
Triangle-Triangle Intersection Determination
and Classification to Support Qualitative

Spatial Reasoning
Chaman L. Sabharwal, Jennifer L. Leopold, Douglas McGeehan

Abstract—In CAD/CAM modeling, objects are represented
using the Boundary Representation (ANSI Brep) model. Detection
of possible intersection between objects can be based on the
objects’ boundaries (i.e., triangulated surfaces), and computed
using triangle-triangle intersection. Usually only a cross
intersection algorithm is needed; however, it is beneficial to have a
single robust and fast intersection detection algorithm for both
cross and coplanar intersections. For qualitative spatial reasoning,
a general-purpose algorithm is desirable for accurately
differentiating the relations in a region connection calculus, a task
that requires consideration of intersection between objects. Herein
we present a complete uniform integrated algorithm for both cross
and coplanar intersection. Additionally, we present parametric
methods for classifying and computing intersection points. This
work is applicable to most region connection calculi, particularly
VRCC-3D+, which detects intersections between 3D objects as well
as their projections in 2D that are essential for occlusion detection.

Index Terms—Intersection detection, classification predi­
cates, spatial reasoning, triangle-triangle intersection.

I. In t r o d u c t io n

THERE are relatively few software applications supporting
qualitative spatial reasoning. In part, this may be due to

the complexity in determining the intersection between 2D/3D
objects. Yet the ability to detect the existence o f a possible
intersection between pairs of objects can be important in a
variety of problem domains such as geographic information
systems [1], CAD/CAM geometric modeling [2], real-time
rendering [3], geology [4], networking and wireless
computing.

In qualitative reasoning, it is not necessary to know the
precise intersection between pairs of objects; it is sufficient to
detect and classify the intersection between objects. Typically,
the boundary of each object is represented as a triangulated
surface and a triangle-triangle intersection is the
computational basis for determining intersection between
objects. Since an object boundary may contain thousands of

Manuscript received May 25, 2013. Manuscript accepted for publication
September 30, 2013.

The authors are with the Missouri University of Science and Technology,
Rolla, Missouri, 65409, USA (email: {chaman, leopoldj, djmvfb}@mst.edu).

triangles, algorithms to speed up the intersection detection
process are still being explored for various applications,
sometimes with a focus on innovations in processor
architecture [5, 6, 7].

For pairs of triangles, there are three types of intersections:
zero dimensional (single point), one-dimensional (line
segment), and two dimensional (area) intersection. In the past,
almost all attention has been devoted to determining the cross
intersections, which resulted in an absence of analysis in two­
dimensional intersections. Coplanar triangle intersections are
unique because an intersection may be any of the
aforementioned three types. If the triangles cross-intersect,
only zero or one-dimensional intersection is possible. If the
planes are parallel and distinct, the triangles do not intersect.
If the triangles are coplanar, then there is a possibility of
intersection. Even when the cost of intersecting a triangle pair
is constant, the cost of intersecting a pair of objects A and B is
order 0 (Ta x Tb) where Ta is the number of triangles in object
A, and Tb is the number of triangles in object B.

In qualitative spatial reasoning, spatial relations between
regions are defined axiomatically using first order logic [8] or
the 9-Intersection model [9]. Using the latter model, the
spatial relations are defined using the intersections of the
interior, boundary, and exterior o f one region with those o f a
second region. It has been shown in [10] that it is sufficient to
define the spatial relations by computing 4-Intersection
predicates, (namely, Interior-Interior (IntInt), Boundary-
Boundary (BndBnd), Interior-Boundary (IntBnd), and
Boundary-Interior (BndInt)) instead of 9-Intersections.

Since IntBnd and BndInt are the converse of each other,
only three algorithms are necessary for these predicates. In
order to implement these algorithms, we must first solve the
triangle-triangle intersection determination, as it is a lower
level problem that must be solved in order to determine the 4-
Intersection predicates that, in turn, determine the qualitative
spatial relation between two objects.

This paper is organized as follows: Section II briefly
reviews the background and related cross intersection
framework. Section III discusses motivation and conceptual
classification of intersections, whereupon Section IV develops
the overall main algorithm for triangle-triangle intersection.
Section V describes the area intersection algorithm for general

ISSN 1870-9044; pp. 13-22 13 Polibits (48) 2013

Chaman L. Sabharwal, Jennifer L. Leopold, Douglas McGeehan

triangles, and predicates for classifying the intersection
between pairs of triangles, after which Section VI discusses
the applications to qualitative spatial reasoning.

II. BACKGROUND

A. The Traditional Algorithm

Many papers have been written on the intersection between
a pair of triangles [3, 11, 12, 13, 14, 15]. Interestingly, most of
them simply reinvent the algorithm and implement it slightly
differently and more efficiently, with no innovation. A recent
paper [7] surveyed various approaches for determining the
cross intersection detection, and developed a fast vector
version o f the cross intersection detection, as well as
classification of the type of intersection. o u r approach is
exhaustive, integrating both cross and coplanar intersection,
and analytically more rigorous than the previous approaches
[3, 11]. It is described in the next section where we follow the
approach similar to the techniques used in [7] for cross
intersection. The cross-intersection standalone algorithm is
described as follows:

boolean triTriCrossInt (trl = ABC, tr2 = PQR)

input: two triangles whose planes cross intersect

output: true if the triangles intersect, else false

The vector equations for two triangles ABC and PQR are

R\(u, v) = A + u U + v V, 0 < u, v, u + v < 1
R 2(s, t) = P + s S + t T, 0 < s, t, s + t < 1,

where U = B -A , V = C - A , and S = Q - P, T = R - P.
Let N = UxV, N2 = SxT be normals to the planes

supporting the triangles directed away from the objects.
The triangles intersect if there exist some barycentric
coordinates (u, v) and (s, t) satisfying the equation

