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Abstract—The central idea of principal component analysis
(PCA) is to reduce the dimensionality of a dataset consisting of a
large number of interrelated variables, while retaining as much
as possible of the variation present in the dataset. In this paper,
we use PCA based algorithms in two diverse genres, qualitative
spatial reasoning (QSR) to achieve lossless data reduction and
health informatics to achieve data reduction along with
improved regression analysis respectively. In an adaptive hybrid
approach, we have employed PCA to traditional regression
algorithms to improve their performance and representation.
This yields prediction models that have both a better fit and
reduced number of attributes than those produced by using
standard logistic regression alone. We present examples using
both synthetic data and real health datasets from UCI
Repository.

Index Terms—Principal component analysis, regression
analysis, healthcare analytics, big data analytics, region
connection calculus.

I. INTRODUCTION

CA is a way of identifying patterns in data, and

expressing the data in such a way as to highlight their
similarities and differences. Since patterns in data can be hard
to find in data of high dimension, where the luxury of
graphical representation is not available, PCA is a powerful
tool for analyzing data. The other main advantage of PCA is
that once we have found these patterns in the data, then we
compress the data, i.e., by reducing the number of dimensions,
without much loss of information.

PCA and Singular Value Decomposition (SVD) are
interchangeably used for data reduction/compressions
whereas statistical techniques such as regression analysis are
used for approximation and analysis of data. Such
applications include data mining, health informatics,
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oceanography, meteorology, natural language processing,
machine learning, image analysis, geometry visualization.

A. Qualitative Spatial Reasoning

Reasoning about spatial data is a key task in many
applications, including geographic information systems,
meteorological and fluid flow analysis, computer-aided
design, and protein structure databases. Such applications
often require the identification and manipulation of qualitative
spatial representations, for example, to detect whether one
“object” will soon occlude another in a digital image, or to
determine efficiently relationships between a proposed road
and wetland regions in a geographic dataset. QSR provides
representational primitives (a spatial ‘“vocabulary”) and
inference mechanisms.

Much QSR work has studied purely topological
descriptions of spatial regions and their relationships. One
representative approach, the Region-Connection Calculus
(RCC), provides predicates for expressing and reasoning
about the relationships among topological regions (arbitrarily
shaped chunks of space). RCC was originally designed for 2D
[1, 2]; later it was extended to 3D [3]. Herein we introduce
PCA to reduce 9-Intersection model to 4-intersection model in
both 2D and 3D. The performance of QSR can be improved
by reducing the number of intersections, but PCA connection
to QSR is non-existent in the literature. Herein we show how
(1) PCA can be applied to intersection dimension reduction
for QSR spatial data, and (2) the 9-Intersection can be reduced
to 4-Intersection for all spatial as well as non-spatial objects.

For example, of item-attribute-concept in RCC, spatial
objects are items, their intersections are attributes, and
relations are concepts. There are five RCCS and eight RCC8
concepts in RCC, see Figure 1, and [2, 3].

B. Health Informatics

The Big Data revolution has begun for many industries.
The healthcare industry has been playing catch up and has
finally reached a consensus on the value of Big Data as a
transformative tool. Statistical linear and logistic regression
that have been the popular mining techniques, but their ability
to deal with inter dependent factors is limited. The
understanding of principal components, however, has been



lacking in the past by non-academic clinicians. It is no
surprise that keeping people healthy is costing more money.
From the price of medications and the cost of hospital stays to
doctors’ fees and medical tests, health-care costs around the
world are skyrocketing. Much of this is attributed to wasteful
spending on such things as ineffective drugs, futile procedures
and redundant paperwork, as well as missed disease-
prevention opportunities. This calls for mechanism for
efficient data reduction and diagnostic tools as pointed out by
some of the examples in the literature cited in the next
paragraph.

Analysis of this Big Data offers unlimited opportunities
for healthcare researchers and it is estimated that developing
and using prediction models in the health-care industry could
save billions by using big-data health analytics to mine the
treasure trove of information in electronic health records,
insurance claims, prescription orders, clinical studies,
government reports, and laboratory results. According to the
Harvard School of Public Health publication entitled The
Promise of Big Data, petabytes of raw information could
provide clues for everything from preventing tuberculosis to
shrinking health care costs—if we can figure out how to apply
this data [4]. Improving the care of chronic diseases,
uncovering the clinical effectiveness of treatments, and
reducing readmissions are expected to be top priority use
cases for Big Data in healthcare [5].

In this paper, we will give general guidelines to address
various issues. We explore an adaptive hybrid approach (1)
how PCA can be used to reduce data in the original space in
addition to transformed space, (2) how PCA can be used to
improve standard line regression and logistic regression
algorithms, (3) how to use logistic regression in conjunction
PCA to yield models which have both a better fit and reduced
number of variables than those produced by using logistic
regression alone.

The paper is organized as follows. Section II describes
the background on linear regression, logistic regression, and
principle of component analysis. Section III describes PCA in
detail, along with our suggested representational
improvements. Section IV presents the hybrid algorithms for
regression using PCA. Section V discusses PCA’s improved
role in dimensionality reduction followed by additional
experimental support in Section VI. Section VII concludes the

paper.

II. BACKGROUND

A. Mathematical Notation

In this section, we describe the mathematical notation for
terms whose definitions will follow in the paper. A vector is a
sequence of elements. All vectors are column vectors and
are in lower case bold letters such as x. The n-tuple [x,,...,
x,] denotes a row vector with n elements in lowercase. A
superscript T is used to denote the transpose of a vector x,

so that xT is a row vector whereas x = [x;,..., x,]7 is a column
vector. This notation is overloaded at some places where the
ordered pair [x;, x»] may be used as a row vector, a point in
the plane or a closed interval on the real line. The matrices are
denoted with uppercase letters, e.g. A4, B. For vectors x, y, the
covariance is denoted by cov(x, y), whereas cov(x) is used for
cov(x, x) as a shortcut [6].

