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Abstract—In CAD/CAM modeling, objects are represented 
using the Boundary Representation (ANSI Brep) model. Detection 
of possible intersection between objects can be based on the 
objects’ boundaries (i.e., triangulated surfaces), and computed 
using triangle-triangle intersection. Usually only a cross 
intersection algorithm is needed; however, it is beneficial to have a 
single robust and fast intersection detection algorithm for both 
cross and coplanar intersections. For qualitative spatial reasoning, 
a general-purpose algorithm is desirable for accurately 
differentiating the relations in a region connection calculus, a task 
that requires consideration of intersection between objects. Herein 
we present a complete uniform integrated algorithm for both cross 
and coplanar intersection. Additionally, we present parametric 
methods for classifying and computing intersection points. This 
work is applicable to most region connection calculi, particularly 
VRCC-3D+, which detects intersections between 3D objects as well 
as their projections in 2D that are essential for occlusion detection.

Index Terms—Intersection detection, classification predi­
cates, spatial reasoning, triangle-triangle intersection.

I. In t r o d u c t io n

THERE are relatively few software applications supporting 
qualitative spatial reasoning. In part, this may be due to 

the complexity in determining the intersection between 2D/3D 
objects. Yet the ability to detect the existence o f a possible 
intersection between pairs of objects can be important in a 
variety of problem domains such as geographic information 
systems [1], CAD/CAM geometric modeling [2], real-time 
rendering [3], geology [4], networking and wireless 
computing.

In qualitative reasoning, it is not necessary to know the 
precise intersection between pairs of objects; it is sufficient to 
detect and classify the intersection between objects. Typically, 
the boundary of each object is represented as a triangulated 
surface and a triangle-triangle intersection is the
computational basis for determining intersection between 
objects. Since an object boundary may contain thousands of
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triangles, algorithms to speed up the intersection detection 
process are still being explored for various applications, 
sometimes with a focus on innovations in processor 
architecture [5, 6, 7].

For pairs of triangles, there are three types of intersections: 
zero dimensional (single point), one-dimensional (line 
segment), and two dimensional (area) intersection. In the past, 
almost all attention has been devoted to determining the cross 
intersections, which resulted in an absence of analysis in two­
dimensional intersections. Coplanar triangle intersections are 
unique because an intersection may be any of the 
aforementioned three types. If the triangles cross-intersect, 
only zero or one-dimensional intersection is possible. If the 
planes are parallel and distinct, the triangles do not intersect. 
If the triangles are coplanar, then there is a possibility of 
intersection. Even when the cost of intersecting a triangle pair 
is constant, the cost of intersecting a pair of objects A and B is 
order 0 (Ta x Tb) where Ta is the number of triangles in object 
A, and Tb is the number of triangles in object B.

In qualitative spatial reasoning, spatial relations between 
regions are defined axiomatically using first order logic [8] or 
the 9-Intersection model [9]. Using the latter model, the 
spatial relations are defined using the intersections of the 
interior, boundary, and exterior o f one region with those o f a 
second region. It has been shown in [10] that it is sufficient to 
define the spatial relations by computing 4-Intersection 
predicates, (namely, Interior-Interior (IntInt), Boundary- 
Boundary (BndBnd), Interior-Boundary (IntBnd), and 
Boundary-Interior (BndInt)) instead of 9-Intersections.

Since IntBnd and BndInt are the converse of each other, 
only three algorithms are necessary for these predicates. In 
order to implement these algorithms, we must first solve the 
triangle-triangle intersection determination, as it is a lower 
level problem that must be solved in order to determine the 4- 
Intersection predicates that, in turn, determine the qualitative 
spatial relation between two objects.

This paper is organized as follows: Section II briefly 
reviews the background and related cross intersection 
framework. Section III discusses motivation and conceptual 
classification of intersections, whereupon Section IV develops 
the overall main algorithm for triangle-triangle intersection. 
Section V describes the area intersection algorithm for general
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triangles, and predicates for classifying the intersection 
between pairs of triangles, after which Section VI discusses 
the applications to qualitative spatial reasoning.

II. BACKGROUND 

A. The Traditional Algorithm

Many papers have been written on the intersection between 
a pair of triangles [3, 11, 12, 13, 14, 15]. Interestingly, most of 
them simply reinvent the algorithm and implement it slightly 
differently and more efficiently, with no innovation. A  recent 
paper [7] surveyed various approaches for determining the 
cross intersection detection, and developed a fast vector 
version o f the cross intersection detection, as well as 
classification of the type of intersection. o u r  approach is 
exhaustive, integrating both cross and coplanar intersection, 
and analytically more rigorous than the previous approaches 
[3, 11]. It is described in the next section where we follow the 
approach similar to the techniques used in [7] for cross 
intersection. The cross-intersection standalone algorithm is 
described as follows:

boolean triTriCrossInt (trl = ABC, tr2 = PQR)

input: two triangles whose planes cross intersect

output: true if the triangles intersect, else false

The vector equations for two triangles ABC and PQR are

R\(u, v) = A  + u U + v V, 0 < u, v, u + v < 1 
R 2(s, t) = P  + s S  + t T, 0 < s, t, s + t < 1,

where U = B -A , V  = C -  A , and S = Q -  P, T = R -  P.
Let N  = UxV, N2 = SxT be normals to the planes 

supporting the triangles directed away from the objects.
The triangles intersect if  there exist some barycentric 
coordinates (u, v) and (s, t) satisfying the equation