A + u U + v V = P + s S + t T

Since ^ x N 4 0 for cross intersecting triangles, and S
and T are orthogonal to N 2, the dot product of this
equation with N2 eliminates S and T from the above
equation to yield

u U N + v V'N 2 = A P 'N 2

This is the familiar equation of a line in the uv-plane for
real variables u, v. The vector equation using real
parameter X becomes

(U • N , , V • N ,)
(u, v) = AP • M ----------2-2— + X(V • N ,, - U • N ,)\ 1 / 2 2 2 2 ’ 2 'U • n 2 + V • n 2

Then parameter values u, v are explicitly written as

U • N,
u = AP • N , -------------- 2------- + XV • N ,2 2 2 2U • n 2 + V • n 2

V • N
v = AP • N, -------------- 2--------- XU • N,2 2 2 2U • N 2 + V • N 2

(U • N + V • N,)
u + v = AP • N 2 -------- 2-----------— + X(V • N 2 - U • N 2)

U • N 22 + V • N 22

If there is a X in these three equations such that 0 < u, v, u
+ v < 1, the triangles are ensured to intersect. The range
of values of X is bounded by Xm and Xm. This detects
whether the two triangles cross intersect only.

In fact, for precise intersection, using Xm, Xm, as
parameter values, we compute (u m, vm) and (um, vm) for
the segment of intersection on ABC. Similarly the values
(sm, tm) and (sm, tM) represent the segment of intersection
on PQR. The precise intersection between the two
triangles is the common segment of these two segments.
If the segment degenerates into a single point, the
parameter values also can be used to classify the
intersection as a vertex, an edgeInterior point or
trianglelnterior point in the triangle ABC.

III. Cl a s s if ic a t io n o f Tr ia n g l e In t e r s e c t io n s

For spatial reasoning, we detect intersection between pairs
of 2D/3D objects and classify pairwise intersection predicates
IntInt, IntBnd, BndInt, and BndBnd, without computing the
extent of intersections. The cross intersection can be
characterized into seven categories [7]. When cross
intersection is insufficient to determine tangential intersection,
some applications such as RCC8 and VRCC-3D+ [6] resort to
coplanar intersection to support relations such as externally
connected (EC) and tangentially connected (TPP, TPPc).

The precise intersection of coplanar triangles is a little more
complex because it can result in area intersection as well; the
coplanar triangles intersection can be classified as: Single
Point Intersection (vertex-vertex, vertex-edgeInterior), Line
Segment Intersection (edge-edgeCollinear), Area Intersection
bounded by 3, 4, 5, 6 edges, (Fig. 4, Fig. 5(a, b, c)). A triangle
may be entirely contained in the other triangle (Fig. 5(d)). In
this paper, we present a detailed analytical study of the
intersection of coplanar triangles, which has not been
previously presented.

The intersection between a pair o f triangles can be
abstracted as Cross (C) intersection or Parallel (P) coplanar
triangles intersection. For taxonomy of cross and parallel
coplanar triangles, the conceptual intersections are supported
with figures presented here. The specific cases are as follows:

No intersection
disjoint (C, P) (see Fig. 1)

Single Point Intersection
vertex-vertex Intersection (C, P) (see Fig. 2(a))
vertex-edgeInterior Intersection (C, P) (see Fig. 2(b))

Polibits (48) 2013 14 ISSN 1870-9044

Triangle-Triangle Intersection Determination and Classification to Support Qualitative Spatial Reasoning

vertex-trianglelnterior Intersection (C) (see Fig. 2(c))
edgelnterior-edgelnteriorCross Intersection (C) (Fig. 2(d))

Line intersection
edge-edgeCollinear Intersection (C, P) (see Fig. 3(a))
edge-trianglelnterior Intersection (C) (see Fig. 3(b))
trianglelnterior-trianglelnterior Intersection (C) (Fig. 3(c))

Area Intersection
vertex-trianglelnterior Intersection (P) (see Fig. 4, Fig. 5(a,

b, d))
edgelnterior-edgelnterorCross Intersection (P) (Fig. 4, Fig.

5(a, b, c))
edge-trianglelnterior Intersection (P) (see Fig. 5(d))
trianglelnterior-trianglelnterior Intersection (P) (see Fig. 4,

Fig. 5(a, b, c, d))

It is possible that two triangles cross intersect in a line
segment even when a triangle is on one side of the other
triangle. In that case, it may be desirable to know which side
of the other triangle is occupied. In Fig. 3(b), the triangle PQR
(except QR which is in ABC) is on the positive side of
triangle ABC. So PQR does not intersect the interior o f object
of triangle ABC. We will use this concept in Section VI.
Section VII concludes, followed by references in Section VIII.

It should be noted that the vertex-edge intersection
encompasses vertex-vertex, vertex-edgeInterior intersection,
whereas the vertex-triangle intersection encompasses vertex-
vertex, vertex-edgeInterior, and vertex-triangleInterior. Thus
1D JEPD cross intersection between ABC and PQR can be
one of the three possibilities: (1) collinear along edges, (2) an
edge of PQR lying in the plane of triangle ABC, or (3)
triangles “pierce” through each other yielding an intersection
segment.