If we have m vector values x,..x, of an n-
dimensional vector x = [x,,..., xn]', these m row vectors are
collectively represented by an m x n data matrix 4. The k"
row of 4 is the row vector x;7. Thus the (i, j) element of 4
becomes the j” element of the i row/observation,x;.

There are several ways to represent data so that
implicit information becomes explicit. For linear
representation of vector data, a vector space is equipped
with a basis of linearly independent vectors. Usually in
data mining, the data is represented as a matrix of row
vectors or data instances. Two of the methods for efficient
representation of data are regression and PCA.

B. Qualitative Spatial Reasoning

Much of the foundational research on QSR is related to
RCC that describes two regions by their possible relations to
each other. RCC5/RCC8 can be formalized by using first
order logic [2] or by using the 9-intersection model [1].
Conceptually, for any two regions, there are three
possibilities: (1) one object is outside the other; this results in
the RCCS5 relation DR (interiors disjoint) and RCCS relation
DC (disconnected) or EC (externally connected). (2) One
object overlaps the other across boundaries; this corresponds
to the RCC5/RCCS8 relation PO (proper overlap). (3) One
object is inside the other; this results in topological relation
EQ (equal) or RCCS5 relation PP (proper part). To make the
relations jointly exhaustive and pairwise distinct (JEPD), there
is a converse relation denoted by PPc (proper part converse),
PPc(A,.B) = PP(B,A). For a close examination, RCCS
decomposes RCCS5 relation PP (proper part) into two
relations: TPP (tangential proper part) and NTPP (non-
tangential Proper part). Similarly for RCCS relation PPc,
RCC8 defines TPPc and NTPPc. The RCC5 and RCCS
relations are pictorially described in Figure 1.
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Fig. 1. RCCS5 and RCCS8 relations in 2D
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Each of the RCCS relations can be uniquely described by
using the 9-Intersection framework. It is a comprehensive way
to look at any relation between two regions. The O9-
Intersection matrix for two regions 4 and B is given in
Table 1, where Int represents the region’s interior, Bnd
denotes the boundary, and Ext represents the exterior. The
predicate IntInt(4,B) is a binary relation that represents the
intersection between the interiors of region 4 and region B;
the value of this function is either true (non-empty) or false
(empty). Similarly, there are other predicates for the
intersection of 4’s interior, exterior, or boundary with those of
B. In QSR, we are only concerned with the presence/absence
of an intersection. The actual value of the intersection is not
necessary.

For two non-empty bounded regions 4 and B, the
intersection of their exteriors is always non-empty. This is
represented in the last column of Table 2. Since it adds no
new information, it has been proposed in the literature [2] to
replace the 9-Intersection with the 8-Intersection model to
define the spatial relations. The values of the 8-Intersection
framework for the RCCS8 framework are given in the first
eight columns in Table 2.

TABLE 1.
9-INTERSECTION MATRIX FOR CALCULATING RCC8 RELATIONS
Interior Boundary Exterior
Interior  Int(A)NInt(B) Int(A)NBnd(B)  Int(A)NExt(B)
Boundary Bnd(A)NInt(B) Bnd(A)NBnd(B) Bnd(A)NExt(B)
Exterior Ext(A)NInt(B) Ext(A)NBnd(B)  Ext(A)NExt(B)
TABLE II

BOOLEAN VALUES FOR 9-INTERSECTIONS REQUIRED
TO DISTINGUISH EACH RCC8 RELATION

Int Bnd Bnd Int

RCCS Int Bnd Ext Ext Ext

Int Bnd Int Bnd Ext Ext Int Bnd Ext

DC F F F F T T T T T
EC F T F F T T T T T
EQ T T F F F F F F T
NTPPc T F F T T T F F T
TPPc T T F T T T F F T
NTPP T F T F F F T T T
TPP T T T F F F T T T
PO T T T T T T T T T

In this paper, we show that PCA provides a better
alternative to conventional methods of dimensionality
reduction in QSR. The analysis is equally applicable to both
non-spatial discrete web objects as well as conventional
spatial objects such as cuboids and spheres.

In such applications, some threshold may be required to
interpret the resulting dimensions. One can simply ignore
variation below a particular threshold to reduce the data and
still preserve the main concepts of original intent.

C. Health Informatics

There is a significant opportunity to improve the
efficiencies in the healthcare industry by using an evidence-
based learning model, which can in turn be powered by Big
Data analytics [7]. A few examples are provided below. The
company Asthmapolis has created a global positioning system
(GPS) enabled tracker that monitors inhaler usage by patients,
eventually leading to more effective treatment of asthma [8].
Center for Disease Control and Prevention (CDC) is using Big
Data analytics to combat influenza. Every week, the CDC
receives over 700,000 flu reports including the details on the
sickness, what treatment was given, and whether not the
treatment was successful.

The CDC has made this information available to the
general public called FluView, an application that organizes
and sifts through this extremely large amount of data to create
a clearer picture for doctors of how the disease is spreading
across the nation in near real-time [9]. GNS Healthcare, a Big
Data analytics company, has come together with the health
insurance company Aectna to help combat people at risk or
already with metabolic syndromes. The company has
developed a technology known as Reverse Engineering and
Forward Simulation that will be put to work on the data of
Aetna insurance subscribers. Essentially, the technology will
search for the presence of five warning signs: large waist size,
high blood pressure, high triglycerides, low High density
Lipoprotein, and high blood sugar. A combination of any
three of these lead to the conclusion that the patient is
suffering from the condition [10].

Researchers at Allazo Health are creating systems
designed to improve on medication adherence programs by
using predictive analytics. For example, predict what
interventions are mostly likely to work for that patient based
on what interventions already worked for other patients with
similar demographics, behavioral profiles, and medical
history [11]. Another area of interest is the surveillance of
adverse drug reactions (ADRs) which has been a leading
cause of death in the United States [12]. It is estimated that
approximately 2 million patients in USA are affected by
ADRs and the researchers in [13], [14] and [15] propose an
analytical framework for extracting patient—reported adverse
drug events from online patient forums such as DailyStrength
and PatientsLikeMe.