A + u U + v V = P + s S  + t T

Since ^ x N  4 0 for cross intersecting triangles, and S 
and T are orthogonal to N 2, the dot product of this 
equation with N2 eliminates S and T from the above 
equation to yield

u U N  + v V'N 2 = A P 'N 2

This is the familiar equation of a line in the uv-plane for 
real variables u, v. The vector equation using real 
parameter X becomes

(U • N , , V • N , )
(u, v) = AP • M ----------2-2— + X(V • N ,, - U • N , )\  1 /  2 2 2 2 ’ 2 'U • n 2 + V • n 2

Then parameter values u, v are explicitly written as

U • N,
u = AP • N , -------------- 2------- + XV • N ,2 2 2 2U • n 2 + V • n 2

V • N
v = AP • N, -------------- 2--------- XU • N,2 2 2 2U • N 2 + V • N 2

(U • N + V • N, )
u + v = AP • N 2 -------- 2-----------— + X(V • N 2 -  U • N 2 )

U • N 22 + V • N 22

If there is a X in these three equations such that 0 < u, v, u 
+ v < 1, the triangles are ensured to intersect. The range 
of values of X is bounded by Xm and Xm. This detects 
whether the two triangles cross intersect only.

In fact, for precise intersection, using Xm, Xm, as 
parameter values, we compute (u m, vm ) and (um, vm) for 
the segment of intersection on ABC. Similarly the values 
(sm, tm) and (sm, tM) represent the segment of intersection 
on PQR. The precise intersection between the two 
triangles is the common segment of these two segments.
If the segment degenerates into a single point, the 
parameter values also can be used to classify the 
intersection as a vertex, an edgeInterior point or 
trianglelnterior point in the triangle ABC.

III. Cl a s s if ic a t io n  o f  Tr ia n g l e  In t e r s e c t io n s

For spatial reasoning, we detect intersection between pairs 
of 2D/3D objects and classify pairwise intersection predicates 
IntInt, IntBnd, BndInt, and BndBnd, without computing the 
extent of intersections. The cross intersection can be 
characterized into seven categories [7]. When cross 
intersection is insufficient to determine tangential intersection, 
some applications such as RCC8 and VRCC-3D+ [6] resort to 
coplanar intersection to support relations such as externally 
connected (EC) and tangentially connected (TPP, TPPc).

The precise intersection of coplanar triangles is a little more 
complex because it can result in area intersection as well; the 
coplanar triangles intersection can be classified as: Single 
Point Intersection (vertex-vertex, vertex-edgeInterior), Line 
Segment Intersection (edge-edgeCollinear), Area Intersection 
bounded by 3, 4, 5, 6 edges, (Fig. 4, Fig. 5(a, b, c)). A triangle 
may be entirely contained in the other triangle (Fig. 5(d)). In 
this paper, we present a detailed analytical study of the 
intersection of coplanar triangles, which has not been 
previously presented.

The intersection between a pair o f triangles can be 
abstracted as Cross (C) intersection or Parallel (P) coplanar 
triangles intersection. For taxonomy of cross and parallel 
coplanar triangles, the conceptual intersections are supported 
with figures presented here. The specific cases are as follows:

No intersection
disjoint (C, P) (see Fig. 1)

Single Point Intersection
vertex-vertex Intersection (C, P) (see Fig. 2(a))
vertex-edgeInterior Intersection (C, P) (see Fig. 2(b))
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vertex-trianglelnterior Intersection (C) (see Fig. 2(c)) 
edgelnterior-edgelnteriorCross Intersection (C) (Fig. 2(d))

Line intersection
edge-edgeCollinear Intersection (C, P) (see Fig. 3(a)) 
edge-trianglelnterior Intersection (C) (see Fig. 3(b)) 
trianglelnterior-trianglelnterior Intersection (C) (Fig. 3(c))

Area Intersection
vertex-trianglelnterior Intersection (P) (see Fig. 4, Fig. 5(a, 

b, d))
edgelnterior-edgelnterorCross Intersection (P) (Fig. 4, Fig. 

5(a, b, c))
edge-trianglelnterior Intersection (P) (see Fig. 5(d)) 
trianglelnterior-trianglelnterior Intersection (P) (see Fig. 4, 

Fig. 5(a, b, c, d))

It is possible that two triangles cross intersect in a line 
segment even when a triangle is on one side of the other 
triangle. In that case, it may be desirable to know which side 
of the other triangle is occupied. In Fig. 3(b), the triangle PQR 
(except QR which is in  ABC) is on the positive side of 
triangle ABC. So PQR does not intersect the interior o f object 
of triangle ABC. We will use this concept in Section VI. 
Section VII concludes, followed by references in  Section VIII.