IV. Th e Ov e r a l l Al g o r it h m
(In t e r s e c t io n Be t w e e n Tr ia n g l e s)

In this section, we describe the overall structure of the
triangle-triangle intersection. In Section IV.A, we develop
sub-algorithms that support the main algorithm at its
intermediate steps. In addition to existence or nonexistence of
an intersection, this algorithm also supports other auxiliary
computations, (e.g. classification of intersection and the
calculation of 3D intersection points, segment or area) which
are necessary for some applications.

A. Description o f the Overall Algorithm

The general structure of the overall triangle-triangle
intersection algorithm is presented here. The description is in
Python style so that it can be easily transported to
programmable code. Here is the traditional approach to the
algorithm, whereas our approach is presented in Section V.

Fig. 1. Disjoint triangles: Planes supporting the triangles may be
crossing or coplanar. The triangles do not have anything in common.

Fig. 2. Triangles intersect at a single point. The intersections
between triangles ABC and PQR are JEPD (Jointly Exhaustive and
Pairwise Distinct) cases of Single Point intersection between
triangles. (a) vertex-vertex and (b) vertex-edgeInterior can occur in
both cross and coplanar intersections. However, (c) vertex-
triangleInterior and (d) edgeInterior-edgeInterior intersection point
can occur in cross intersection only.

Fig. 3 . Triangles intersect in a line segment. (a) edge-edgeCollinear
intersection can occur in both cross and coplanar intersections.
However, (b) edge-triangleInterior and (c) triangleInterior-
triangleInterior intersection segment occur in cross intersection only.

ISSN 1870-9044 15 Polibits (48) 2013

Chaman L. Sabharwal, Jennifer L. Leopold, Douglas McGeehan

Fig. 4. Triangles intersect in an area. (a) One edge of triangle PQR
and two edges AB and AC of triangle ABC intersect, vertex A is in
the interior of PQR. (b) One edge of triangle PQR with three edges
of ABC, and vertex A in the interior of PQR. The common area is
bounded by three edges. The intersections vertex-triangleInterior,
edge_triangle, edgeInterior-triangleInterior hold.

p

Fig. 5. Triangles intersect in an area (continued). The coplanar
triangle intersections are bounded by four, five, and six edge
segments. (a) Two edges of triangle PQR and two edges AB and AC
of triangle ABC intersect, vertex A is in the interior of PQR, vertex
R is in the interior of triangle ABC. The intersection area is bounded
by four edges. (b) Two edges of triangle PQR and three edges of
triangle ABC intersect; vertex C is in the interior of PQR. The
intersection area is bounded by five edges. (c) Three edges of
triangle PQR and three edges of triangle ABC intersect; every vertex
of one triangle is outside the other triangle. The intersection area is
bounded by six edges. (d) No edge of triangle PQR intersects any
edge of triangle ABC; vertices P, Q, R are in the interior of triangle
ABC. The intersection area is the triangle PQR.

boolean triTriInt(tr1 = ABC, tr2 = PQR)

Input: two triangles ABC and PQR

Output: Boolean value whether the triangles intersect or
not.

Let ABC and PQR be two triangles. The triangles are
represented with parametric vector equations where u, v are

parameters for triangle ABC, and s, t are parameters for
triangle PQR.

Ri(m, v) = A + u U + vV with 0 < u, v, u + v < 1
R 2(s, t) = P + s S + tT with 0 < s, t, s + t < 1

where

U = B - A, V = C - A , are directions of the edges at A;
S = Q - P, T = R - P are the directions of edges at P.

Let N 1 = UxV, N 2 = SxT be the normals to planes supporting
the triangles ABC and PQR.

if N 1xN2 4- 0 // planes supporting triangles are not parallel
if triTriCrossInt (tr1, tr2) // cross intersect the triangles

return true
else

return false
elseif N 1xN2 = 0, // triangles planes are parallel

if AP^N! = 0, //the triangles are coplanar
if triTriParInt (trl, tr2)// implicit in Section V.

return true
else

return false
elseif AP»Ni 4 0, // the triangles are not coplanar,

no Intersection
return false

endif
endif
/*end of algorithm*/

Here, we give all the supporting algorithms for
implementation and classification of all special case
intersections in the main algorithm. There are three broad
categories for intersections of triangles: zero dimensional
(single point), one-dimensional (line segment), and two
dimensional (area) intersection.

A.1 Single Point Intersection (0D).

We first analyze the vertices of the triangle PQR with
respect to triangle ABC to determine if a vertex P or Q or R is
common to the ABC triangle and conversely.

vertex-triangleTest (X, tri = ABC)

Input: X is a vertex of one triangle and tri another triangle.

Output: boolean value determining whether X is a vertex,
edgeInterior, triangleInterior point of the triangle.

To determine the relation of X e{P, Q, R} to the triangle
ABC, we solve

A + u U + v V = X for 0 < u, v, u + v < 1,

Rearranging the equation, we get

u U + v V = A X .

