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Abstract— Since second-order probability distributions assign 
probabilities to probabilities there is uncertainty on two levels. 
Although different types of uncertainty have been distinguished 
before and corresponding measures suggested, the distinction 
made here between first- and second-order levels of uncertainty 
has not been considered before. In this paper previously existing 
measures are considered from the perspective of first- and 
second-order uncertainty and new measures are introduced. We 
conclude that the concepts of uncertainty and informativeness 
needs to be qualified if used in a second-order probability context 
and suggest that from a certain point of view information can 
not be minimized, just shifted from one level to another.

Index Terms—Uncertainty, entropy, second-order probability.

I. INTRODUCTION

R EA SO N IN G  under uncertainty is a fundam ental problem  
within artificial intelligence. In this probability is an 

im portant tool, but in real life situations there is often 
uncertainty regarding the probability values themselves. 
Second-order probability, see e.g. [1], [2], [3], is an 
hierarchical m odel o f im precise probability that can be 
used to m odel different types o f uncertainty regarding 
first-order probability distributions, e.g., in terms o f their 
quality [4]. Just as in e.g. the possibilistic hierarchy [5], 
the epistem ic reliability m odel [4] or fuzzy probabilities [6], 
probability distributions are discrim inated by weights. In the 
case of second-order probability the weights are themselves 
probabilities. W here there are probability distributions there is 
uncertainty, with a  second-order distribution there is then the 
uncertainty that comes with the second-order probabilities but 
also the uncertainty o f the first-order probabilities.

Thus it is m eaningful to distinguish different types of 
uncertainty, and in the lim its o f uncertainty, ignorance and 
uninform ativeness. As is pointed out in [7] ignorance comes 
in different forms, and E. T. Jaynes wrote in [8] that ‘A 
m ajor thing to be learned in developing this neglected half 
o f probability theory is that the m ere unqualified epithet 
“uninform ative” is m eaningless.’

A . L e v e ls  o f  U n c e r ta in ty  in  D e m p s te r -S h a fe r

In the literature on Dem pster-Shafer theory [9] there is 
in e.g. [10] a distinction between two types of uncertainty, 
d is so n a n c e  and n o n sp e c ific ity . Shannon entropy is in [10]
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m entioned as an exam ple o f a m easure o f dissonance but 
not nonspecificity; beliefs expressed in terms o f probability 
distributions are dissonant. D issonance pertains to probabilistic 
uncertainty and in e.g. [11] an entropy like m easure for 
dissonance (or discordance) o f the basic assignm ent functions 
o f [9] is introduced. On the other hand nonspecificity is in [10] 
described as increasing with the num ber o f alternatives in 
a decision situation and the Hartley m easure is put forward 
as the appropriate m easure o f nonspecificity. In [12], the 
measures for discord and nonspecificity are aggregated into 
to ta l u n c e r ta in ty ,  see also [13] for a m ore recent account of 
uncertainty measures in evidence theory.

Since second-order probability is not equivalent to 
Dem pster-Shafer theory the uncertainty m easures designed for 
belief functions are not directly applicaple to second-order 
distributions. Yet, in [14] there is a discussion of how 
second-order distributions could be interpreted in terms of 
nonspecificty. Smithson [14] recounts the situation in [15] 
where Miss Julie is invited to bet on the outcomes o f three 
tennis m atches in terms o f second-order probability. In match 
A  it is known that it will be an even match; in terms of 
first- and second-order uncertainty there is no second-order 
uncertainty and m axim um  first-order uncertainty in match
A. Nothing is known about m atch B  and Smithson [14] 
suggests that the second-order distribution be a uniform  
distribution spanning the [0 , 1] interval, in this case both first- 
and second-order uncertainty is high but it is questionable 
whether any second-order distribution can m odel the ignorance 
regarding m atch B . As regards to m atch C  M iss Julie knows 
that one of the players is excellent and the other an am ateur 
but she does not know which one is the better player, in 
this case there is no first-order uncertainty but m axim um  
second-order uncertainty. The corresponding second-order 
distributions could be described as follows in the terms used 
in the sequel o f this paper: In m atch A  we say that the 
second-order distribution is determ ined by p ( x 1 =  0.5, x 2 =  
0.5) =  1, in m atch C  we could have the second-order 
distribution p ( x 1 =  1 ,x 2 =  0) =  0 . 5 , p ( x 1 =  0, x 2 =  1) =
0.5. The case o f m atch B  is probably not possible to fully 
specify with second-order distributions.