It should be noted that the vertex-edge intersection 
encompasses vertex-vertex, vertex-edgeInterior intersection, 
whereas the vertex-triangle intersection encompasses vertex- 
vertex, vertex-edgeInterior, and vertex-triangleInterior. Thus 
1D JEPD cross intersection between ABC and PQR can be 
one of the three possibilities: (1) collinear along edges, (2) an 
edge of PQR lying in  the plane of triangle ABC, or (3) 
triangles “pierce” through each other yielding an intersection 
segment.

IV. Th e  Ov e r a l l  Al g o r it h m  
(In t e r s e c t io n  Be t w e e n  Tr ia n g l e s )

In this section, we describe the overall structure of the 
triangle-triangle intersection. In Section IV.A, we develop 
sub-algorithms that support the main algorithm at its 
intermediate steps. In addition to existence or nonexistence of 
an intersection, this algorithm also supports other auxiliary 
computations, (e.g. classification of intersection and the 
calculation of 3D intersection points, segment or area) which 
are necessary for some applications.

A. Description o f  the Overall Algorithm

The general structure of the overall triangle-triangle 
intersection algorithm is presented here. The description is in 
Python style so that it can be easily transported to 
programmable code. Here is the traditional approach to the 
algorithm, whereas our approach is presented in Section V.

Fig. 1. Disjoint triangles: Planes supporting the triangles may be 
crossing or coplanar. The triangles do not have anything in common.

Fig. 2. Triangles intersect at a single point. The intersections 
between triangles ABC and PQR are JEPD (Jointly Exhaustive and 
Pairwise Distinct) cases of Single Point intersection between 
triangles. (a) vertex-vertex and (b) vertex-edgeInterior can occur in 
both cross and coplanar intersections. However, (c) vertex- 
triangleInterior and (d) edgeInterior-edgeInterior intersection point 
can occur in cross intersection only.

Fig. 3 . Triangles intersect in a line segment. (a) edge-edgeCollinear 
intersection can occur in both cross and coplanar intersections. 
However, (b) edge-triangleInterior and (c) triangleInterior- 
triangleInterior intersection segment occur in cross intersection only.
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Fig. 4. Triangles intersect in an area. (a) One edge of triangle PQR 
and two edges AB and AC of triangle ABC intersect, vertex A is in 
the interior of PQR. (b) One edge of triangle PQR with three edges 
of ABC, and vertex A in the interior of PQR. The common area is 
bounded by three edges. The intersections vertex-triangleInterior, 
edge_triangle, edgeInterior-triangleInterior hold.

p

Fig. 5. Triangles intersect in an area (continued). The coplanar 
triangle intersections are bounded by four, five, and six edge 
segments. (a) Two edges of triangle PQR and two edges AB and AC 
of triangle ABC intersect, vertex A is in the interior of PQR, vertex 
R is in the interior of triangle ABC. The intersection area is bounded 
by four edges. (b) Two edges of triangle PQR and three edges of 
triangle ABC intersect; vertex C is in the interior of PQR. The 
intersection area is bounded by five edges. (c) Three edges of 
triangle PQR and three edges of triangle ABC intersect; every vertex 
of one triangle is outside the other triangle. The intersection area is 
bounded by six edges. (d) No edge of triangle PQR intersects any 
edge of triangle ABC; vertices P, Q, R are in the interior of triangle 
ABC. The intersection area is the triangle PQR.

boolean triTriInt(tr1 = ABC, tr2 = PQR)

Input: two triangles ABC and PQR

Output: Boolean value whether the triangles intersect or 
not.

Let ABC and PQR be two triangles. The triangles are 
represented with parametric vector equations where u, v are

parameters for triangle ABC, and s, t are parameters for 
triangle PQR.

Ri(m, v) = A + u U + vV  with 0 < u, v, u + v < 1
R 2(s, t) = P + s S  + tT  with 0 < s, t, s + t  < 1

where

U = B -  A, V  = C -  A , are directions of the edges at A;
S  = Q -  P, T = R -  P  are the directions of edges at P.

Let N 1 = UxV, N 2 = SxT be the normals to planes supporting 
the triangles ABC and PQR.

if  N 1xN2 4- 0 // planes supporting triangles are not parallel 
if triTriCrossInt (tr1, tr2) // cross intersect the triangles 

return true 
else 

return false
elseif N 1xN2 = 0, // triangles planes are parallel 

if  AP^N! = 0, //the triangles are coplanar 
if triTriParInt (trl, tr2)// implicit in Section V.

return true 
else 

return false
elseif AP»Ni 4  0, // the triangles are not coplanar, 

no Intersection 
return false 

endif
endif
/*end of algorithm*/

Here, we give all the supporting algorithms for 
implementation and classification of all special case 
intersections in the main algorithm. There are three broad 
categories for intersections of triangles: zero dimensional 
(single point), one-dimensional (line segment), and two 
dimensional (area) intersection.

A.1 Single Point Intersection (0D).