Polibits (48) 2013 16 ISSN 1870-9044

Triangle-Triangle Intersection Determination and Classification to Support Qualitative Spatial Reasoning

To eliminate one of the parameters u, v to solve this, we dot
product the equation with vectors (UxV)xU and (UxV)xV.
Let

A X x (U x V)

(U x V) • (U x V)

then u = - y V and v = y U

if 0 < u, v, u + v < 1,
return true // X of PQR, intersects the triangle ABC.

else
return false

/*end of algorithm*/

The vector (U x V) is computed only once and used
(U x V) • (U x V)

repeatedly. As a result y = A x (U x V)— is calculated
(U x V) • (U x V)

with one cross product, and u, v are calculated with one dot
product. The parameters u, v naturally lend themselves to

P X x (5 x T)classification of intersections. Similarly,

A .2 Classification of Intersection.
(S x T) • (S x T)

In order to determine whether the vertex X of triangle PQR
is a vertex of ABC, or on the edge of ABC, or an interior
point of triangle ABC, no extra computational effort is
required now. Logical tests are sufficient to establish the
classification of this intersection. Since 0 < u, v, u + v < 1, we
can classify X relative to ABC in terms of the following
predicates:

vertex ((u, v)): If (u, v) e { (0, 0), (0, 1), (1, 0)}, then X is
one of the vertices of ABC.

edgeInterior ((u, v)): If (u = 0, 0 < v < 1) or (v = 0, 0 < u <
1) or (u + v = 1, 0 < u < 1)), then X is on an edge of ABC,
excluding vertices.

triangleInterior ((u, v)): If (0 < u < 1 and 0 < v < 1 and 0 <
u + v < 1), X is an interior point (excluding boundary) of the
triangle ABC.

Similarly, as above we can classify vertex X of triangle
ABC as vertex, edgeInterior, or triangleInterior point of
triangle PQR. Single point intersection may result from cross
intersection of edges as well. An edge point may be a vertex
or an interior point of the edge.

A.3 The Edge-edge Single Point Intersection.

If two triangles cross intersect across an edge, the edge-to-
edge intersection results in a single point. The edge-edge cross
intersection algorithm is presented below.

edge_edgeCrossIntersection (edge1, edge2)

Let the two edges be AB and PQ. Then the edges are
represented with equations

X = A + u U with U = B - A, 0 < u < 1
X = P + s S with S = Q - P, 0 < s < 1

if UxS^AP4 0 , return false // non-coplanar lines
elseif UxS = 0, return false // lines are parallel
else UxS 4 0 , // lines cross
/* solve for up, sa values for the intersection point*/

A + uP U = P + sA S

up = S^PAx(U xS)/(UxS^UxS)

S • PA x (U x S)
u P = -----------------------------------

(U x S) • (U x S)

if (up < 0) or (uP > 1), return false // no cross intersection,

U • AP x (U x S)
5a = ----------------------

(U x S) • (U x S)

if (sa < 0) or (sa > 1),
return false //no cross intersection,

else
return true //there is edge-edge cross intersection.

endif
/* end of algorithm*/

A.4 Composite Classification O f Single Point Intersection.

Let Am, Pm, be the pair of bilinear parametric coordinates of
the 3D intersection points R^um^m) and R2(sm,tm) with
respect to triangles ABC and PQR respectively. When there is
no confusion, we will refer to the points as Am and Pm instead
of 3D points R^um^m) and R 2(sm,tm). From vertex-triangle
intersection (Section 3) we have

Pm is a vertex of PQR, and Am = (um, vm), where um and vm
are um = -y V , vm = y U or Am is a vertex of ABC, and Pm =
(sm, tm), where sm and tm) are sm = -y'•T, tm = y'•S.

From edge-edge intersection (Section B.3) we have

Am = (0, up) or (up, 0) or (up, 1 - up) or (1 - up, up)
Pm = (0, sa) or (sa, 0) or (sa, 1 - sa) or (1 - sa, sa)

If (up = 0 or 1) and (sa = 0 or 1), it is vertex-vertex
intersection. If (up = 0 or 1) and not (sa = 0 or 1), it is vertex-
edgeInterior intersection. If not (up = 0 or 1) and (sa = 0 or 1),
it is edgeInterior-vertex intersection. If not (up = 0 or 1) and
not (sa = 0 or 1), it is edgeInterior-edgeInterior intersection.
This completes the discussion of single point intersection
classification and parameters for the corresponding 3D points.

B. Line Intersection (1D)

Besides edge-edge cross intersection, the edge-edge
collinear intersection is a possibility, independent of crossing

y

ISSN 1870-9044 17 Polibits (48) 2013

Chaman L. Sabharwal, Jennifer L. Leopold, Douglas McGeehan

or coplanar triangles. In this section, we discuss algorithms
that result in a segment (1D) intersection; see Fig. 3.

B. 1 Intersection Algorithm A nd Parametric Coordinates.

Here we derive an edge-edgeCollinear intersection
algorithm. This algorithm is seamlessly applicable to both
cross-intersecting and coplanar triangles. The following
algorithm implements intersection of edges of the triangles
ABC and PQR.

boolean edge-edgeCollinearTest (edge1, edge2)

input: two line segments

output: true if the segments have a common intersection,
else false. First we compute the linear parameter coordinates
up, uq, sa, sb for intersection of X = A + u (B - A), for X = P,
Q and X = P + s (Q - P), for X = A, B. Similarly, we can
compute the intersection o f other edges of triangle ABC with
any edge of triangle PQR. Then we update the parameters for
the common segment. This algorithm is standard,
straightforward and is omitted for the sake of limited space.