Simplistically speaking, in all the above examples the
researchers are trying to model and predict a dependent
phenomenon based on a number of predictors that have been
observed. The dependent parameter can be discrete, nominal,
or even binary / logical. There are two problems at hand:
dimension reduction and prediction. First problem is data
optimization. The optimization problem is data cleaning, and
how we can reduce the set of predictors while still
maintaining a high prediction accuracy for the dependent
variable. The second problem is the prediction of the
dependent variable from the reduced dataset. This problem is



analyzing whether some event occurred or not given the
success or failure, acceptance or rejection, presence or
absence of observed simulators. This is where PCA comes
into the picture.

III. PRINCIPLE COMPONENT ANALYSIS

The PCA is a well-known data reduction tool in academia
for over 100 years. PCA creates a linear orthogonal
transformation of correlated data in one frame (coordinates
system) to uncorrelated data in another frame. The huge
dimensional data can be transformed and approximated with a
few dimensions. PCA finds the directions of maximum
variance in high-dimensional data and projects it onto a
smaller dimensional subspace while retaining most of the
original information. If the data is noisy, PCA reduces noise
implicitly while projecting data along the principal
components. In this paper, we explore an adaptive hybrid
approach to show that PCA can be used not only for data
reduction but also for regression algorithm improvement. We
will describe the hybrid model for both linear and logistic
regression algorithms.

Before delving further, we would like to discuss the terms
PCA and SVD further as they are used interchangeably in the
literature. There is a clear distinction between them.

Definition 1. For a real square matrix 4, if there is a real
number A and a non-zero vector x such that 4 x = 4 x, then A
is called an eigenvalue and x is called an eigenvector.

Definition 2. For a real matrix 4 (square or rectangular),
if there a non-negative real number ¢ and a non-zero vectors x
and y such that A" x = oy, and 4 y = o x, then o is called a
singular value and x and y represent a pair of singular
vectors [16].

Note 1. )\ can be negative or positive, but ¢ is always
non-negative.

Note 2. c? is an eigenvalue of covariance matrices 447
and A7A. This can be quickly seen

ATx=0cy>AATx=cAy> AATx=cox=0x

Therefore
AATx=7x

Similarly, we can see that
ATAy=cy

An eigenvector is a direction vector supporting the spread
of data along the direction of the vector. An eigenvalue
measures the spread of data in the direction of the
eigenvector. Technically, a principal component can be
defined as a linear combination of optimally weighted
observed variables. The words “linear combination” refer to
the fact that weights/coefficients in a component are created
by the contribution of the observed variables being analyzed.

“Optimally weighted” refers to the fact that the observed
variables are weighted in such a way that the resulting
components account for a maximal amount of variance in the
dataset.

This will also be a good place to introduce Least Square
Approximation (LSA). LSA and PCA are both linear
transformations. However, they accomplish the same task
differently. In a vector space, for any vector v and a unit
vector u, we have v=veu u + (v - veu u). Finding the vector u
that minimizes |(v - veu u)| is the same as finding a vector u
that maximizes |veu|. LSA calculates the direction u that
minimizes the variance of data fiom the direction u whereas PCA
computes the direction u (principal component) that
maximizes the variance of the data along the direction u. This
concept is applied to all data instance vectors collectively resulting
in covariance matrix 447 of data matrix and u is the eigenvector of
AAT with largest eigenvalue.

If A4 is a real square symmetric matrix, then eigenvalues
are real and eigenvectors are orthogonal [17]. PCA computes
eigenvalues and eigenvectors of a data matrix to project data
on a lower dimensional subspace. PCA decomposition for a
square symmetric matrix 4 is 4 = UDUT where U is the
matrix of eigenvectors and D is diagonal matrix of
eigenvalues of 4. Since AU = UD, U is orthogonal, therefore
A=UDUT. Also PCA orders the eigenvalues in the descending
order of magnitude. The columns of U and diagonal entries of
D are arranged correspondingly. Since eigenvalues can be
negative, the diagonal entries of D are ordered based on
absolute values of eigenvalues.

The SVD decomposition is applicable to a matrix of any
size (not necessarily square and symmetric). 4 = USV?, where
U is the matrix of eigenvectors of covariance matrix 447, V is
the matrix of eigenvectors of covariance matrix A74, and S is
a diagonal matrix with eigenvalues as the main diagonal
entries. Hence, PCA can use SVD to calculate eigenvalues
and eigenvectors. Also SVD calculates U and V efficiently by
recognizing that if v is an eigenvector of 474 for non-zero
eigenvalue A, then Av is automatically an eigenvector of 44T
for the same eigenvalue A where A>0. If Av is an eigenvector,
say, u, then 4v is a multiple of eigenvector u (since u and v
are unit vectors) and it turns out that Av = \//lu, or u = oAv,
where o = 1/NA. By convention, SVD ranks the eigenvectors
on descending order of eigenvalues. If U and V are matrices of
eigenvectors of 44T and 474, and S is the matrix of square
roots of eigenvalues on the main diagonal, then 4 can be
expressed as 4 = USVT [17]. The eigenvalues of a square
symmetric matrix 4 are square roots of eigenvalues of 447,
We will show that it is sufficient to have S as diagonal matrix
of only non-zero eigenvalues and U, V' to have columns of
only the corresponding eigenvectors.

In data mining, the m observations/data points are
represented as an m x n matrix 4 where each observation is a
vector with n components. PCA/SVD help in transforming



physical world data / objects more clearly in terms of
independent, uncorrelated, orthogonal parameters.