We first analyze the vertices of the triangle PQR with 
respect to triangle ABC to determine if a vertex P or Q or R is 
common to the ABC triangle and conversely.

vertex-triangleTest (X, tri = ABC)

Input: X is a vertex of one triangle and tri another triangle.

Output: boolean value determining whether X is a vertex, 
edgeInterior, triangleInterior point of the triangle.

To determine the relation of X e{P, Q, R} to the triangle 
ABC, we solve

A + u U + v V = X  for 0 < u, v, u + v < 1,

Rearranging the equation, we get

u U + v V = A X .
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To eliminate one of the parameters u, v to solve this, we dot 
product the equation with vectors (UxV)xU and (UxV)xV. 
Let

A X  x ( U  x V  )

( U  x V  )  •  ( U  x V  )

then u = -  y V  and v = y U

if 0 < u, v, u + v < 1, 
return true // X of PQR, intersects the triangle ABC. 

else 
return false 

/*end of algorithm*/

The vector (U x V ) is computed only once and used
(U x V  ) • (U x V  )

repeatedly. As a result y = A  x (U  x V )— is calculated
(U  x V  ) • (U  x V  )

with one cross product, and u, v are calculated with one dot 
product. The parameters u, v naturally lend themselves to

P X  x ( 5  x T  )classification of intersections. Similarly,

A .2 Classification of Intersection.
( S  x T )  •  ( S  x T  )

In order to determine whether the vertex X of triangle PQR 
is a vertex of ABC, or on the edge of ABC, or an interior 
point of triangle ABC, no extra computational effort is 
required now. Logical tests are sufficient to establish the 
classification of this intersection. Since 0 < u, v, u + v < 1, we 
can classify X relative to ABC in terms of the following 
predicates:

vertex ((u, v)): If (u, v) e { (0, 0), (0, 1), (1, 0)}, then X is 
one of the vertices of ABC.

edgeInterior ((u, v)): If (u = 0, 0 < v < 1) or (v = 0, 0 < u < 
1) or (u + v = 1, 0 < u < 1)), then X is on an edge of ABC, 
excluding vertices.

triangleInterior ((u, v)): If (0 < u < 1 and 0 < v < 1 and 0 < 
u + v < 1), X is an interior point (excluding boundary) of the 
triangle ABC.

Similarly, as above we can classify vertex X of triangle 
ABC as vertex, edgeInterior, or triangleInterior point of 
triangle PQR. Single point intersection may result from cross 
intersection of edges as well. An edge point may be a vertex 
or an interior point of the edge.

A.3 The Edge-edge Single Point Intersection.

If two triangles cross intersect across an edge, the edge-to- 
edge intersection results in a single point. The edge-edge cross 
intersection algorithm is presented below.

edge_edgeCrossIntersection (edge1, edge2)

Let the two edges be AB and PQ. Then the edges are 
represented with equations

X = A + u U with U = B -  A, 0 < u < 1 
X = P + s S with S = Q -  P, 0 < s < 1

if  UxS^AP4 0 , return false // non-coplanar lines 
elseif UxS = 0, return false // lines are parallel 
else UxS 4 0 , // lines cross
/* solve for up, sa values for the intersection point*/

A  + uP U = P + sA S 

up = S^PAx(U xS)/(UxS^UxS)

S  •  PA x ( U  x S )
u P = -----------------------------------

( U  x S  ) • ( U  x S  ) 

if  (up < 0) or (uP > 1), return false // no cross intersection,

U  •  AP x ( U  x S )
5a =  ----------------------

( U  x S  ) • ( U  x S  )

if  (sa < 0) or (sa > 1),
return false //no cross intersection,

else
return true //there is edge-edge cross intersection.

endif
/* end of algorithm*/

A.4 Composite Classification O f Single Point Intersection.

Let Am, Pm, be the pair of bilinear parametric coordinates of 
the 3D intersection points R^um^m) and R2(sm,tm) with 
respect to triangles ABC and PQR respectively. When there is 
no confusion, we will refer to the points as Am and Pm instead 
of 3D points R^um^m) and R 2(sm,tm). From vertex-triangle 
intersection (Section 3) we have 

Pm is a vertex of PQR, and Am = (um, vm), where um and vm 
are um = -y V , vm = y U  or Am is a vertex of ABC, and Pm = 
(sm, tm), where sm and tm) are sm = -y'•T, tm = y'•S.

From edge-edge intersection (Section B.3) we have

Am = (0, up) or (up, 0) or (up, 1 -  up) or (1 -  up, up)
Pm = (0, sa) or (sa, 0) or (sa, 1 -  sa) or (1 -  sa, sa)

If (up = 0 or 1) and (sa = 0 or 1), it is vertex-vertex 
intersection. If (up = 0 or 1) and not (sa = 0 or 1), it is vertex- 
edgeInterior intersection. If not (up = 0 or 1) and (sa = 0 or 1), 
it is edgeInterior-vertex intersection. If not (up = 0 or 1) and 
not (sa = 0 or 1), it is edgeInterior-edgeInterior intersection. 
This completes the discussion of single point intersection 
classification and parameters for the corresponding 3D points.