According to Smithson [14] B  is the m ost nonspecific 
situation, C  is m ore specific than B  and A  is considered to 
be “quite specific” . W ith respect to B  there are two different 
approaches; either use a uniform  second-order distribution as 
advised in [14] or refuse to express the uncertainty o f B  with 
a second-order distribution. In the first case there is some 
first-order uncertainty since there is positive probability for 
high-entropy points. Inasm uch the second-order distribution
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assigns belief to points that are far apart there is a high 
second-order uncertainty but belief in neighboring points 
reduce second-order uncertainty to be less than maximal.

Com paring nonspecificity with first- and second-order 
uncertainty, if  m atch B  after all is represented by a 
second-order distribution B  would be between A  and C  
along both the first- and second-order uncertainty scale while 
being the m ost nonspecific, indicating that first-/second-order 
uncertainty and dissonance/nonspecifity are independent 
measures. I f  on the other hand B  is left out for being 
im possible to be m odelled with a second-order distribution, 
dissonance would have positive correlation to first-order 
uncertainty.

Even though we discuss uncertainty measures for 
second-order probability rather than fo r Dem pster-Shafer 
theory there would be a parallell in that w hat we call first-order 
uncertainty could be seen as probabilistic just as dissonance 
is. Second-order level uncertainty could correspondingly 
described as deterministic.

B. P ro b a b ilis t ic  a n d  D e te r m in is tic  U n c er ta in ty

The distinction m ight be clarified with an example. Say 
that we w ant to express ignorance as to the outcom e o f an 
experim ent with a second-order probability distribution. One 
possibility is to assign all second-order probability to the 
m axim um  entropy distribution w here all outcomes are equally 
probable. This way we w ould express ignorance on w hat could 
be called the first-order level. B ut on the second-order level 
we are absolutely certain, there is no doubt which first-order 
distribution is the proper one, all uncertainty if placed on 
the level o f first-order probabilities. This situation m ight be 
described as being certain o f being uncertain. O n the other 
hand we could express ignorance by the uniform  second-order 
distribution on the zero entropy distributions where one of 
the outcomes is certain. In a first-order perspective there is 
no uncertainty, distributions with positive entropy are not 
considered, however we would know no m ore about the 
outcom e o f the experiment. The uncertainty rem ains but now 
entirely on the second-order level, you m ight say that in this 
case we are uncertain o f being certain.

To m ake the experim ent tangible, consider throwing a 
die. The second-order distribution m entioned first, where all 
second-order probability is assigned to the uniform  distribution 
(1/ 6, 1/ 6 , . . . ,  1/ 6 ) could be em ployed to express certainty 
in that the die is fair. B ut if  a uniform  second-order 
distribution is put on the six zero-entropy distributions 
(1, 0 , . . . ,  0 ) , . . . ,  (0 , . . . ,  0 , 1) this would m ean that we know 
for certain that the die is fixed to always show the same num ber 
but we have no idea which one. A  possible interpretation in the 
realm  o f philosophy or psychology could be that the first type 
o f second-order distribution could be used by someone who 
believes in the fundam ental random ness of everything but the 
other type is suitable for an ignorant1 determinist. These two

1The term is of course not used in a derogatory sense.

second-order probability distributions are extreme examples 
and other second-order distributions could represent mixtures 
o f the two types o f ignorance. The point is that ignorance is not 
enough to specify a second-order distribution unambiguously. 
A nd even given the distribution o f uncertainty between the 
two levels it is not obvious how to m easure uncertainty.

M ork [16] has perform ed an extensive study on how 
uncertainty could be m easured from  credal sets and from  
second-order probability distributions. H e introduced an 
entropy based uncertainty m easure called GSU (Gardenfors- 
Sahlin uncertainty) after [4]. Entropy has also been 
applied to interval-based im precise probabilities (i.e., w ithout 
second-order inform ation) [17]. In this paper we will use 
entropy as a basis for a m ajority o f our uncertainty measures. 
By using sim ple num erical examples, we will contrast the 
result o f our m easures to previous measures found in the 
literature.

In particular, we show that uncertainty m easures for 
second-order probability distributions can be constructed 
in various ways, and that there are seemingly reasonable 
requirem ents on uncertainty m easures that are not always m et 
for the measures we discuss. We suggest that uncertainty 
in a second-order probability setting needs to be qualified 
in order to be m easured consistently. There are likely many 
aspects with which to specify w hat is m eant by uncertainty 
for second-order distributions, but whether uncertainty is 
m easured on the first- or second-order level, or both, appears to 
be a relevant specification. To our knowledge the only previous 
uncertainty m easure for second-order probability that could 
be said to cover both levels is the GSU m easure of [16]. 
We here introduce a m easure fo r aggregated uncertainty that 
decomposes naturally into first and second-order levels.

