by LSA 
method.  

Data reduction is attributed to the non-zero eigenvalues 
of the data matrix A. Since m × n data matrix is decomposed 
into A = USVT where U is m × m, S is m × n, and V is n × n. If 
there are only k non-zero eigenvalues where k ≤ min(m, n), 
the matrix A has lossless representation by using only k 

columns of U, k columns of V and kxk diagonal matrix S. If an 
eigenvalue is very small as compared to others, then ignoring 
it can lead to further data reduction while retaining most of 
the information.  

B. PCA and Logistic Regression  
Along with linear regression, logistic regression (log 

linear) has been a popular data mining technique. However, 
both when used stand alone, have limited ability to deal with 
inter dependent factors. Linear regression is suitable for data 
that exhibits linear relation, but as all data does not have linear 
trend, the Logistic models estimate the probability and is 
applicable to “S-shaped” data. This model is particularly 
suitable for population growth with limiting condition. As it 
was with linear regression, it is beneficial to use logistic 
regression when coupled with PCA. 

Population growth is described by exponential function; 
population is controlled by the limiting condition. The liver 
disease model is a composition of these two functions as 
shown below. The mapping from linear to logistic function is 
described as follows [23]. 

Thus for logistic function P(x)∈(0, 1) instead of linear 
function P(x) = a + bx, the function becomes: 

𝑃𝑃(𝑥𝑥) =  
𝑒𝑒𝑎𝑎+𝑏𝑏𝑏𝑏

1 + 𝑒𝑒𝑎𝑎+𝑏𝑏𝑏𝑏
 

IMPROVED LINEAR REGRESSION 
Input: array of data points (x, y)  
Output: line y=a + bx 
Method: 
Traditional: compute a and b, by minimizing 

� (𝑦𝑦𝑖𝑖 − 𝑎𝑎 − 𝑏𝑏𝑥𝑥𝑖𝑖)𝟐𝟐
𝒊𝒊=𝟏𝟏,𝒏𝒏

 

Let error1 be the computed traditional error value. 
New: compute a and b, by minimizing 

�
(𝑦𝑦𝑖𝑖 − 𝑎𝑎 − 𝑏𝑏𝑥𝑥𝑖𝑖)𝟐𝟐

�(1 + 𝑏𝑏2)𝒊𝒊=𝟏𝟏,𝒏𝒏
 

Let error2 be the computed PCA adapted error value. 
Compare error1 and error2 

 

 

 
Fig. 4: Using the data points “+”, traditional linear regression line is 
shown in red (LSA) and a principal component is shown in blue 
(PCA). Visually we can see that the points are much closer to blue line 
than to the red line. 

TABLE IV 
COMPARISON OF LINEAR REGRESSION METHODS 

For usual regression line 
     Direction vector [0.642388, 0.766380] 
     Relative Regression Error 0.391169  
For PCA adapted regression line 
     Direction vector  [0.514757,0.857336] 
     Relative Regression Error 0.173438  

 



To solve for a and b, we write: 

𝑙𝑙𝑙𝑙𝑙𝑙
𝑃𝑃(𝑥𝑥)

1 − 𝑃𝑃(𝑥𝑥)
= 𝑎𝑎 + 𝑏𝑏𝑏𝑏 

We make use of PCA in designing better logistic 
regression algorithm, presented below. Here the hybrid 
algorithm is presented for two-dimensional data, however, it 
can be easily extended to higher dimensions.  

Example: In this example, we have a training dataset of 
20 students obtained from [24] who studied for the exam for 
given hours (horizontal axis) and passed or failed (vertical 
axis) the test. The curves are the trained logistic regression 
predictor for chances of passing the exam. Fail and pass are 
coded numerically as 0 and 1, see Figure 5. 

 

Fig. 5: Using the data points “+”, usual logistic regression curve is given in 
red and the regression curve generated by the proposed hybrid model is given 
in blue. 

The approximation errors for are shown in Table 5. The 
example exhibits that the PCA (blue) curve is a better 
approximation predictor with 60% less approximation error. 

C. How do we measure the goodness of a model? 
In data mining there are standard measures, called gold 

standard, for labeling and measuring the prediction accuracy. 
These measures are useful in comparing the results of 
classification. Here we will list three metrics, Precision (P), 
Recall (R) and F-1. In these metrics, actual value and 
predicted value are used to create a label for each instance 
outcome, where the instance outcome is either positive or 
negative. The labels used here are True Positive (TP), False 
Positive (FP) and False Negative (FN) to measure the 
accuracy (the reader is encouraged to consult [17] for further 
details). After labeling, we define the Precision (P), Recall (R) 
and F-metrics to measure the effectiveness of the prediction 
on (1) correct prediction on all positive instances and (2) TP 
prediction on a sample of instances (positive and negative) 
under investigation on the training data. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑃𝑃) =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑅𝑅) =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 

The measure F-1 is the weighted Harmonic average of P 
and R. It is the reciprocal of the weighted average of the 
reciprocals of P and R. 