B. Line Intersection (1D)

Besides edge-edge cross intersection, the edge-edge 
collinear intersection is a possibility, independent of crossing

y
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or coplanar triangles. In this section, we discuss algorithms 
that result in a segment (1D) intersection; see Fig. 3.

B. 1 Intersection Algorithm A nd Parametric Coordinates.

Here we derive an edge-edgeCollinear intersection 
algorithm. This algorithm is seamlessly applicable to both 
cross-intersecting and coplanar triangles. The following 
algorithm implements intersection of edges of the triangles 
ABC and PQR.

boolean edge-edgeCollinearTest (edge1, edge2)

input: two line segments

output: true if the segments have a common intersection, 
else false. First we compute the linear parameter coordinates 
up, uq, sa, sb for intersection of X = A + u (B -  A), for X = P, 
Q and X = P + s (Q -  P), for X = A, B. Similarly, we can 
compute the intersection o f other edges of triangle ABC with 
any edge of triangle PQR. Then we update the parameters for 
the common segment. This algorithm is standard, 
straightforward and is omitted for the sake of limited space.

B.2 Classification o f  Edge-edge Intersection

Now we have the linear coordinates for intersection points 
uP, uQ and sA, sB. We map the linear parameters for 
intersection points to bilinear parameter coordinates (u, v) and 
(s, t). If  uP, uQ are known along an edge and the edge is AB,
let um = up, um = uq, vm = 0, vm = 0;

Similarly for AC, let vm = up, vm = uq, um = 0, um = 0; and 
for BC, let um = up, um = uq, vm = 1 -  up, vm = 1 -  uq;

Thus ABC triangle bilinear coordinates for the intersection 
points are:

Am=(um, vm), Am=(um, vm)

where vm = vm = 0 or um=uM =0 or um+vm=uM + vm = 1.
Similarly for the triangle PQR, the linear coordinates sA, sB 

of intersection translate into bilinear coordinates

Pm (sm, WX PM (sM, tM)

where tm = tM = 0 or sm = sm = 0 or sm+tm = sM+tM = 1.
Now we have the bilinear parametric coordinates u, v, s, t 

for the intersection segment. The common 3D segment is 
denoted by [R1(Am), R 1(Am)] which is [R2(Pm), R2(Pm)] or 
[R2(Pm), R2(Pm)]. It is possible that the intersection segment is 
equal to both edges, or it overlaps both edges, or it is entirely 
contained in one edge. Since the intersection is a part o f the 
edges, it cannot properly contain any edge.

B.3. Composite Classification o f  Line Intersection.

For collinear edge intersection Am, Am are normally distinct 
and similarly Pm, Pm may be distinct. Though the intersection

segment is given by [R1(Am), R 1(Am)] = [R2(Pm), R2(Pm)) or 
[R1 (Am), R 1 (Am)] = [R2(Pm), R2(Pm)], it is not necessary that 
parameter coordinates [Am, Am] = [Pm, Pm] or [Am, Am] = [Pm, 
Pm]. The predicate for edge-edge collinear intersection 
segment becomes:

edge-edgeCollinear (edge1, edge2) = edge ([Am, Am]) and 
edge ([Pm, Pm]) and [R1(Am), R 1(Am)] == [R2(Pm), R2(Pm)] or 
[R1(Am), R 1 (Am)] == [R2(Pm), R2(Pm)]

Also it may be noted that for a cross intersection triangle, an 
edge-triangleInterior intersection may result in a segment 
intersection (Fig. 3(b)). For cross intersecting planes we have 
(cf. 3.A for vertex to triangle intersection and [7]) .

edge-triangle (edge, triangle.) = edge ([Am, Am]) and triangle 
([Pm, Pm]) and [R1(Am), R 1(Am)] == [R2(Pm), R2(Pm)] or 
[R1(Am), R 1 (Am)] == [R2(Pm), R2(Pm)]

This completes the discussion of segment intersection (1D), 
classification, 3D points for both cross and coplanar triangle 
intersections.

V. A r e a  In t e r s e c t io n

For coplanar triangles, there may be no intersection (Fig. 1), 
a single point (Fig. 2(a, b)), a segment (Fig. 3(a)) or an area 
(Fig. 4, Fig. 5(a, b, c)), including one triangle contained in 
another, (Fig. 5(d)). An area can result from two edges of one 
triangle and one, two, or three edges of another triangle, or 
three edges from both triangles creating a star shaped figure. 
The resulting area is bounded by 3, 4, 5, or 6 edges. All other 
configurations are homeomorphic to the figures presented in 
this paper. For qualitative spatial reasoning, in some cases 
(when the knowledge of cross intersection is insufficient), we 
resort to coplanar intersection to distinguish the externally or 
tangentially connected objects.