The first component extracted in principal component
analysis accounts for a maximal amount of variance in the
observed variables. The second component extracted will
have two important characteristics. First, this component will
account for a maximal amount of variance in the dataset that
was not accounted for by the first component. The second
characteristic of the second component is that it will be
uncorrelated with the first component. The remaining
components that are extracted in the analysis display the same
two characteristics. Visualizing graphically, for the first
component direction (eigenvector) e;, the data spread is
maximum my; for the next component direction e, the data
spread is next maximum m; (m; < m; the previous maximum)
and the direction e; is orthogonal to previous direction e;.

Note 3. For the eigenvectors u of A, any non-zero
multiple of u is also an eigenvector of A. In U, the
eigenvectors are normalized to unity. If @ is a unit
eigenvector, then -u is also a unit eigenvector. Thus the sign
can be arbitrarily chosen. Some authors make the first nonzero
element of the vector to be positive to make them unique. We
do not follow this convention. Since the eigenvectors are
ordered, we make the k" element of vector ux positive. If k*
element is zero, only then first non-zero element is made
positive. This is a better representation of eigenvectors as it
represents the data in a right-handed system as opposed to
asymmetrical ordering, see Figure 2. Using Matlab svd(4) on
a simple set of only two data points, the algorithm generates
two orthogonal vectors v;, v> as given in Figure 2(a, b). Our
algorithm finds green vectors in Figure 2(c), which is more
natural and of a right-handed orientation.

Y VI
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Fig. 2: Gray set of axes are standard xy-system. Blue dots represent a set of
data points. Red dots are projections of data points on the principal
components. (a) The axes v1, v2 in red are the eigenvectors that are computed
by Matlab using the set of data points. (b) The axes v1, v2 in blue are the
directions so that each eigenvector is unique making the first non-zero
component positive, used in the literature. (c) The axes v1, v2 in green are
generated when the sign in an eigenvector is chosen by our scheme.

A. Properties of PCA/SVD

In essence, PCA/SVD takes a high dimensional set of
data points and reduces it to a lower dimensional space that
exposes the knowledge that is hidden in the original space.
Moreover, the transformation makes similar items more
similar, and dissimilar items more dissimilar.

It is not the goal of SVD to get back the original matrix.
However, the reduced dimensions do give insight about the
original matrix, as we will see in the case of QSR and health
informatics.

There are three important properties of SVD:

(1) It can transform correlated variables into a set of
uncorrelated ones. SVD computes a transformation T
such covariance of T4 is diagonal matrix D, e.g. TA(TA)T
is D. It can extract some relationships hidden in the
original data. It can also reduce noise in the data [18].

(2) Since the eigenvectors are ordered on most variation to
least variation in descending order of eigenvalues,
deleting the trailing eigenvectors of smaller variation
ensures minimal error. It finds the best approximation of
the original data points by projecting data on a fewer
dimensional subspace; see Figure 3 of linear data.

(3) The data can be reduced to any desired size. The
accuracy of smaller size data depends on the reduction in
the number of dimensions [19]. By deleting
eigenvectors corresponding to least variation, we
effectively eliminate noise in the representation of
data vectors [20].

B. Dimension Reduction using PCA

There is a multitude of situations in which data is
represented as a matrix. In fact, most of the real world data is
expressed in terms of vectors and matrices where each vector
has a large number of attributes. Matrices are used to
represent data elegantly, and efficiently. In a matrix, each
column represents a conceptual attribute of all the items, and
each row represents all attributes related to individual data
item. For example, in health informatics, rows may represent
patients and columns may represent disease diagnostic
symptoms or the rows may represent medicines and columns
may represent side effects or adverse reactions. Similarly, in
spatial-temporal reasoning, rows represent pairs of objects and
columns represent temporal intersection properties of objects.

The goal of PCA is to reduce the big data matrix 4 to a
smaller matrix retaining approximately the same information
as the original data matrix and make the knowledge explicit
that was implicit in the original matrix.

Example: In this example, we have 20 three-dimensional
points in 20 x 3 matrix 4. Each row of 4 has three values for
X-, y-, Zz- coordinates. Visually we can see that the data points
have a linear trend, in 3D, but data points have noise
components in the y, and z coordinates. PCA determines the



direction and eliminates noise by eliminating the eigenvectors
corresponding to smaller eigenvalues (see Figure 3). Black
“+” symbols represent the original data points with noise. As
can be seen visually, they are almost linear. They can be
approximated along eigenvector v; in one dimension of the
vivavs-system. Red lines depict the data trend in the three
dimensional space along v, v, and vz direction. Blue lines
depict the data spread in the three dimensional space along v,
v, and vs direction. Since the data spread or blue line on v
and vs is almost non-existent (closer to the origin), it is an
indicator of noise in the linear data. We can see that the data
can be represented satisfactorily using only one direction.

Fig. 3. Data is almost linear along v, direction in 3D, the noise is along the y
and z-axis. Blue lines reflect data spread along vy, v, and v; directions.

Table 3 enumerates the numeric values of the PCA
decomposition. First row lists the eigenvalues, which
represent the spread of points along the principal components.
Second row shows the eigenvectors corresponding to the
eigenvalues. The next three rows represent the error on using
first, first two, first three eigenpairs. Let newAd be the USVT
based on eigenpairs used. Then Error Original is the |4-
newA|/|A| percentage error in the original space. Error
Projection is the |4V-newAV|/|AV| percentage error in the
projection space. Error Eigenvalues is the ) p=i+1,3 Ap/d p=1.3 Ap
percentage error in the eigenvalue space.

Table 3 reveals that v;, is the data dimension and vy, v;
correspond to the noise in this case. If we use two (or three)
eigenpairs there is no error. Hence, the data can be
represented in one dimension only instead of three dimensions

TABLE III
EIGENVALUES, EIGENVECTORS AND PERCENT ERRORS
FOR ONE DIMENSIONAL DATA IN 3D

Eigenvectors
Eigenvalues 10.094419 0.213053 0
Eigenvectors [0.6,0.6,0.6] [-0.8,0.4,0.4] [0.0,-0.7,0.7]
Error Original  2.110605 0 0
Error Eigenvalue  2.066979 0 0
Error Projection  2.110605 0 0

with slight error of 2%. This error is attributed to the
difference between the non-zero eigenvalues. The third and
fifth rows in Table 3 indicate that the error metrics are
equivalent in the original and projection space.