C. D e fin itio n s  a n d  N o ta tio n

Let the outcom e space Q have a finite num ber o f elements n , 
Q =  j s j  : i =  1 , . . . ,  n} . W hat we call first-order probabilities 
are the probabilities of the n  outcomes and second-order 
probability distributions are probability distributions with 
first-order distributions as random  variables. That is, any 
probability can be seen as a first-order probability, but 
second-order probability is probabilities over probabilities. 
Since we are m ore interested in the probabilities o f outcomes 
rather than the outcomes themselves, we denote the probability 
P r ( s j)  by x i ,  i.e. all x* are first-order probability values, 
0 <  x* <  1 , ^ n=i x* =  1. A ll marginals m entioned below 
are one-dim ensional m arginal probability distributions.

Further, to simplify com putations we restrict the first-order 
probability values to rational numbers, x* =  k i / N ,
where J2 "=1 k  =  N  . A  probability distribution will 
then be considered as a vector x  =  (x 1, . . . , x n ) =
( k 1/ N , . . . ,  k n / N ). L et X  denote a set o f first-order 
probabilities x  where the marginals are rational numbers.
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Furtherm ore, let us define the set:

N ( k i / N , . . . , k n / N  ) , J 2 k i
i=1

N , k i e  N

i.e., the set o f all first-order probabilities in the form  o f rational 
num bers that fulfill J 2 "= 1 ki =  N . For every N , X N  is 
finite so w e are therefore restricted to discrete second-order 
probability distributions over first-order distributions. That is, 
the discrete second-order probability distributions discussed 
here have X N as outcom e space. Second-order probability 
distributions are denoted p, and the probability o f first-order 
probability distribution x  G X N is then p (x ) . The m arginal 
probability o f first-order probability value x i is written p i ( x i ). 
We rem ind o f the definition o f Shannon entropy

H ( x )  =  -  ^ 2  x i  log2 x i .
i =1

II. F ir s t -O r d e r  U n c e r t a in t y

As we have argued we m ay distinguish two levels o f 
uncertainty. The term  first-order uncertainty is intended to 
capture uncertainty on the level o f first-order probabilities 
in the context o f a second-order probability distribution. 
In other words, first-order uncertainty is the type of 
uncertainty expressed by probababilities o f unknown outcomes 
o f an event. In the absence o f second-order probability an 
uncertainty m easure such as entropy would be used, but 
here we have second-order probability distributions to account 
for. In this section we present one way o f m easuring such 
first-order uncertainty.

W e ig h ted  en tropy. This uncertainty m easure intends to 
capture the collected am ount of entropy in the first-order 
probability values. Since a second-order distribution assigns 
probability values to the first-order variables, the entropy 
values are weighted accordingly. That is, the m ore probable a 
vector x  is, the m ore weight we give to its entropy.

W h ( X , p )  =  ^  p (x )H ( x )  =  -  ^  p (x )  ^  xi log.
xGX

x ) x i
xGX i=1

2 x i

E n tro p y . This m easure is simply the entropy H (p ) o f the 
second-order distribution:

H (X , p) =  -  ^  p (x )  log2 p ( x ) .
xGX

W e ig h te d  K u llb a c k -L e ib le r  d ive rg e n ce . If  we want to be 
able to com pare second- and first-order uncertainty, we have 
to use an entropy-based distance m easure so that first- and 
second-order uncertainty are m easured in the same units. If 
second-order uncertainty is linked to the spread o f belief over 
the probability simplex and m easure entropy, we suggest the 
average Kullback-Leibler divergence, see [18], to the mean 
as m easure o f second-order uncertainty, i.e., the mean o f the 
second-order distribution ^  =  ( p 1, ^ 2 , . . . ,  ^ n ), defined by 
T  =  J 2 x GXn  p ( x ) x i is used as point o f reference.

W Dkl ( X ,p ) =  ^  p (x ) D KL ( x |M) =
xGX

n

^  p (x) ^  x i log2 T .
xGX i=1 Ti

D e g re e  o f  im p re c is io n . The degree o f im precision [19] aims 
to be an approxim ation of the hypervolum e spanned by the 
first-order probability distributions with positive second-order 
probability.