B.2 Classification o f Edge-edge Intersection

Now we have the linear coordinates for intersection points
uP, uQ and sA, sB. We map the linear parameters for
intersection points to bilinear parameter coordinates (u, v) and
(s, t). If uP, uQ are known along an edge and the edge is AB,
let um = up, um = uq, vm = 0, vm = 0;

Similarly for AC, let vm = up, vm = uq, um = 0, um = 0; and
for BC, let um = up, um = uq, vm = 1 - up, vm = 1 - uq;

Thus ABC triangle bilinear coordinates for the intersection
points are:

Am=(um, vm), Am=(um, vm)

where vm = vm = 0 or um=uM =0 or um+vm=uM + vm = 1.
Similarly for the triangle PQR, the linear coordinates sA, sB

of intersection translate into bilinear coordinates

Pm (sm, WX PM (sM, tM)

where tm = tM = 0 or sm = sm = 0 or sm+tm = sM+tM = 1.
Now we have the bilinear parametric coordinates u, v, s, t

for the intersection segment. The common 3D segment is
denoted by [R1(Am), R 1(Am)] which is [R2(Pm), R2(Pm)] or
[R2(Pm), R2(Pm)]. It is possible that the intersection segment is
equal to both edges, or it overlaps both edges, or it is entirely
contained in one edge. Since the intersection is a part o f the
edges, it cannot properly contain any edge.

B.3. Composite Classification o f Line Intersection.

For collinear edge intersection Am, Am are normally distinct
and similarly Pm, Pm may be distinct. Though the intersection

segment is given by [R1(Am), R 1(Am)] = [R2(Pm), R2(Pm)) or
[R1 (Am), R 1 (Am)] = [R2(Pm), R2(Pm)], it is not necessary that
parameter coordinates [Am, Am] = [Pm, Pm] or [Am, Am] = [Pm,
Pm]. The predicate for edge-edge collinear intersection
segment becomes:

edge-edgeCollinear (edge1, edge2) = edge ([Am, Am]) and
edge ([Pm, Pm]) and [R1(Am), R 1(Am)] == [R2(Pm), R2(Pm)] or
[R1(Am), R 1 (Am)] == [R2(Pm), R2(Pm)]

Also it may be noted that for a cross intersection triangle, an
edge-triangleInterior intersection may result in a segment
intersection (Fig. 3(b)). For cross intersecting planes we have
(cf. 3.A for vertex to triangle intersection and [7]) .

edge-triangle (edge, triangle.) = edge ([Am, Am]) and triangle
([Pm, Pm]) and [R1(Am), R 1(Am)] == [R2(Pm), R2(Pm)] or
[R1(Am), R 1 (Am)] == [R2(Pm), R2(Pm)]

This completes the discussion of segment intersection (1D),
classification, 3D points for both cross and coplanar triangle
intersections.

V. A r e a In t e r s e c t io n

For coplanar triangles, there may be no intersection (Fig. 1),
a single point (Fig. 2(a, b)), a segment (Fig. 3(a)) or an area
(Fig. 4, Fig. 5(a, b, c)), including one triangle contained in
another, (Fig. 5(d)). An area can result from two edges of one
triangle and one, two, or three edges of another triangle, or
three edges from both triangles creating a star shaped figure.
The resulting area is bounded by 3, 4, 5, or 6 edges. All other
configurations are homeomorphic to the figures presented in
this paper. For qualitative spatial reasoning, in some cases
(when the knowledge of cross intersection is insufficient), we
resort to coplanar intersection to distinguish the externally or
tangentially connected objects.

A. General Purpose Algorithm

If a vertex of PQR is in the interior of ABC (or the converse
is true), then an area intersection occurs, (Fig. 4(a, b), Fig. 5(a,
b, d)). If no two edges intersect and vertex_triangleInterior
(vertex, triangle = tr2) for every vertex of a triangle tr1, then
the triangle tr1 is contained in tr2 and conversely. If no edge-
edge intersection takes place and no vertex of one triangle is
inside the other triangle (or the converse is true), then they are
disjoint.

Although this algorithm may look simple, it is a new
approach compared to previous approaches cited in the
background section. The existing methods may use alternate
edge-oriented techniques to determine the area of intersection;
however, those will be limited [11]. Our algorithm is more
comprehensive and analytically rigorous; it is implicitly
capable of handling any specific type o f intersection
simultaneously, which may be a single point, a segment or an
area.

Polibits (48) 2013 18 ISSN 1870-9044

Triangle-Triangle Intersection Determination and Classification to Support Qualitative Spatial Reasoning

The Algorithm : A Novel Approach

boolean triTrilntersection (tr l = ABC, tr2 = PQR)
The triangles ABC and PQR are

X = A + u U + v V with U = B - A, V = C - A, 0 < u, v, u + v
< 1
X = P + s S + t T with S = Q - P, T = R - P, 0 < s, t, s + t < 1

The general set up for detecting intersections is to solve the
equation

A + u U + v V = P + s S + t T

for u, v, s, t. If a solution exists satisfying the constraints 0 <
u, v, u + v, s, t, s + t < 1, then there is an intersection, else
there is no intersection.

Rearranging the equation, we have

u U + v V = A P + s S + t T (1)

For simplicity in solving (1), we use the following notation.
Let a , p, y be vectors and 8 be a positive real number. Then

for triangle ABC, let AP = P - A be a vector, 8 =
(U xVKUxV),

S x (U x V) T X (U X V) AP X (U x V)
a = ----------------------------------- , p = ------------------------------------ , y = --

8 8 8

Similarly, let a ', p', y' be vectors and d' be a positive real
number. Then for triangle PQR, let

PA = A - P be a vector, 8' = (S*T)-(S*T)

U x (S x T) , V x (S x T) PA x (S x T)
a ' = ---------------- , P ' = -----------------, y ' = -------------------.