For 0 ≤ α ≤ 1, it simplifies to: 

𝐹𝐹1 =
𝑃𝑃𝑃𝑃

𝛼𝛼𝛼𝛼 + (1 − 𝛼𝛼)𝑃𝑃
 

For α = 0, it turns out to be the recall measure R, for 
α = 1, it becomes precision measure P, and for α = 1/2, it 
further simplifies to traditional measure  

𝐹𝐹1 =
2𝑃𝑃𝑃𝑃
𝑃𝑃 + 𝑅𝑅

  

𝑜𝑜𝑜𝑜 𝐹𝐹1 =
2𝑇𝑇𝑇𝑇

2𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹
 

This is the preferred measure when there are fewer misses 
of both positive and negative instances, (i.e. both FN and FP 
are small) [17]. 

Goodness of fit is an interesting analysis criterion. Our 
goal is to show how the hybrid linear/logistic regression 
model is better than the more straightforward measures 
generated for linear/logistic measures. 

V. DIMENSIONALITY REDUCTION USING PCA 
The nature of data dictates how many dimensions can be 

reduced. The data is not just the attributes, but the dependency 

IMPROVED NON-LINEAR LOGISTIC REGRESSION 
Input: array of data points (x, y) 
Output: non-linear PCA adapted logistic function  
Method: For logistic regression, map  

𝑦𝑦 →  𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒(
𝑦𝑦

1 − 𝑦𝑦
) 

Apply improved regression line to y values computed 
from (new approach) line y=a + bx  

Map y values back  

𝑦𝑦 →
𝑒𝑒𝑦𝑦

1 + 𝑒𝑒𝑦𝑦
 

 

 

TABLE V 
COMPARISON OF LOGISTIC REGRESSION METHODS 

Logistic Regression Relative Error  0.443061 
PCA Regression Relative Error  0.157216 

 



and redundancy among the attributes. If A=USVT is full 
dimension SVD of A, where A is m × n, U is m × m, V is 
n × n, S is m × n, then the total size for decomposition 
representation of A is m × m + n × n + m × n, which is larger 
than m × n, the size of A. Our goal is to find an integer k 
smaller than m and n, and use first k columns of U and first k 
columns of V and restrict S to first k eigenvalues to show the 
effect of dimensionality reduction. Since eigenpairs are sorted 
on descending order of variance, deleting the least variation 
components do not cause significant error in data [25].  

In practice, it is not our intent to reconstruct the original 
matrix A from reduced USVT but to view the data from a fresh 
perspective and to use the reduced representation to extract 
information hidden in the original representation. PCA is used 
to reduce dimensionality in the new space, not the original 
space. Our purpose to see if we can leverage PCA to reduce 
dimensionality in the original space. This is an open question.  

ALGORITHM FOR DATA DIMENSIONALITY REDUCTION 

Input: m × n data matrix A 
Output: reduced data m × k matrix B 
Steps 
Create covariance matrix C = ATA 
Compute the eigenvalues and eigenvectors of C 
Rank the eigenvectors on descending order of eigenvalues: 

U, S, V 
Normalize the columns to unity 
Make diagonal entries of U, V as non-negative 
Choose k using one of the criteria described above, k less than 

or equal to the number of non-zero eigenvalues. 
Construct the transform matrix Vn × k from the selected 

k eigenvectors. 
Transform A to AVn × k

 in eigenspace to express data in terms 
of set of eigenvectors reduced from n to k. 

It gives a new set of basis vectors and a reduced 
k-dimensional subspace of k vectors where the data 
resides. 

 

A. Dimension Reduction in Qualitative Spatial Reasoning 
PCA has been used mainly with numerical data. If the 

data is categorical or logical, then data is first converted to 
numerical. We will see how PCA has the ability to resolve 
and isolate spatial-temporal patterns in the data presented in 
Table 2. We present a new robust PCA enabled method for 
QSR. Table 2 describes eight topological relations between 
pairs of spatial objects. The values of entries are true and 
false. In order to use PCA, we first covert the logical data to 
numerical data. We use 1 for false and 0 for true, see Table 6. 
Our goal is row dimension reduction. As intersection is a 
complex operation and also computationally expensive, we 
want to reduce the number of intersections required. For 
example, for 1000 pairs of objects, there will be 9000 pairwise 
intersections. By eliminating one intersection, we can reduce 
9000 to 8000 intersections, almost 11% improvement in 
execution. We will show that PCA gives insights, using which 
we can do better. In fact, we are able to reduce 9000 to 4000 
intersections. This is more than 55% reduction in computation 
time! This means we can replace 9-Intersection model by 4-
Intersection model which is now applicable to spatial as well 
as non-spatial objects, like web documents. 