IV. PRINCIPAL COMPONENT AND REGRESSION ANALYSIS

There are several ways to model the prediction variables,
g., linear regression analysis, logistic regression analysis,
and PCA. Each has its own advantages. Though regression
analysis has been well known as a statistic technique, the
understanding of principles, however, has been lacking in the
past by non-academic clinicians [21]. In this paper we explore
an adaptive hybrid approach where PCA can be used in
conjunction with regression to yield models which have both
a better fit and reduced number of variables than those used
by standalone regression. We will apply our findings to a
medical dataset obtained from UCI Machine Learning
Repository about liver patient [22]. We use the records for
detecting the existence or non-existence of liver disease based
on several factors such as age, gender, total bilirubin, etc.

A. PCA and Linear Regression

In linear regression, the distance between observed point
(x;,yi) from the computed point (x;,a+bx;) on line y=a+bx, is
minimized along the y direction. In PCA, the distance of the
observed point (x;y;) is minimized to a line which is
orthogonal to the line y=a+bx, is minimized. The details of
linear algebra concepts in this section are found in [17]. We
assume that data is standardized to mean zero; and normalized
appropriately by the number of objects.

For one independent and one dependent variable, the
regression line is y=a+bx where the error between the
observed value y; and estimated value a+bx; is minimum. For
n points data, we compute a and b by using the method of
least squares that minimizes:

> i-a-bxy
i=1n

This is a standard technique that gives regression
coefficients a and b where a is the y-intercept and b is the
slope of the line.

cov (x) —x]

[b] = - el ]
cov(x) “cov(x) —x2 lcov(x,y)
If the data is mean-centered, then a=0 because X =

Zi:l,n Xi Zi:1,n3’i
n

=0 and y= = 0. Alternatively, we can

replace x; with x; — x and y; with y; - y. The direction of the

b
line is always obtained from b as [ Neevet m]

1+b2

For more than one independent variables, say m, we have

y=bo+ z b;x)



Then we compute b; by minimizing:

> mimb— ) hen)?
i=1n

k=1,m

Thus, it determines a hyper-plane which is a least square
approximation of data points. If data is mean-centered, then
bp=0. It is advised to mean-center data to simplify the
computations.

It is interesting to note that as a result of linear regression,
the data points may not be at least distance from the
regression line. Here we present an algorithm using PCA that
results in a better least distance line. There are two ways in
which regression analysis is improved: data reduction and
hybrid algorithm. As a first step, PCA is used on the dataset
for data reduction. For improved performance in the second
step, we create a hybrid linear regression algorithm coupled
with PCA.

IMPROVED LINEAR REGRESSION

Input: array of data points (x, y)

Output: line y=a + bx

Method:

Traditional: compute a and b, by minimizing

Z yi—a- bxi)z
i=1n

Let errorl be the computed traditional error value.
New: compute a and b, by minimizing

Z (yi —a—bx)®

i=1n /(1 + b?)

Let error2 be the computed PCA adapted error value.
Compare errorl and error2

Example: We have a dataset of randomly created 20 points.
Matlab computes the regression line as the red line, see Figure 4.
PCA computes the blue line. As can be visually seen, the blue
line is the least distance line instead of the red regression line.
For direction vectors and approximation error of data points
from the line, see Table 4.

Both linear regression and PCA compute vectors so
that the variation of observed points from the computed
vector is minimum. However, as shown in Figure 4, they
give two different vectors, red via linear regression, and
blue via PCA. The approximation error indicates the PCA
adapted regression line is a better approach than by LSA
method.

Data reduction is attributed to the non-zero eigenvalues
of the data matrix 4. Since m x n data matrix is decomposed
into 4 = USVT where Uism x m, Sis m x n, and Visn x n. If
there are only k& non-zero eigenvalues where k < min(m, n),
the matrix 4 has lossless representation by using only k&

Comparison Usual Regression Line vs PCA Regression Line
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Fig. 4: Using the data points “+”, traditional linear regression line is
shown in red (LSA) and a principal component is shown in blue
(PCA). Visually we can see that the points are much closer to blue line
than to the red line.

TABLE IV
COMPARISON OF LINEAR REGRESSION METHODS

For usual regression line
Direction vector [0.642388, 0.766380]
Relative Regression Error  0.391169

For PCA adapted regression line
Direction vector [0.514757,0.857336]
Relative Regression Error  0.173438

columns of U, k columns of V and kxk diagonal matrix S. If an
eigenvalue is very small as compared to others, then ignoring
it can lead to further data reduction while retaining most of
the information.

B. PCA and Logistic Regression

Along with linear regression, logistic regression (log
linear) has been a popular data mining technique. However,
both when used stand alone, have limited ability to deal with
inter dependent factors. Linear regression is suitable for data
that exhibits linear relation, but as all data does not have linear
trend, the Logistic models estimate the probability and is
applicable to “S-shaped” data. This model is particularly
suitable for population growth with limiting condition. As it
was with linear regression, it is beneficial to use logistic
regression when coupled with PCA.

Population growth is described by exponential function;
population is controlled by the limiting condition. The liver
disease model is a composition of these two functions as
shown below. The mapping from linear to logistic function is
described as follows [23].

Thus for logistic function P(x)e(0, 1) instead of linear

function P(x) = a + bx, the function becomes:
ea+bx

P(x) = 14+ ea+bx



To solve for a and b, we write:

P(x)

1_P(x)=a+bx

log

We make use of PCA in designing better logistic

regression algorithm, presented below. Here the hybrid

algorithm is presented for two-dimensional data, however, it
can be easily extended to higher dimensions.