A. General Purpose Algorithm

If a vertex of PQR is in the interior of ABC (or the converse 
is true), then an area intersection occurs, (Fig. 4(a, b), Fig. 5(a, 
b, d)). If  no two edges intersect and vertex_triangleInterior 
(vertex, triangle = tr2) for every vertex of a triangle tr1, then 
the triangle tr1 is contained in tr2 and conversely. If  no edge- 
edge intersection takes place and no vertex of one triangle is 
inside the other triangle (or the converse is true), then they are 
disjoint.

Although this algorithm may look simple, it is a new 
approach compared to previous approaches cited in the 
background section. The existing methods may use alternate 
edge-oriented techniques to determine the area of intersection; 
however, those will be limited [11]. Our algorithm is more 
comprehensive and analytically rigorous; it is implicitly 
capable of handling any specific type o f intersection 
simultaneously, which may be a single point, a segment or an 
area.
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The Algorithm : A Novel Approach

boolean triTrilntersection (tr l = ABC, tr2 = PQR)
The triangles ABC and PQR are

X = A + u U + v V with U = B -  A, V = C -  A, 0 < u, v, u + v
< 1
X = P + s S + t T with S = Q -  P, T = R -  P, 0 < s, t, s + t < 1

The general set up for detecting intersections is to solve the 
equation

A + u U + v V = P + s S + t T

for u, v, s, t. If a solution exists satisfying the constraints 0 < 
u, v, u + v, s, t, s + t < 1, then there is an intersection, else 
there is no intersection.

Rearranging the equation, we have

u U + v V = A P  + s S  + t T  (1)

For simplicity in  solving (1), we use the following notation. 
Let a , p, y be vectors and 8 be a positive real number. Then 

for triangle ABC, let AP = P -  A be a vector, 8 = 
(U xVKUxV),

S  x  (U  x  V )  T  X (U  X V )  AP  X (U  x  V )
a  =  ----------------------------------- , p  =  ------------------------------------ , y  =  ------------------------------------------

8 8 8

Similarly, let a ', p', y' be vectors and d' be a positive real 
number. Then for triangle PQR, let

PA = A -  P be a vector, 8' = (S*T)-(S*T)

U x  (S x  T ) , V x  (S x  T ) PA x  (S x  T )
a ' = ---------------- , P ' = -----------------, y ' = -------------------.

8 8 8

For intersection between triangles ABC and PQR, on 
dotting equation (1) with (U*V)xU and (U*V)xV, we quickly 
get

u = -  (y-V + s a -V  + t p -V  
v = y-U + s a-U  + t p-U

Adding the two equations,

u + v = y- (U -  V) + s a -  (U -  V) + t p-(U -  V)

In order that 0 < u, v, u + v < 1, we get the following 
inequalities for possible range of values for s and t

(a) -  y-U < a-U  s + p-U t < 1 -  y-U
(b) -  1 -  y-V < a -V  s + p-V t < -  y-V
(c) -  y- (U -  V) < a-(U  -  V) s + p-(U -  V) t < 1 -  y-(U -  V)

These linear inequalities (a) -  (c) are of the form

m < ax + by < n

The solution to this system of inequalities is derived at the 
end of this section. We apply the results of the algorithms here 
in solving (a) -  (c).

If we solve_x ( -  y-U, a-U , p-U, 1 -  y-U, -  y-V, a-V , p-V,
1 -  y-V, Xm, Xm)

sm = max (0, Xm), sm = min (1, xm)

If we solve_x ( -  y-U, a-U , p-U, 1 -  y-U, -  y-(U -  V), a -  (U
-  V), p-(U -  V), 1 -  y-(U -  V), xm, xm)

sm = max (sm, xm), sm = min (xm, sm)

If we solve_x ( - 1  -  y-V, a-V , p-V, -  y-V, -  y-(U -  V),
a-(U  -  V), p-(U -  V), 1 -  y-(U -  V), xm, xm)

sm = max (sm, xm), sm = min (xm, sm)

if  sm > sM
return false

else
tM = 0; tm = 1
for se  [sm, sm] // we solve the inequalities for t 

if  solve_y ( -  yU, a»U, P*U, 1 -  yU, -  yV, r a»V, 
p-V, 1 -  y-V, s, ym, yM) 
tm (s) = max (0, ym), tM (s) = min (1, yM), 
tm = min (tm (s), tm), tM = max (tM (s), tM) // extent of

overall t values 
if tm (s) > tM (s)

Return false 
else

tm (s) < t < tM (s)
return true

/* end of algorithm */

We first solved the three inequalities pairwise for a range of 
values for s, so that sm < s < sm holds good simultaneously 
with three inequalities. Then from this range of s values, we 
solved for t as a function of s such that tm (s) < s < tM (s), and 
overall tm < tM. If it succeeds, it ensures that there is a 
solution. Similarly, we determine for u-parameter and v- 
parameter values in  terms of u to obtain the area enclosed by 
the two triangles. This algorithm detects whether coplanar 
triangles intersect, and we classify the intersection as in 
Section V.B. Here we describe the two algorithms we applied 
in the general-purpose algorithm. An auxiliary algorithm 
solves inequalities o f the form

m < ax + by < n, and 
M  < Ax + By < N

The brute force method for solving these inequalities may 
lead to an erroneous solution as shown in the following 
example. The general elimination of variables principle that 
works well for equations does not directly translate into 
solving inequalities. Such approach gives an inconsistent 
solution to the two inequalities
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(a) -  1 < x + y < 1 and
(b) -  1 < x -  y < 1

Since -  1 < x -  y < 1 is equivalent to -  1 < -  x + y < 1, 
adding and subtracting the two inequalities (a) and (b), yields 
an inaccurate answer -1  < x < 1, and -  1 < y < 1 which is the 
area enclosed by dotted boundary in Fig. 6. But the accurate 
solution is in the shaded area in Fig. 6, which is |x| < 1, and |y|
< (1 -  |x|).