For RCC8, the item-attribute-concept becomes object 
pair--9-Intersection—relation classification. In Table 6, row 
header represents a pair of spatial objects, column headers are 
the 9-Intersection attributes, and last column RCC8 is the 
classification of the relation based on the intersections. 
Table 2 and Table 6 show a sample of eight pairs of objects, 
one of each classification type.  

We consider Table 6 is an 8 × 9 input matrix A. On using 
Matlab SVD on ATA, we get nine eigenvectors and nine 
eigenvalues of ATA shown in Table 7. Since five eigenvalues 
are zero, the corresponding eigenvectors are useless. This tells 
us that nx9 data can be replaced with nx4 right away without 
any loss of information.  

In Table 8, first row enumerates the eigenvalues of ATA. 
The next rows represent the error on using first k eigenpairs 
(where k is the column number). newA is USVT based on k 
eigenpairs used. Error Original is the |A-newA|/|A| percentage 
error in the original space. Error Projection is the |AV-
newAV|/|AV| percentage error in the projection space. Error 
Eigenvalue is the ∑p=k+1,9 λp / ∑p=1,9 λp percentage error in the 

TABLE VI 
NUMERIC VALUES FOR 9-INTERSECTIONS REQUIRED TO DISTINGUISH EACH RCC8 RELATION 

  IntInt BndBnd BndInt IntBnd IntExt BndExt ExtInt ExtBnd ExtExt RCC8 
ObjectPair1 1 1 1 1 0 0 0 0 0 DC 
ObjectPair2 1 0 1 1 0 0 0 0 0 EC 
ObjectPair3 0 0 1 1 1 1 1 1 0 EQ 
ObjectPair4 0 1 1 0 0 0 1 1 0 NTPPc 
ObjectPair5 0 0 1 0 0 0 1 1 0 TPPc 
ObjectPair6 0 1 0 1 1 1 0 0 0 NTPP 
ObjectPair7 0 0 0 1 1 1 0 0 0 TPP 
ObjectPair8 0 0 0 0 0 0 0 0 0 PO 

 



eigenvalue space. Error Quantization uses quantization 
before error calculation. For example, now with 
quantization using 4 eigenvalues we see that there is no 
error between newA and A. This is what we expected as A 
has boolean elements. 

Table 8 shows that the transformed space created using 
4 eigenvalues retains perfect information. This means that 
for all object pairs, the relations can be described with 
4 eigenvectors as an n × 4 matrix instead of nx9 matrix 
with zero error. So how can we deduce the original 
dimensions that retain most of the information? We 
explore that in the next section. 

VI. EXPERIMENTS AND OUTCOMES 

Here we show the application of PCA for dimension reduction 
in qualitative spatial reasoning and liver disease data. In 
addition decision tree is used for spatial data classification 
whereas the improved logistic regression is applied to liver 
disease data classification. 

A. Qualitative Spatial Reasoning 
In Section IV, we determined that 4 attributes are 

sufficient to classify QSR relations in the transformed 
space. However, it does not tell anything about the 
attributes in the original space. Now we will see if we can 
translate this new found knowledge into the original space 
of Table 2. How can we find four intersection attributes 
that will lead to the 8 distinct topological relations?  

From careful observation of Table 2 we see that the IntInt 
and BndBnd columns have the most useful information in the 
sense that they are sufficient to partition the RCC8 relations 
into eight jointly exhaustive and pairwise distinct (JEPD) 

classes, which can be further grouped into three classes: {DC, 
EC}, {NTTP, NTTPc}, and {EQ, TPP, TPPc, PO}.  

We revisit Table 2 as Table 9 by shading some entries 
and analyze them. It shows that only 4-intersections are 
sufficient for classification of topological relations. The nature 
of data suggests that the remaining attributes are not 
necessary. This table can be interpreted and formulated in 
terms of rules for system integration. These rules are shaded 
and displayed for visualization in the form of Table 9. 

Thus, Table 9 reveals that the spatial relations can be 
specified by at most four intersection attributes. The 
shaded columns of Table 9 are transcribed into a decision 
tree for easy visualization of the rules to classify the RCC8 
eight relations, see Figure 6.  