IMPROVED NON-LINEAR LOGISTIC REGRESSION

Input: array of data points (x, y)
Output: non-linear PCA adapted logistic function
Method: For logistic regression, map

y
y = log. (m)

Apply improved regression line to y values computed
from (new approach) line y=a + bx
Map y values back
ey

1+eY

y—)

Example: In this example, we have a training dataset of
20 students obtained from [24] who studied for the exam for
given hours (horizontal axis) and passed or failed (vertical
axis) the test. The curves are the trained logistic regression
predictor for chances of passing the exam. Fail and pass are
coded numerically as 0 and 1, see Figure 5.

Comparison Logistic regression vs PCA regression
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Fig. 5: Using the data points “+”, usual logistic regression curve is given in
red and the regression curve generated by the proposed hybrid model is given
in blue.

The approximation errors for are shown in Table 5. The
example exhibits that the PCA (blue) curve is a better
approximation predictor with 60% less approximation error.

TABLE V
COMPARISON OF LOGISTIC REGRESSION METHODS

0.443061
0.157216

Logistic Regression Relative Error
PCA Regression Relative Error

C. How do we measure the goodness of a model?

In data mining there are standard measures, called gold
standard, for labeling and measuring the prediction accuracy.
These measures are useful in comparing the results of
classification. Here we will list three metrics, Precision (P),
Recall (R) and F-1. In these metrics, actual value and
predicted value are used to create a label for each instance
outcome, where the instance outcome is either positive or
negative. The labels used here are True Positive (TP), False
Positive (FP) and False Negative (FN) to measure the
accuracy (the reader is encouraged to consult [17] for further
details). After labeling, we define the Precision (P), Recall (R)
and F-metrics to measure the effectiveness of the prediction
on (1) correct prediction on all positive instances and (2) TP
prediction on a sample of instances (positive and negative)
under investigation on the training data.

. TP
Precision(P) = TP+ FP
TP
Recall(R) = TP+—FN

The measure F-1 is the weighted Harmonic average of P
and R. It is the reciprocal of the weighted average of the
reciprocals of P and R.

For 0 < a < 1, it simplifies to:

o PR
7 aR+ (1 -a)P

For a = 0, it turns out to be the recall measure R, for

a=1, it becomes precision measure P, and for a = 1/2, it
further simplifies to traditional measure

__ 2PR

1" pP+R
2TP
2TP + FP + FN

This is the preferred measure when there are fewer misses
of both positive and negative instances, (i.e. both FN and FP
are small) [17].

Goodness of fit is an interesting analysis criterion. Our
goal is to show how the hybrid linear/logistic regression
model is better than the more straightforward measures
generated for linear/logistic measures.

or F; =

V. DIMENSIONALITY REDUCTION USING PCA

The nature of data dictates how many dimensions can be
reduced. The data is not just the attributes, but the dependency



TABLE VI
NUMERIC VALUES FOR 9-INTERSECTIONS REQUIRED TO DISTINGUISH EACH RCC8 RELATION

Intint BndBnd BndInt IntBnd
ObjectPairl 1 1 1 1
ObjectPair2 1 0 1 1
ObjectPair3 0 0 1 1
ObjectPaird 0 1 1 0
ObjectPair5 0 0 1 0
ObjectPair6 0 1 0 1
ObjectPair7 0 0 0 1
ObjectPair8 0 0 0 0

IntExt BndExt Extlnt ExtBnd ExtExt RCC8
0 0 0 0 0 DC
0 0 0 0 0 EC
1 1 1 1 0 EQ
0 0 1 1 0 NTPPc
0 0 1 1 0 TPPc
1 1 0 0 0 NTPP
1 1 0 0 0 TPP
0 0 0 0 0 PO

and redundancy among the attributes. If A=USV7 is full
dimension SVD of 4, where A is m x n, Uis m x m, V is
nxn, S is mxn, then the total size for decomposition
representation of 4 is m x m + n x n + m x n, which is larger
than m x n, the size of 4. Our goal is to find an integer k&
smaller than m and n, and use first £ columns of U and first &
columns of 7 and restrict S to first k eigenvalues to show the
effect of dimensionality reduction. Since eigenpairs are sorted
on descending order of variance, deleting the least variation
components do not cause significant error in data [25].

In practice, it is not our intent to reconstruct the original
matrix 4 from reduced USV7 but to view the data from a fresh
perspective and to use the reduced representation to extract
information hidden in the original representation. PCA is used
to reduce dimensionality in the new space, not the original
space. Our purpose to see if we can leverage PCA to reduce
dimensionality in the original space. This is an open question.

ALGORITHM FOR DATA DIMENSIONALITY REDUCTION

Input: m x n data matrix 4

Output: reduced data m x k matrix B

Steps

Create covariance matrix C = 474

Compute the eigenvalues and eigenvectors of C

Rank the eigenvectors on descending order of eigenvalues:
UsS, v

Normalize the columns to unity

Make diagonal entries of U, } as non-negative

Choose k using one of the criteria described above, k less than
or equal to the number of non-zero eigenvalues.

Construct the transform matrix V,x; from the selected

k eigenvectors.

Transform A to AV, x in eigenspace to express data in terms
of set of eigenvectors reduced from # to £.

It gives a new set of basis vectors and a reduced

k-dimensional subspace of k vectors where the data
resides.

A. Dimension Reduction in Qualitative Spatial Reasoning

PCA has been used mainly with numerical data. If the
data is categorical or logical, then data is first converted to
numerical. We will see how PCA has the ability to resolve
and isolate spatial-temporal patterns in the data presented in
Table 2. We present a new robust PCA enabled method for
QSR. Table 2 describes eight topological relations between
pairs of spatial objects. The values of entries are true and
false. In order to use PCA, we first covert the logical data to
numerical data. We use 1 for false and 0 for true, see Table 6.
Our goal is row dimension reduction. As intersection is a
complex operation and also computationally expensive, we
want to reduce the number of intersections required. For
example, for 1000 pairs of objects, there will be 9000 pairwise
intersections. By eliminating one intersection, we can reduce
9000 to 8000 intersections, almost 11% improvement in
execution. We will show that PCA gives insights, using which
we can do better. In fact, we are able to reduce 9000 to 4000
intersections. This is more than 55% reduction in computation
time! This means we can replace 9-Intersection model by 4-
Intersection model which is now applicable to spatial as well
as non-spatial objects, like web documents.