Thus to accurately solve these two inequalities -  1 < x + y < 
1 and -  1 < x -  y < 1, we first solve these for one variable x, 
then use this variable value to solve for the other variable y as
-  (1 -  |x|) < y < (1 -  |x|).

First, we solve two most general inequalities

m < ax + by < n (1)
M  < Ax + By < N (2)

The following algorithm determines xm, xm such that for 
each x in [xm, xm], the inequalities hold.

Fig. 6. Solution to a pair of inequalities: -  1 < x + y < 1 and -  1 < 
x -  y < 1. Using brute force method of elimination of variables yields 
the area enclosed by the dotted boundary, but the accurate solution is 
enclosed by the shaded area.

boolean solve_x (m, a, b, n, M, A, B, N, xm, xM)
If a solution is found, it returns true, else it returns false. 

First assume b and B are non-negative. If  not, multiply them 
by -1  to make them non-negative. Multiplying (1) by B and 
(2) by b, subtraction leads to

(mB -M b) < (aB -  Ab)x < (nB -  Nb),

which yields the range [xm, xm] for x values in addition to true 
or false value for the algorithm.

Now once xm, xm have been determined, for each x in [xm, 
xm] in the inequalities, we determine the range [ym(x), yM(x)] 
for y. That is, after the range [xm, xm] is determined, only then 
for each x in [xm, xm], the range for y is determined; in other 
words, y is a function of x.

boolean solve_y (m, a, b, n, M, A, B, N, x, ym, yM)

Given that xm < x < xm are known, it solves the inequalities 
for ym, yM . In the process, it may update the values of xm, xm 
as needed.

If a solution is found, it returns true else it returns false. 
Now for xm < x < xm, the inequalities become

m -ax  < by < n -  ax and 
M  -  Ax < By < N -  Ax.

These inequalities give the range [ym(x), yM(x)] o f values 
for y as function of x.

This completes the general-purpose algorithm discussion 
for determining the triangle-triangle intersection algorithm 
completely.

B. Composite classification fo r  area intersection

In this section, we summarize the algorithms in Section
V.A. The equations of the triangles ABC and PQR are

R ^u, v) = A + u U + v V,
where U = B -  A, V = C -  A, 0 < u, v, u + v < 1

R2(s, t) = P + s S + t T,
where S = Q -  P, T = R -  P, 0 < s, t, s + t < 1

These equations are independent of whether they are 
supported by crossing planes or coplanar planes. The cross- 
intersecting triangles discussion is well researched, see 
Section II. Here we consider the general case, including 
crossing or coplanar triangles. In this case, the intersection 
may be an area in addition to a possible single point and a line 
segment. We first determined [sm, sm] the range of s values, 
then used the range on s to solve for [tm(s), tM(s)], the range of 
t. If such a solution exists, it is ensured that the two triangles 
intersect, which is sufficient for some qualitative spatial 
reasoning applications. The uv values can be similarly derived 
for the triangle ABC (e.g., first um, um then vm(u), vm(u)). This 
algorithm may be used with any application (e.g., qualitative 
spatial reasoning, surface modeling, image processing etc.).

As described in Section III, an intersection can arise from 
crossing or coplanar triangles. For example, vertex-vertex or 
edge-edge intersection can occur regardless of triangles being 
coplanar or crossing. The algorithm determines whether 
intersection exists or not (i.e., it returns true or false). If true, 
the parameter coordinates of intersection are readily available. 
We can derive all the auxiliary information from the 
parametric coordinates; only logical tests are sufficient for 
classification of the intersections. It is not the intent of this 
algorithm to determine whether the triangles are crossing or 
coplanar.

This can be quickly determined as follows: if  U xV^SxT 40, 
then triangles cross, else triangle planes are parallel. If 
AP^UxV = 0 or AP^SxT = 0, then the triangles are coplanar. 
The bilinear parameter coordinates are denoted by Am = (um, 
vm), Am = (um, vm), Pm = (sm, tm), Pm = (sm, tM). The 
intersection points can be differentiated as follows.
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If the algorithm returns false,
No Intersection 

Elseif (Am = Am) or (Pm = Pm)
Single Point Intersection 

Elseif (sm = sm or tm = tM or um = um or vm = vm)
Line segment intersection common to two triangles 

Else
Area Intersection common to two triangles.