This conclusion makes no assumptions about the 
objects being spatial or non-spatial as long as they are 
valid. In addition, this analysis is applicable to discrete and 
continuous objects alike. 

TABLE VII 
EIGENVECTORS FOR RCC8, ROWS ARE EIGENVECTORS; LAST COLUMN IS EIGENVALUES 

 Eigenvectors Eigenvalues 
V1 = [ 0.2833 0.4914 0.4914 0.1723 0.319 0.319 0.319 0.319 0 ] 3.8793 
V2 = [ 0 0.4082 –0.4082 0 –0.4082 –0.4082 0.4082 0.4082 0 ] 2.4495 
V3 = [ 0.249 0.2593 0.2593 0.5946 –0.3353 –0.3353 –0.3353 –0.3353 0 ] 2.0405 
V4 = [ –0.926 0.2202 0.2202 0.2129 0.0073 0.0073 0.0073 0.0073 0 ] 1.337 
V5 = [ 0 0.3108 –0.2504 –0.0605 0.3027 –0.0524 0.4338 –0.7446 0 ] 0 
V6 = [ 0 0.2159 0.4498 –0.6657 –0.5075 0.0576 0.001 –0.2169 0 ] 0 
V7 = [ 0 0 0 0 0 0 0 0 1 ] 0 
V8 = [ 0 0.1917 0.1443 –0.336 0.5191 –0.6634 –0.3211 0.1294 0 ] 0 
V9 = [ 0 –0.5442 0.4363 0.108 –0.0205 –0.4157 0.5725 –0.0282 0 ] 0 

TABLE VIII 
EIGENVALUES, EIGENVECTORS, AND PERCENT ERRORS FOR RCC8 REDUCTION USING PCA 

    Eigenvalues              
Eigenvalues   3.879290 2.44949 2.040497 1.336968 0 0 0 0 0 

Error Original 66.53072 46.948 25.72995 0 0 0 0 0 0 
Error Eigenvalue 66.53072 46.948 25.72995 0 0 0 0 0 0 

Error Quantization 100 74.535599 27.216553 0 0 0 0 0 0 
Error Projection 60.033047 34.79682 13.7743 0.000001 0 0 0 0 0 

 

TABLE IX 
RCC8 RELATIONS ATTRIBUTES FOR CLASSIFICATION, 

(REVISITING TABLE 2) 

 
Int 
Int 

Bnd 
Bnd 

Int 
Bnd 

Bnd 
Int 

Int 
Ext 

Bnd 
Ext 

Ext 
Int 

Ext 
Bnd 

Ext 
Ext 

DC F F F F T T T T T 
EC F T F F T T T T T 

NTPP T F F T F F T T T 
NTPPc T F T F T T F F T 

EQ T T F F F F F F T 
TPP T T F T F F T T T 

TPPc T T T F T T F F T 
PO T T T T T T T T T 

 



 
 

Fig. 6. Classification tree for the topological relations, where T and F 
represent whether the objects intersect or not respectively. 

B. Health Informatics 
We will use public domain dataset from UCI Machine 

Learning Repository [22] to automate the simplicity, 
applicability and usability of our approach. 

For application of our algorithm, we selected liver disease 
classification dataset. This dataset was selected particularly as 
most of its attribute were numeric and classification attribute 
is binary representing presence or absence of the disease. This 
dataset is compatible with logistic regression and is also well 
suited to PCA that processes numerical values only.  

We obtained the dataset from Machine Learning 
Repository at the University of California, Irvine [22]. The 
dataset contains liver disease information about 583 patients 
out of which 416 are with liver disease and 167 are healthy. 
The dataset consists of 441 male and 142 female patients. The 
liver disease classification is based on 10 parameters: age of 
the patient, gender of the patient, total Bilirubin, direct 
Bilirubin, Alkaline Phosphotase, Alamine Aminotransferase, 
Aspartate Aminotransferase, total Proteins, Albumin, 
Albumin and Globulin ratio. There were two types of 
recommendations based on these experiments: patient has 
liver disease or patient does not have liver disease.  

This is a fairly small size dataset for classification of 583 
patients. Learning from this dataset can be used to predict 
possible disease for a new patient quickly without further 
analysis. The goal is not data mining per se, but to show the 
feasibility of improved algorithms over the existing 
algorithms and data reduction to classify liver disease. The 
reduction in one attribute reduces the data size by 9%. We 
applied PCA on the data to reduce 10 attributes to 3 or 4 
attributes, which contribute the most to the eigenvector 
corresponding to the highest eigenvalue, while retaining 
approximately the same predictive power as the original data. 