For RCC8, the item-attribute-concept becomes object
pair--9-Intersection—relation classification. In Table 6, row
header represents a pair of spatial objects, column headers are
the 9-Intersection attributes, and last column RCCS8 is the
classification of the relation based on the intersections.
Table 2 and Table 6 show a sample of eight pairs of objects,
one of each classification type.

We consider Table 6 is an 8 x 9 input matrix 4. On using
Matlab SVD on A7A4, we get nine eigenvectors and nine
eigenvalues of 474 shown in Table 7. Since five eigenvalues
are zero, the corresponding eigenvectors are useless. This tells
us that nx9 data can be replaced with nx4 right away without
any loss of information.

In Table 8, first row enumerates the eigenvalues of 474.
The next rows represent the error on using first & eigenpairs
(where k is the column number). newd is USV” based on k
eigenpairs used. Error Original is the |4-newA|/|4| percentage
error in the original space. Error Projection is the |4V-
newAV]/|AV| percentage error in the projection space. Error
Eigenvalue is the Y p-k+19 Ap/ X p-1,9 Ap percentage error in the



TABLE VII
EIGENVECTORS FOR RCCS8, ROWS ARE EIGENVECTORS; LAST COLUMN IS EIGENVALUES

Eigenvectors Eigenvalues
Vi= 1[0.2833 04914 0.4914 0.1723 0.319 0.319 0.319 0.319 0 1 3.8793
V2= [0 0.4082 —0.4082 O —0.4082 —0.4082 0.4082 0.4082 0 1 2.4495
V3= 10.249 0.2593 0.2593 0.5946  —0.3353 -0.3353 -0.3353 —0.3353 0 ] 2.0405
V4= [-0926 0.2202 0.2202 0.2129 0.0073 0.0073 0.0073 0.0073 0 ] 1.337
V5= [0 0.3108  -0.2504 -0.0605 0.3027 -0.0524 0.4338  —0.7446 0 1 0
V6= [0 0.2159 0.4498  —-0.6657 -0.5075 0.0576 0.001 -0.2169 0 1 0
Vi= [0 0 0 0 0 0 0 0 1 ] 0
V8= [0 0.1917 0.1443 -0.336 0.5191 -0.6634 -0.3211 0.1294 0 1 0
Vo= [0 —0.5442 0.4363 0.108 —0.0205 -0.4157 0.5725 —0.0282 0 1 0
TABLE VIII
EIGENVALUES, EIGENVECTORS, AND PERCENT ERRORS FOR RCC8 REDUCTION USING PCA
Eigenvalues
Eigenvalues  3.879290  2.44949 2.040497 1.336968 0 0 O O O
Error Original  66.53072  46.948 25.72995 0 0 0 0 0 O
Error Eigenvalue 66.53072  46.948 25.72995 0 0 0 0 0 O
Error Quantization 100 74.535599 27.216553 0 0o 0 0 0 O
Error Projection  60.033047  34.79682 13.7743 0.000001 0 0 O O O

eigenvalue space. Error Quantization uses quantization
before error calculation. For example, now with
quantization using 4 eigenvalues we see that there is no
error between newA and A. This is what we expected as 4
has boolean elements.

Table 8 shows that the transformed space created using
4 eigenvalues retains perfect information. This means that
for all object pairs, the relations can be described with
4 eigenvectors as an n x 4 matrix instead of nx9 matrix
with zero error. So how can we deduce the original
dimensions that retain most of the information? We
explore that in the next section.

VI. EXPERIMENTS AND OUTCOMES

Here we show the application of PCA for dimension reduction
in qualitative spatial reasoning and liver disease data. In
addition decision tree is used for spatial data classification
whereas the improved logistic regression is applied to liver
disease data classification.

A. Qualitative Spatial Reasoning

In Section IV, we determined that 4 attributes are
sufficient to classify QSR relations in the transformed
space. However, it does not tell anything about the
attributes in the original space. Now we will see if we can
translate this new found knowledge into the original space
of Table 2. How can we find four intersection attributes
that will lead to the 8 distinct topological relations?

From careful observation of Table 2 we see that the IntInt
and BndBnd columns have the most useful information in the
sense that they are sufficient to partition the RCC8 relations
into eight jointly exhaustive and pairwise distinct (JEPD)

classes, which can be further grouped into three classes: {DC,
EC}, {NTTP, NTTPc}, and {EQ, TPP, TPPc, PO}.

We revisit Table 2 as Table 9 by shading some entries
and analyze them. It shows that only 4-intersections are
sufficient for classification of topological relations. The nature
of data suggests that the remaining attributes are not
necessary. This table can be interpreted and formulated in
terms of rules for system integration. These rules are shaded
and displayed for visualization in the form of Table 9.

TABLE IX
RCCS8 RELATIONS ATTRIBUTES FOR CLASSIFICATION,
(REVISITING TABLE 2)

Int Bnd Int Bnd Int Bnd Ext Ext Ext

Int Bnd Bnd Int Ext Ext Int Bnd Ext

DC
EC
NTPP
NTPPc
EQ
TPP
TPPc
PO

e =]
R R -
= = e =
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e
e
Hm ST H 83
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HHH3Aa934

Thus, Table 9 reveals that the spatial relations can be
specified by at most four intersection attributes. The
shaded columns of Table 9 are transcribed into a decision
tree for easy visualization of the rules to classify the RCC8
eight relations, see Figure 6.