8 8 8

For intersection between triangles ABC and PQR, on
dotting equation (1) with (U*V)xU and (U*V)xV, we quickly
get

u = - (y-V + s a -V + t p -V
v = y-U + s a-U + t p-U

Adding the two equations,

u + v = y- (U - V) + s a - (U - V) + t p-(U - V)

In order that 0 < u, v, u + v < 1, we get the following
inequalities for possible range of values for s and t

(a) - y-U < a-U s + p-U t < 1 - y-U
(b) - 1 - y-V < a -V s + p-V t < - y-V
(c) - y- (U - V) < a-(U - V) s + p-(U - V) t < 1 - y-(U - V)

These linear inequalities (a) - (c) are of the form

m < ax + by < n

The solution to this system of inequalities is derived at the
end of this section. We apply the results of the algorithms here
in solving (a) - (c).

If we solve_x (- y-U, a-U , p-U, 1 - y-U, - y-V, a-V , p-V,
1 - y-V, Xm, Xm)

sm = max (0, Xm), sm = min (1, xm)

If we solve_x (- y-U, a-U , p-U, 1 - y-U, - y-(U - V), a - (U
- V), p-(U - V), 1 - y-(U - V), xm, xm)

sm = max (sm, xm), sm = min (xm, sm)

If we solve_x (- 1 - y-V, a-V , p-V, - y-V, - y-(U - V),
a-(U - V), p-(U - V), 1 - y-(U - V), xm, xm)

sm = max (sm, xm), sm = min (xm, sm)

if sm > sM
return false

else
tM = 0; tm = 1
for se [sm, sm] // we solve the inequalities for t

if solve_y (- yU, a»U, P*U, 1 - yU, - yV, r a»V,
p-V, 1 - y-V, s, ym, yM)
tm (s) = max (0, ym), tM (s) = min (1, yM),
tm = min (tm (s), tm), tM = max (tM (s), tM) // extent of

overall t values
if tm (s) > tM (s)

Return false
else

tm (s) < t < tM (s)
return true

/* end of algorithm */

We first solved the three inequalities pairwise for a range of
values for s, so that sm < s < sm holds good simultaneously
with three inequalities. Then from this range of s values, we
solved for t as a function of s such that tm (s) < s < tM (s), and
overall tm < tM. If it succeeds, it ensures that there is a
solution. Similarly, we determine for u-parameter and v-
parameter values in terms of u to obtain the area enclosed by
the two triangles. This algorithm detects whether coplanar
triangles intersect, and we classify the intersection as in
Section V.B. Here we describe the two algorithms we applied
in the general-purpose algorithm. An auxiliary algorithm
solves inequalities o f the form

m < ax + by < n, and
M < Ax + By < N

The brute force method for solving these inequalities may
lead to an erroneous solution as shown in the following
example. The general elimination of variables principle that
works well for equations does not directly translate into
solving inequalities. Such approach gives an inconsistent
solution to the two inequalities

ISSN 1870-9044 19 Polibits (48) 2013

Chaman L. Sabharwal, Jennifer L. Leopold, Douglas McGeehan

(a) - 1 < x + y < 1 and
(b) - 1 < x - y < 1

Since - 1 < x - y < 1 is equivalent to - 1 < - x + y < 1,
adding and subtracting the two inequalities (a) and (b), yields
an inaccurate answer -1 < x < 1, and - 1 < y < 1 which is the
area enclosed by dotted boundary in Fig. 6. But the accurate
solution is in the shaded area in Fig. 6, which is |x| < 1, and |y|
< (1 - |x|).

Thus to accurately solve these two inequalities - 1 < x + y <
1 and - 1 < x - y < 1, we first solve these for one variable x,
then use this variable value to solve for the other variable y as
- (1 - |x|) < y < (1 - |x|).

First, we solve two most general inequalities

m < ax + by < n (1)
M < Ax + By < N (2)

The following algorithm determines xm, xm such that for
each x in [xm, xm], the inequalities hold.

Fig. 6. Solution to a pair of inequalities: - 1 < x + y < 1 and - 1 <
x - y < 1. Using brute force method of elimination of variables yields
the area enclosed by the dotted boundary, but the accurate solution is
enclosed by the shaded area.

boolean solve_x (m, a, b, n, M, A, B, N, xm, xM)
If a solution is found, it returns true, else it returns false.

First assume b and B are non-negative. If not, multiply them
by -1 to make them non-negative. Multiplying (1) by B and
(2) by b, subtraction leads to

(mB -M b) < (aB - Ab)x < (nB - Nb),

which yields the range [xm, xm] for x values in addition to true
or false value for the algorithm.

Now once xm, xm have been determined, for each x in [xm,
xm] in the inequalities, we determine the range [ym(x), yM(x)]
for y. That is, after the range [xm, xm] is determined, only then
for each x in [xm, xm], the range for y is determined; in other
words, y is a function of x.

boolean solve_y (m, a, b, n, M, A, B, N, x, ym, yM)

Given that xm < x < xm are known, it solves the inequalities
for ym, yM . In the process, it may update the values of xm, xm
as needed.

If a solution is found, it returns true else it returns false.
Now for xm < x < xm, the inequalities become

m -ax < by < n - ax and
M - Ax < By < N - Ax.

