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Abstract—We present a forecasting strategy based on 
stationary wavelet transform combined with radial basis function 
(RBF) neural network to improve the accuracy of 3-month-ahead 
hake catches forecasting of the fisheries industry in the central 
southern Chile. The general idea of the proposed forecasting 
model is to decompose the raw data set into an annual 
cycle component and an inter-annual component by using 
3-levels stationary wavelet decomposition. The components are 
independently predicted using an autoregressive RBF neural 
network model. The RBF neural network model is composed 
of linear and nonlinear weights, which are estimates using 
the separable nonlinear least squares method. Consequently, 
the proposed forecaster is the co-addition of two predicted 
components. We demonstrate the utility of the proposed model 
on hake catches data set for monthly periods from 1963 to 
2008. Experimental results on hake catches data show that 
the autoregressive RBF neural network model is effective for 
3-month-ahead forecasting.

Index Terms—Neural network, forecasting, nonlinear least 
squares.

I. INTRODUCTION

THE highly productive coastal upwelling zone off central 
/ southern Chile (30-40oS) sustains a strong fishery 

based on hake catches. The hake is highly important for 
economic development in the southern zone of Chile. One of 
the main goals of the fishery industry and the governments 
is to develop sustainable exploitation policies. However, 
fluctuations in the marine ecosystem complicate this task. 
To the best of our knowledge, few publications exist on 
multi-step-ahead forecasting models for fisheries resources. In 
recent years, linear regression models [1], [2] and artificial 
neuronal networks (ANN) [3]-[5] have been proposed for 
fisheries forecasting models. The disadvantage of models 
based on linear regressions is the supposition of stationarity 
and linearity of the time series of pelagic species catches. 
Although ANN allows modeling the non-linear behaviour 
of a time series, they also have some disadvantages such 
as the stagnancy of local minimum due to the steepest 
descent learning method and over-fitting problem. A multilayer
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perceptron neural network to improve the convergence speed 
and forecasting accuracy of anchovy and sardines catches off 
northern Chile was proposed by [3]-[5], which reported a 
coefficient of determination between 82% and 87%.

In this paper, the stationary wavelet transform (SWT) 
combined with autoregressive RBF neural network models 
are applied to improve accuracy forecasting of monthly hake 
catches of the southern zone of Chile. The advantage of the 
SWT in non-stationary time series analysis is their capacity 
to separate low frequency (LF) from high frequency (HF) 
components [6]-[12]. Whereas the LF component reveals 
long-term trends, the HF component describes short-term 
fluctuations in the time series. To separate these components 
is a key advantage in the proposed forecasting strategies, since 
the behaviour of each frequency component is more regular 
than the raw time series.

On the other hand, neural network techniques based on 
the nonlinear least square method have been accepted in 
several domains as a flexible modeling technique, suited for 
capturing nonlinear relationships between predictor variables 
and a response variable. Therefore, the proposed forecaster 
decomposes the raw data set into annual cycle component 
and interannual component, which are predicted independently 
using a RBF neural network model, whereas the final 
forecasting results are the sum of results obtained from a single 
model.

This paper is organized as follows. In the next section, 
we briefly describe the stationary wavelet transform and the 
forecasting model. The simulation results and performance 
evaluation are presented in Section 3 followed by conclusions 
in Section 4.

II. Ne u r a l  f o r e c a s t i n g  m o d e l  b a s e d  o n  SWT

This section presents the proposed forecasting model for 
monthly hake catches off southern Chile. The proposed 
forecaster basically involves three stages. In the first stage, the 
original data set is decomposed into 3-level stationary wavelet 
decomposition to separate the annual cycle component and 
the interannual component. In the second stage, the annual 
cycle component and the interannual component are forecasted 
independently using a RBF neural network model with the 
separable nonlinear least squares (SNLS) algorithm. In the 
third stage, the future values are predicted by the co-addition 
of two predicted components.

ISSN 1870-9044; pp. 47-53 47 Polibits (48) 2013

mailto:nibaldo.rodriguez@ucv.cl


Nibaldo Rodriguez, Lida Barba, Jose Miguel Rubio L.

Fig. 1. Extraction process of components

A. Stationary wavelet decomposition

In time series analysis, discrete wavelet transform (DWT) 
often suffers from a lack of translation invariance. This 
problem can be tackled by means of the stationary wavelet 
transform (SWT). The SWT is similar to the DWT in that the 
high-pass and low-pass filters are applied to the input signal at 
each level, but the output signal is never decimated. Instead, 
the filters are up-sampled at each level.

A signal can be represented at multiple resolutions by 
decomposing the signal on a family of wavelets and scaling 
functions [8]-[12]. The approximation (scaled) signals are 
computed by filtering the signal using a low pass filter of 
length r, h = [hi , h2, ..., hr ]. On the other hand, the detail 
signals are computed by filtering the signal using a high pass 
filter of length r, g =  [gi ,g2, ...,gr ]. Finally, repeating the 
decomposing process on any scale J , the original signal can 
be represented as the sum of all detail coefficients and the last 
approximation coefficient.