This will implicitly cover the case when a triangle is inside 
the other triangle as well. If triangles do not intersect, then the 
triangles are declared disjoint. This completes the discussion 
of overall intersection between triangles.

VI. A p p l ic a t io n  t o  Qu a l it a t iv e  
Sp a t ia l  Re a s o n in g

Qualitative Spatial Reasoning relies on intersections 
between objects whose boundaries are triangulated. The 
spatial relations are determined by the 9-Intersection/4- 
Intersection model [9, 10]. That is, for any pair of objects A 
and B, the interior-interior intersection predicate, IntInt(A, B), 
has true or false value depending on whether the interior o f A 
and the interior of B intersect without regard to precise 
intersection. Similarly IntBnd(A, B) represents the truth value 
for the intersection of the interior o f A and the boundary of B, 
and BndBnd(A, B) represents the predicate for the 
intersection of the boundaries of A and B. These four 
qualitative spatial reasoning predicates are sufficient to define 
the RCC8 spatial relations (see Table 1).

In the application VRCC-3D+, the boundary of an object is 
already triangulated; that is, we will need to intersect pairs of 
only triangles. To reduce the computational complexity, the 
algorithm uses axis aligned bounding boxes (AABB) to 
determine the closest triangles that may possibly intersect. For 
example, for objects A and B, if bounding boxes for triangles 
of A are disjoint from bounding boxes for triangles of B, 
either A is contained in B (IntInt, BndInt is true) or B is 
contained in A (IntInt, IntBnd is true) or A is disjoint from B. 
The test for such containment of objects can be designed by 
casting an infinite ray through the centroid of A. If the ray 
intersects B an odd number of times, then B is contained in A. 
Similarly, the test can be made if A is contained in B. If  A is 
not contained in B and B is not contained in A, then A and B 
are disjoint (i.e., IntInt(A, B), IntBnd(A, B), BndInt(A, B), 
and BndBnd(A, B) are all false).

If the triangles cross intersect (e.g., triangleInterior- 
triangleInterior is true), then IntInt, IntBnd, BndInt, BndBnd 
will be true. However if  the triangles are coplanar and 
intersect, only BndBnd(A, B) is true and IntInt(A, B), 
IntBnd(A, B), BndInt(A, B) are false for the objects; 
otherwise, BndBnd(A, B) is also false.

It is possible that two triangles cross intersect in a line 
segment even when a triangle is on one side of the other

triangle, so edgeInterior-triangleInterior is true. In that case, 
it may be desirable to know which side o f the other triangle is 
occupied. In Fig. 3(b), the triangle PQR is on the positive side 
of triangle ABC. For example, if  triangle1 of object A cross 
intersects the negative side of triangle2 of object B, then 
BndInt(A, B) is true.

Table 2 enumerates the outcome for triangle-triangle 
intersection with respect to 3D objects. This is a 
characterization of the intersection predicates, which 
subsequently can be used to resolve the eight RCC8 relations. 
Here we assume all normals are oriented towards the outside 
of the object. Each characterization in Table 2 describes when 
the associated predicate is true. If the truth test fails, then 
other triangles need to be tested. If no pair of triangles results 
in a true value, then the result is false.

TABLE I.
RCC8 RELATIONS AND INTERSECTION PREDICATES, 

ONLY SHADED ENTRIES ARE NECESSARY.

RCC8 IntInt BndBnd IntBnd BndInt
DC F F F F
EC F T F F
PO T T T T
EQ T T F F

TPP T T F T
NTPP T F F T
TPPc T T T F

NTPPc T F T F

TABLE II.
Characterization of intersection predicates

IntInt At least one pair o f  triangles cross intersects (trianglclntcrior-
trianglclntcrior) Or an object is contained in the other.

BndBnd At least one pair o f  triangles (cross or coplanar) intersects.
BndInt At least one pair tri and tr2 intersect, at least one vertex o f  tri

is on the negative side o f  triangles o f  object 2. Or object 1 is 
contained inside objcct2, i.e. every vertex o f  objcctl is on the

IntBnd At least one pair tri and tr2 intersect, at least one vertex o f  tr2
is on the negative side o f  triangles o f  object 1. Or object 2 is 
contained inside object 1, i.e. every vertex o f  objcct2 is on the

This characterizes the intersection predicates, which help in 
resolving the RCC8 relations.

VII. Co n c l u s io n

For the 9-Intersection model used in qualitative spatial 
reasoning, triangle-triangle intersection plays a prominent 
role. Herein we presented a complete framework for 
determining and characterizing the intersection of geometric 
objects. In contrast to other algorithms, our approach is a 
general technique to detect any type of intersection. It creates 
classifications by applying logical tests rather than 
computational arithmetic tests.

Thus, our algorithm not only detects whether or not an 
intersection exists, but also classifies intersections as a single
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point, a line segment, or an area. The algorithm provides more 
information than required by spatial reasoning systems. 
Consequently, we hope the new ideas and additional 
information including classification of 3D intersection 
presented herein will be useful in other related applications.
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