For experiment, we created two versions of the dataset: 
first dataset is raw, the second dataset is mean-centered with 
unit standard deviation. PCA determines that there is only one 
non-zero eigenvalue all other eigenvalues are insignificant. 
One non-zero eigenvalue is shown in Table 10.  

This indicates that only a single attribute in the 
transformed space is sufficient to diagnose the patients. But 

this does not tell us which original attributes contributed to 
reduction. The principal components on normalized data are 
more realistic in this case, as the normalized data attributes 
values are evenly distributed. For nominal attributes, mapping 
nominal to numerical can make a difference. However, 
covariance and correlation approaches are complementary. 

The principal component corresponding to non-zero 
eigenvalue is a linear combination of original attributes. Each 
coefficient in it is a contribution of the original data attributes. 
How do we select the fractions of original attributes because 
the coefficients in this vector are real? 

The only thing it means is that each coefficient is a 
fractional contribution of the original data attributes. It is clear 
that the three (Alkaline Phosphatase Alamine Aminotransfe-
rase, Total Proteins, Aspartate Aminotransferase) of the ten 
coefficients are more dominant than the others, however 
normalized data analysis found three more slightly less 
dominant coefficients. In either case, the contribution of the 
original three attributes is more than 95%. Eliminating the 
other attributes, we compute the approximation error due to 
dimension reduction to three attributes.  

PCA analysis shows that even after 60% reduction, using 
only 40% of data, the precision is almost the same whereas 
the gain in computation performance is significant, see 
Figure 7. For recall, the reduced data regression misses more 
negatives see Table 11. It is preferable to miss less positive 
than more negatives. Table 11 corresponds to traditional 
logistic regression Table 12 corresponds to hybrid logistic 
regression algorithm. It shows that hybrid algorithm 
consistently outperforms the traditional algorithms.  

VII. CONCLUSION 

Principal components analysis is a procedure for 
identifying a smaller number of uncorrelated variables, called 
“principal components”, from a large set of data. The goal of 
principal components analysis is to explain the maximum 
amount of variance with the fewest number of principal 
components.  

TABLE X 
EIGENPAIRS AND ERROR IN DATA REDUCTION. 

 Raw Data Normalized Data 
Eigenvalues –8635.3 38.6315 

Eigenvectors 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

0.0875
0.0115
 0.0196
 0.0125
 0.4838
0.4376
0.7523
0.0107
0.0032
0.0015⎭

⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

0.3666
0.2201
0.3439
−0.0374
−0.4160
−0.4139
−0.4026
0.3966
−0.0552
0.1753 ⎭

⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

 

Errors 0.367508 0.671054 
 



Principal components analysis is commonly used as one 
step in a series of analyses. We use principal components 
analysis to reduce the number of variables and avoid multi-
collinearity, or when we have too many predictors relative to 
the number of observations. We have used PCA in two 
diverse genres, QSR and Health Informatics to improve 
traditional data reduction and regression algorithms. 

QSR uses 9-Intersection model to determine topological 
relations between spatial objects. In general, PCA utilizes 
numerical data for analysis and as QSR data is logical 
bivalent, we mapped the logical data to numerical data. PCA 
determined that 4-attributes are adequate in the transformed 
space. In general, reduction in transformed space does not tell 
anything about reduction in base space. However, in this case 
study, we leveraged PCA to determine the possibility of 
reduction in the base space. We succeeded in achieving 
similar reduction the original space of RCC8 relations. This 
yields more than 55% efficiency in execution time. 

We also presented hybrid algorithms that adaptively used 
PCA to improve the linear and logistic regression algorithms. 
With experiments, we have shown the effectiveness of the 
enhancements. All data mining applications that dwell on 
these two algorithms will benefit extensively from our 
enhanced algorithms, as they are more realistic than the 
traditional algorithms. The tables in the paper body vouch for 
this improvement. We applied our algorithms to the Liver 
Patient dataset to demonstrate the usability and applicability 
of our approach, especially in the area of health related data.  
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Fig. 7. Error in estimating the original data from eigenvectors where x-axis 
represents the number of eigenvectors used in data approximation (starting 
from the most significant to the least significant one) and y-axis represents 
the error percentage of the estimation. 

TABLE XI 
ERROR COMPARISON METRICS TRADITIONAL ALGORITHM 

  Raw PCA 40% Data 
Precision 0.715 0.743 
Recall 0.995 0.940 

TABLE XII 
ERROR COMPARISON METRICS HYBRID ALGORITHM 

  Raw PCA 40% Data 
Precision 0.737 0.757 
Recall 0.987 0.937 

 