This conclusion makes no assumptions about the
objects being spatial or non-spatial as long as they are
valid. In addition, this analysis is applicable to discrete and
continuous objects alike.
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Fig. 6. Classification tree for the topological relations, where T and F
represent whether the objects intersect or not respectively.

B. Health Informatics

We will use public domain dataset from UCI Machine
Learning Repository [22] to automate the simplicity,
applicability and usability of our approach.

For application of our algorithm, we selected liver disease
classification dataset. This dataset was selected particularly as
most of its attribute were numeric and classification attribute
is binary representing presence or absence of the disease. This
dataset is compatible with logistic regression and is also well
suited to PCA that processes numerical values only.

We obtained the dataset from Machine Learning
Repository at the University of California, Irvine [22]. The
dataset contains liver disease information about 583 patients
out of which 416 are with liver disease and 167 are healthy.
The dataset consists of 441 male and 142 female patients. The
liver disease classification is based on 10 parameters: age of
the patient, gender of the patient, total Bilirubin, direct
Bilirubin, Alkaline Phosphotase, Alamine Aminotransferase,
Aspartate  Aminotransferase, total Proteins, Albumin,
Albumin and Globulin ratio. There were two types of
recommendations based on these experiments: patient has
liver disease or patient does not have liver disease.

This is a fairly small size dataset for classification of 583
patients. Learning from this dataset can be used to predict
possible disease for a new patient quickly without further
analysis. The goal is not data mining per se, but to show the
feasibility of improved algorithms over the existing
algorithms and data reduction to classify liver disease. The
reduction in one attribute reduces the data size by 9%. We
applied PCA on the data to reduce 10 attributes to 3 or 4
attributes, which contribute the most to the eigenvector
corresponding to the highest eigenvalue, while retaining
approximately the same predictive power as the original data.

For experiment, we created two versions of the dataset:
first dataset is raw, the second dataset is mean-centered with
unit standard deviation. PCA determines that there is only one
non-zero eigenvalue all other eigenvalues are insignificant.
One non-zero eigenvalue is shown in Table 10.

This indicates that only a single attribute in the
transformed space is sufficient to diagnose the patients. But

TABLE X
EIGENPAIRS AND ERROR IN DATA REDUCTION.

Raw Data Normalized Data
Eigenvalues —8635.3 38.6315
0.0875 0.3666
0.0115 0.2201
0.0196 0.3439
0.0125 —0.0374
Eigenvectors 0.4838 —0.4160
0.4376 —0.4139
0.7523 —0.4026
0.0107 0.3966
0.0032 —0.0552
0.0015 0.1753
Errors  0.367508 0.671054

this does not tell us which original attributes contributed to
reduction. The principal components on normalized data are
more realistic in this case, as the normalized data attributes
values are evenly distributed. For nominal attributes, mapping
nominal to numerical can make a difference. However,
covariance and correlation approaches are complementary.

The principal component corresponding to non-zero
eigenvalue is a linear combination of original attributes. Each
coefficient in it is a contribution of the original data attributes.
How do we select the fractions of original attributes because
the coefficients in this vector are real?

The only thing it means is that each coefficient is a
fractional contribution of the original data attributes. It is clear
that the three (Alkaline Phosphatase Alamine Aminotransfe-
rase, Total Proteins, Aspartate Aminotransferase) of the ten
coefficients are more dominant than the others, however
normalized data analysis found three more slightly less
dominant coefficients. In either case, the contribution of the
original three attributes is more than 95%. Eliminating the
other attributes, we compute the approximation error due to
dimension reduction to three attributes.

PCA analysis shows that even after 60% reduction, using
only 40% of data, the precision is almost the same whereas
the gain in computation performance is significant, see
Figure 7. For recall, the reduced data regression misses more
negatives see Table 11. It is preferable to miss less positive
than more negatives. Table 11 corresponds to traditional
logistic regression Table 12 corresponds to hybrid logistic
regression algorithm. It shows that hybrid algorithm
consistently outperforms the traditional algorithms.

VII. CONCLUSION

Principal components analysis is a procedure for
identifying a smaller number of uncorrelated variables, called
“principal components”, from a large set of data. The goal of
principal components analysis is to explain the maximum
amount of variance with the fewest number of principal
components.



Relative Error in Approximation using Eigenvectors
T T T T T T T

os - B

05 - -

o4 B

o3 B

ozl B

oafl i

o n L L s . L L n
1 El El E] s G 7 E] E] 10

Fig. 7. Error in estimating the original data from eigenvectors where x-axis
represents the number of eigenvectors used in data approximation (starting
from the most significant to the least significant one) and y-axis represents
the error percentage of the estimation.

Principal components analysis is commonly used as one
step in a series of analyses. We use principal components
analysis to reduce the number of variables and avoid multi-
collinearity, or when we have too many predictors relative to
the number of observations. We have used PCA in two
diverse genres, QSR and Health Informatics to improve
traditional data reduction and regression algorithms.

QSR uses 9-Intersection model to determine topological
relations between spatial objects. In general, PCA utilizes
numerical data for analysis and as QSR data is logical
bivalent, we mapped the logical data to numerical data. PCA
determined that 4-attributes are adequate in the transformed
space. In general, reduction in transformed space does not tell
anything about reduction in base space. However, in this case
study, we leveraged PCA to determine the possibility of
reduction in the base space. We succeeded in achieving
similar reduction the original space of RCC8 relations. This
yields more than 55% efficiency in execution time.

We also presented hybrid algorithms that adaptively used
PCA to improve the linear and logistic regression algorithms.
With experiments, we have shown the effectiveness of the
enhancements. All data mining applications that dwell on
these two algorithms will benefit extensively from our
enhanced algorithms, as they are more realistic than the
traditional algorithms. The tables in the paper body vouch for
this improvement. We applied our algorithms to the Liver
Patient dataset to demonstrate the usability and applicability
of our approach, especially in the area of health related data.
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