Consider the following discrete signal x(n) of length N  
where N  = 2J for some integer J . At the first level of SWT, 
the input signal x(n) is convolved with the h i (n) filter to 
obtain the approximation coefficients ai (n) and with the gi (n) 
filter to obtain the detail coefficients di (n), so that:

a i(n ) hi(n  — k)x(k)
k

di(n) gi (n — k)x(k)

(1a)

(1b)

because no sub-sampling is performed, a i (n) and di (n) are 
of length N  instead of N /2  as in the DWT case. At the next 
level of the SWT, ai (n) is split into two parts by using the 
same scheme, but with modified filters h 2  and g2  obtained 
by dyadically up-sampling h i and gi . Here the up-sampling

operator inserts a zero between every adjacent pair of elements
of aj (n).

The general process of the SWT is continued recursively 
for j  = 1,..., J  and is given as:

a j+ i(n ) =  h j+ i(n  — k)aj (k) (2a)
k

dj+i(n) = ^ 2  gj+i(n — k)aj (k) (2b)
k

Therefore, the output of the SWT is then the approximation 
coefficients aJ and the detail coefficients di ,d 2, . . . ,  dJ , 
whereas the original signal x(n)  is represented as a 
superposition of the form:

x(n) =  a j(n )  +  dj (n)
j= i

(3)

The wavelet decomposition method is fully defined by the 
choice of a pair of low and high pass filters and the number 
of decomposition steps J . Hence, in this study we choose a 
pair of Haar wavelet filters given as:

■ 1 1 -
-V'2 V2- 
■ —1 1 -
- V'2 V 2 -

h

g

(4a)

(4b)

B. Proposed forecasting model

In order to predict the future signal x (n  +  h), our direct 
forecasting model will be the co-addition of two predicted 
values given as:

x(n  +  h) =  x a(n + h) + x ia(n + h) + e(n) (5)

where h =  3 represents the forecasting horizon, x a represents 
the annual cycle component, x ia denotes the inter-annual
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Fig. 2. Three-step-ahead forecasting for annual cycle component

component and e is an random process with distribution
K(0,ae2).

The components extraction process is described as follows 
and the flowchart is shows in Figure 1. The raw catches time 
series is decomposed using 3-level wavelet decomposition. 
The first detail component d i (n) of the direct output 
of the decomposition represents a (2-4)-month variability, 
the second detail component d2(n) of the direct output 
denotes a (4-8)-month dynamic, whereas the third detail 
component d3(n) contains some annual cycle as well as 
some large timescale variation with a (8-16) months dynamic. 
Therefore to extract annual cycle component x a(n), the detail 
components two and three of the direct output are combined 
D = d2 +  d3 and then the new component D  is subjected to 
3-level wavelet decomposition.

The three detail components d12), d22), d^2) resulting from 
this wavelet decomposition are combined with the first 
detail component of the direct output di, whereas the third 
approximation component is combined with the third 
approximation component a3 of the direct output to obtain 
the new inter-annual component x ia.

The annual cycle component and the inter-annual 
component are estimated using a nonlinear autoregressive 
model with exogenous inputs given by the following equations

Xa(n + h) =  f  ([ya(n),ua(n)]) (6)

where ya(n) = [xa(n ) , xa(n — 1),..., x a(n — m)] are the 
endogenous inputs, ua(n) = [xia(n ) , x ia(n — 1), . . . ,xia(n — 
m)] are the exogenous inputs, m  represents the memory of 
the model and f  ( ) is a nonlinear function.

xia(n + h) = g([yia(n),uia(n)]) (7)

where yia(n) = [xia(n),xia(n — 1), . . . ,xia(n — m)] are the 
endogenous inputs, uia(n) = [xa(n ) ,x a(n — 1), . . . ,xa(n — m)] 
are the exogenous inputs and g(^) is a nonlinear function.

In this paper the functions f  (•) and g(^) are estimates using 
a RBF neural network (RBFNN) model.
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Fig. 3. Three-step-ahead forecasting tor inter-annual component

C. RBF neural network model 
The output of the RBFNN is obtained as

Nh
y = Y ^  bj f a (

j= 1
(zi -  Vji) II2) (8)

fa (A  =
1

(9)

of the nonlinear parameters, the optimal values of the linear 
parameters are obtained using the LS algorithm as follows:

b =  & X (10)

where N h is the number of hidden nodes, z notes the 
regression vector containing 2m lagged values, [b1, . . .  bNh ] 
represents the linear output parameters, v =  [vj-1, v2, . . .  vj2m] 
denotes the nonlinear parameters, and (■) are hidden 
activation functions, which is given by:

where X  is the desired output patter vector and $  is the 
Moore-Penrose generalized inverse of the activation function 
output matrix $  [13].