These inequalities give the range [ym(x), yM(x)] o f values
for y as function of x.

This completes the general-purpose algorithm discussion
for determining the triangle-triangle intersection algorithm
completely.

B. Composite classification fo r area intersection

In this section, we summarize the algorithms in Section
V.A. The equations of the triangles ABC and PQR are

R ^u, v) = A + u U + v V,
where U = B - A, V = C - A, 0 < u, v, u + v < 1

R2(s, t) = P + s S + t T,
where S = Q - P, T = R - P, 0 < s, t, s + t < 1

These equations are independent of whether they are
supported by crossing planes or coplanar planes. The cross-
intersecting triangles discussion is well researched, see
Section II. Here we consider the general case, including
crossing or coplanar triangles. In this case, the intersection
may be an area in addition to a possible single point and a line
segment. We first determined [sm, sm] the range of s values,
then used the range on s to solve for [tm(s), tM(s)], the range of
t. If such a solution exists, it is ensured that the two triangles
intersect, which is sufficient for some qualitative spatial
reasoning applications. The uv values can be similarly derived
for the triangle ABC (e.g., first um, um then vm(u), vm(u)). This
algorithm may be used with any application (e.g., qualitative
spatial reasoning, surface modeling, image processing etc.).

As described in Section III, an intersection can arise from
crossing or coplanar triangles. For example, vertex-vertex or
edge-edge intersection can occur regardless of triangles being
coplanar or crossing. The algorithm determines whether
intersection exists or not (i.e., it returns true or false). If true,
the parameter coordinates of intersection are readily available.
We can derive all the auxiliary information from the
parametric coordinates; only logical tests are sufficient for
classification of the intersections. It is not the intent of this
algorithm to determine whether the triangles are crossing or
coplanar.

This can be quickly determined as follows: if U xV^SxT 40,
then triangles cross, else triangle planes are parallel. If
AP^UxV = 0 or AP^SxT = 0, then the triangles are coplanar.
The bilinear parameter coordinates are denoted by Am = (um,
vm), Am = (um, vm), Pm = (sm, tm), Pm = (sm, tM). The
intersection points can be differentiated as follows.

Polibits (48) 2013 20 ISSN 1870-9044

Triangle-Triangle Intersection Determination and Classification to Support Qualitative Spatial Reasoning

If the algorithm returns false,
No Intersection

Elseif (Am = Am) or (Pm = Pm)
Single Point Intersection

Elseif (sm = sm or tm = tM or um = um or vm = vm)
Line segment intersection common to two triangles

Else
Area Intersection common to two triangles.

This will implicitly cover the case when a triangle is inside
the other triangle as well. If triangles do not intersect, then the
triangles are declared disjoint. This completes the discussion
of overall intersection between triangles.

VI. A p p l ic a t io n t o Qu a l it a t iv e
Sp a t ia l Re a s o n in g

Qualitative Spatial Reasoning relies on intersections
between objects whose boundaries are triangulated. The
spatial relations are determined by the 9-Intersection/4-
Intersection model [9, 10]. That is, for any pair of objects A
and B, the interior-interior intersection predicate, IntInt(A, B),
has true or false value depending on whether the interior o f A
and the interior of B intersect without regard to precise
intersection. Similarly IntBnd(A, B) represents the truth value
for the intersection of the interior o f A and the boundary of B,
and BndBnd(A, B) represents the predicate for the
intersection of the boundaries of A and B. These four
qualitative spatial reasoning predicates are sufficient to define
the RCC8 spatial relations (see Table 1).

In the application VRCC-3D+, the boundary of an object is
already triangulated; that is, we will need to intersect pairs of
only triangles. To reduce the computational complexity, the
algorithm uses axis aligned bounding boxes (AABB) to
determine the closest triangles that may possibly intersect. For
example, for objects A and B, if bounding boxes for triangles
of A are disjoint from bounding boxes for triangles of B,
either A is contained in B (IntInt, BndInt is true) or B is
contained in A (IntInt, IntBnd is true) or A is disjoint from B.
The test for such containment of objects can be designed by
casting an infinite ray through the centroid of A. If the ray
intersects B an odd number of times, then B is contained in A.
Similarly, the test can be made if A is contained in B. If A is
not contained in B and B is not contained in A, then A and B
are disjoint (i.e., IntInt(A, B), IntBnd(A, B), BndInt(A, B),
and BndBnd(A, B) are all false).

If the triangles cross intersect (e.g., triangleInterior-
triangleInterior is true), then IntInt, IntBnd, BndInt, BndBnd
will be true. However if the triangles are coplanar and
intersect, only BndBnd(A, B) is true and IntInt(A, B),
IntBnd(A, B), BndInt(A, B) are false for the objects;
otherwise, BndBnd(A, B) is also false.

It is possible that two triangles cross intersect in a line
segment even when a triangle is on one side of the other

triangle, so edgeInterior-triangleInterior is true. In that case,
it may be desirable to know which side o f the other triangle is
occupied. In Fig. 3(b), the triangle PQR is on the positive side
of triangle ABC. For example, if triangle1 of object A cross
intersects the negative side of triangle2 of object B, then
BndInt(A, B) is true.

Table 2 enumerates the outcome for triangle-triangle
intersection with respect to 3D objects. This is a
characterization of the intersection predicates, which
subsequently can be used to resolve the eight RCC8 relations.
Here we assume all normals are oriented towards the outside
of the object. Each characterization in Table 2 describes when
the associated predicate is true. If the truth test fails, then
other triangles need to be tested. If no pair of triangles results
in a true value, then the result is false.