Once linear parameters are obtained, the LM algorithm 
adapts the nonlinear parameters of the hidden activation 
functions minimizing mean squared error. Finally, the LM

v/ 1 +  A
In order to estimate the linear parameters and the nonlinear 

parameters of the RBFNN forecaster the separable nonlinear 
least squares algorithm is used, which is based on least 
square (LS) method [13] and Levenberg-Marquardt (LM) 
algorithms [14]. The LS algorithm is used to estimate the 
parameters bj, whereas the LM algorithm is used to calibrate 
the nonlinear parameters vj*. For any given representation

algorithm adapts the nonlinear parameter 8 
according to the following equations [14]:

8(n +  1) =  8(n) +  A 8(n)

A  8(n) = (££T +  Ml )-1 £T e

=  [bj ,vji]

(11a)

(11b)

where £ represents the Jacobian matrix of the error vector 
evaluated in 8 and e* is the error vector of the RBFNN for 
i-patter, I  denotes the identity matrix and the parameter m is 
increased or decreased at each step of the LM algorithm.
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Fig. 4. Three-step-ahead forecasting for raw hake catches vs estimated hake catches

D. Performance Metrics
The forecasting accuracy is evaluated according to the root 

mean squared error (RMSE), mean absolute error (MAE), 
mean absolute percentage error (MAPE) and relative error 
(RE). The forecasting accuracy is better when the values of 
these measures are smaller. The definition of these metrics are 
given as follows:

R M S E
\

1 M

M ^ (xi — x i )2j =i
M

M A E  = —  V  |(xi — . 
M  ^  |( ij =i

M
M A P E  =  1 (xi — xi) /x i |

j =i

R E  =  (xi — xi ) /x i

(12)

(13)

(14)

(15)

where x i is the actual value at time i, x i is the forecasted 
value at time i and M  is the number of testing samples.

III. D ISCUSSION

Total monthly hake catches off southern Chile were taken 
from Statistical Fishery Yearbooks (www.sernapesca.cl) for 
monthly period from January 1963 to December 2008 as 
shown in Figure 5(a), with a total of N  =  552 observations. 
All raw monthly catches data set after subjected to the 
extraction process of components based on 3-level wavelet 
decomposition (illustrated in Figure 5), allowed to obtain 
the inter-annual cycle component and the annual component, 
which are shown in Figure 5(b) and Figure 5(c); respectively. 
Once the annual cycle and the inter-annual components were 
identified, the data set is divided into two parts: a training 
data set (T=370 observations) and a test data set (M=182 
observations).

The training data is firstly used to choose the parameters of 
the RBFNN models, and the testing data set is used to compute 
the performance metrics of the models and for validation 
purposes. The RBFNN was calibrated with 2m =  22 previous 
months as input data due to the annual cycle effect of monthly 
hake catches. Finding the optimal number of hidden nodes is
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(a) Raw Hake Time Series

Time (From Jan-1963 to Dec-2008)

(b) Inter-annual Hake Time Series (c)Annual Hake Time Series

Time (From Jan-1963 to Dec-2008) Time (From Jan-1963 to Dec-2008)

Fig. 5. Reconstruction of hake catches data derived from SWT

a complex problem, but in all our experiments the number of 
hidden nodes is set to log(T) . In the training process overall 
hidden weights were initialized with the training catches data 
and the stopping criterion was three iterations. After of the 
training process, the better architecture was calibrated with 
22 input nodes, 6 hidden nodes and one output nodes and is 
denoted as RBFNN(22,6,1).

Now we present the 3-month-ahead forecasting results 
obtained with the RBFNN(22,6,1) model during the testing 
phase, whose results are illustrated in Figures 2, 3 and 4; 
respectively. Figure 2(a) provides observed annual cycle 
component versus forecasted annual cycle component, while 
that Figure 3(a) shows observed inter-annual component 
versus forecasted inter-annual component. On of other 
hand, Figures 2(b) and 3(b) show the regression curve 
between observed components and estimated components. 
From Figures 2(b) and 3(b) can be seen a good fit of the data 
to line 1 : 1 with a 98% and 99% of the explained variance for 
annual component and inter-annual component; respectively.

Figure 4(a) provides raw monthly hake catches data versus 
forecasted hake catches, whose forecasting behavior is very

accurate for testing data with a 99% of explained variance 
(Figure 4(b)), a MAE of 45 tons and a RMSE of 61 tons, 
while the explicated variance was of 99%. On the one hand, 
Figures 2(c), 3(c), and 4(c) depict relative error versus the 
predicted catches obtained by the RBFNN(22,6,1) model. It 
can be observed, that an important fraction of the catches 
tested are acceptable with residuals ranging from ±5%.

IV. Co n c l u s i o n

In this paper a 3-step-ahead forecasting strategy for 
monthly hake catches data set was proposed. The reason 
of the improvement in forecasting accuracy was due to use 
multi-scale stationary wavelet decomposition to separate both 
the annual and inter-annual components of the raw time series, 
since the behavior of each component is more smoothing than 
raw data set.

The forecasting strategy was applied to the monthly hake 
catches of the southern zone of Chile and the results show 
that 11 previous months of the annual component and
11 previous months of the inter-annual component contain 
valuable information to explicate a highest variance level.
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Finally, the 3-step-ahead RBFNN(22,6,1) forecasting model 
can be suitable as a very promising methodology to any other 
marine species of the fisheries industry.
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