TABLE I.
RCC8 RELATIONS AND INTERSECTION PREDICATES,

ONLY SHADED ENTRIES ARE NECESSARY.

RCC8 IntInt BndBnd IntBnd BndInt
DC F F F F
EC F T F F
PO T T T T
EQ T T F F

TPP T T F T
NTPP T F F T
TPPc T T T F

NTPPc T F T F

TABLE II.
Characterization of intersection predicates

IntInt At least one pair o f triangles cross intersects (trianglclntcrior-
trianglclntcrior) Or an object is contained in the other.

BndBnd At least one pair o f triangles (cross or coplanar) intersects.
BndInt At least one pair tri and tr2 intersect, at least one vertex o f tri

is on the negative side o f triangles o f object 2. Or object 1 is
contained inside objcct2, i.e. every vertex o f objcctl is on the

IntBnd At least one pair tri and tr2 intersect, at least one vertex o f tr2
is on the negative side o f triangles o f object 1. Or object 2 is
contained inside object 1, i.e. every vertex o f objcct2 is on the

This characterizes the intersection predicates, which help in
resolving the RCC8 relations.

VII. Co n c l u s io n

For the 9-Intersection model used in qualitative spatial
reasoning, triangle-triangle intersection plays a prominent
role. Herein we presented a complete framework for
determining and characterizing the intersection of geometric
objects. In contrast to other algorithms, our approach is a
general technique to detect any type of intersection. It creates
classifications by applying logical tests rather than
computational arithmetic tests.

Thus, our algorithm not only detects whether or not an
intersection exists, but also classifies intersections as a single

ISSN 1870-9044 21 Polibits (48) 2013

Chaman L. Sabharwal, Jennifer L. Leopold, Douglas McGeehan

point, a line segment, or an area. The algorithm provides more
information than required by spatial reasoning systems.
Consequently, we hope the new ideas and additional
information including classification of 3D intersection
presented herein will be useful in other related applications.

Re f e r e n c e s

[1] M. J. Egenhofer, R.G. Golledge, Spatial and Temporal
Reasoning in Geographic Information System s, Oxford
University Press, USA, 1998.

[2] E.G. Houghton, Emnett R.F., Factor J.D. and Sabharwal C.L.,
“Implementation of A Divide and Conquer Method for Surface
Intersections,” Computer A ided Geometric Design, Vol. 2,
pp. 173-183, 1985.

[3] Oren Tropp, Ayellet Tal, Ilan Shimshoni. “A fast triangle to
triangle intersection test for collision detection,” Computer
Anim ation and Virtual Worlds, Vol. 17 (50), pp. 527-535, 2006.

[4] G. Caumon, Collon-Drouaillet P, Le Carlier de Veslud C, Viseur
S, Sausse J. “Surface-based 3D modeling of geological
structures,” Math. Geosci. 41:927-945, 2009.

[5] A.H. Elsheikh, M. Elsheikh, “A reliable triangular mesh
intersection algorithm and its application in geological
modeling,” Engineering with Computers, pp. 1-15, 2012.

[6] N. Eloe, J. Leopold, C. Sabharwal, and Z. Yin, “Efficient
Computation of Boundary Intersection and Error Tolerance in
VRCC-3D+”, Proceedings o f the 18h International Conference

on D istributed M ultimedia Systems (DMS'12), Miami, FL, Aug.
9-11, 2012, pp. 67-70, 2012.

[7] C.L. Sabharwal, J.L. Leopold, “A Fast Intersection Detection
Algorithm For Qualitative Spatial Reasoning”, Proceedings o f
the 19h International Conference on D istributed M ultimedia
Systems (DM S'13), Brighton, UK, Aug. 8-10, 2013.

[8] D. A. Randell, Z. Cui, and A.G. Cohn. “A Spatial Logic Based on
Regions and Connection,” K R , 92, pp. 165-176, 1992.

[9] M.J. Egenhofer, R. Franzosa. “Point-Set topological Relations,”
International Journal o f Geographical Information Systems 5(2),
pp. 161 -174, 1991.

[10] C.L. Sabharwal, J.L. Leopold. “Reducing 9-Intersection to 4-
Intersection for identifying relations in region connection
calculus,” 24th International Conference on Computer
Applications in Industry and Engineering, pp. 118-123, 2011.

[11] P. Guigue, O. Devillers. “Fast and robust triangle-triangle overlap
test using orientation predicates.” Journal o f GraphicsTools;
8(1): pp. 25-42, 2003.

[12] M. Held. “ERIT, A collection of efficient and reliable
intersection tests,” Journal o f Graphics Tools; 2(4): pp. 25-44,
1997.

[13] T. Moller “A fast triangle-triangle intersection test,” Journal o f
Graphics Tools, 1997; 2(2): 25-30.

[14] B. Didier, “An Efficient Ray-Polygon Intersection,” Andrew S.
Glassner, ed. Graphics Gems, Academic Press, pp. 390-393,
1990.

[15] C.L. Sabharwal, “Survey of implementations of cross intersection
between triangular surfaces,” M D C Report Q0909 (Now Boeing
at St. Louis, MO, USA), 1987.

Polibits (48) 2013 22 ISSN 1870-9044

http://link.springer.com/journal/366
http://www.graphicsgems.org/gems/RayPolygon.c