D I  (X , p) =
i=1

m ax  x i — m in  xi 
x G X n  x G X n

III . Se c o n d -o r d e r  U n c e r t a in t y

These m easures are m eant give the degree o f uncertainty 
on the second-order level. For instance, if  all second-order 
probability is given to low entropy points there could still 
be a high degree of uncertainty in that there is little o r no 
com m itm ent to any one particular outcome.

We have found three basic approaches to second-order 
uncertainty, one is the entropy of the second-order 
probability distribution, the other one is based on how 
m uch the second-order distribution is spread out. The latter, 
distance-based m easures are justified by the intuition that 
uncertainty could be expressed by conflicting statements. The 
third m easure considers the volum e of the support o f the 
second-order distribution.

where X N =  {x  g  X  |p (x ) >  0 }. N ote that the
com putation o f D I  can be perform ed by maximizing 
respective minim izing over the extrem e points o f the convex 
hull o f first-order probability distributions with positive 
second-order probability.

IV. A g g r e g a t e d  U n c e r t a in t y

U nder this rubric we collect measures that could claim  
to express the aggregated degree o f uncertainty on first and 
second-order level.

M o r k 's  G SU . The uncertainty m easure introduced in [16] 
is nam ed after Gardenfors and Sahlin and is inspired by their 
discussion in [4] about epistem ic reliability. The idea m ight 
be sum m arized in that the inform ation value is reduced by 
adding second-order probability through a convex com bination 
o f inform ation values.

The m easure is defined by:

G S U  (X ,p ) p (x )  log2
xGX

S u m  o f  W h  a n d  W Dkl  . Since both the first-order m easure 
o f w eighted entropy and the second-order m easure o f weighted 
Kullback-Leibler divergence are based on entropy o f first-order 
probabilities and have the same units the sum o f the measures 
is meaningful.

x x
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TABLE I
Numerical examples

Examples First- and Second-order Probability Distributions
A X = {(1/3,1/3, 1/3)}, p (1 /3 ,1/3, 1/3) =  1
B X = {(32, 29, 29)/90, (29, 32, 29)/90, (29, 29, 32)/90}, 

Vx  G X, p(x ) =  1/3
C X = X 10, (Vx  G X)(Po1(x |(1/3, 1/3, 1/3))) (Perks’ prior)
D X  =  X 10, (Vx  G X)(PoZ(x |(1/2, 1/2, 1/2))) (Jeffreys’ prior)
E X =  X 10, (Vx  G X)(Po1(x |(1, 1, 1))) (Bayes-Laplace’s prior)
F X =  {(1/6, 1/6, 2/3), (1/6, 2/3,1/6)}, 

p (1 /6 ,1/6, 2/3) =  3/4,p(1/6, 2/3, 1/6) =  1/4
G Y  =  {(2/3,1/6, 1/6), (1/3, 1/3,1/3), (1/4, 1/4,1/2)}, 

Vy  G Y,p(y ) =  1/3
H (X, Y) =  X  X Y =  {(x , y ) |x  G X, y  G Y}, 

p(x , y ) =  p(x )p(y ), p(x ),p(y ) from F and G.
I (X, Y) =  X  X Y =  {(x , y ) |x  G X, y  G Y},

V(x , y ) G X  X Yp(x , y )) =  1/6 , p(x ),p(y ) from F and G.
J X  =  {(1/6,1/6, 2/3), (1/6, 2/3,1/6), (7/10, 1/10, 1/5)}, 

p(x i)  =  1/2,p(x 2) =  1/3,p(x 3) =  1/ 6.
K X as in J, but Vx  G X, p(x ) =  1/3.

Interestingly, the sum of W H and W Dkl  equals the entropy 
o f the second-order distribution’s mean:

T h e o re m  1: W H ( X , p )  +  W Dkl  ( X , p )  =  H ( ^ ) ,  where

Mi =  S x e X  p ( x )x i.
P ro o f:

W h  (X ,p )  +  W d k l (X ,p )  =

xGX i=1 Mi
d2 x i

- J 2  p ( x ) J 2  x i  log2 Mi =
x E X  i=1

n /  \  n

-  ^  p ( x ) x i )  log2 Mi =  -  X }  Mi log2 Mi =  H ( ^ )
i= i V xex /  i= i

V. N u m e r ic a l  E x a m p l e s

To better understand these uncertainty m easures we have 
applied them  to some second-order probability distributions 
with various intuitive uncertainty properties. Some o f the 
distributions have only a few points, other distributions 
have support on the entire space X N , for N  =  10. The 
latter distributions will com e from  the multivariate Polya 
family [20]:

P o l (  k |a )
N ! r  (^ i =1 a i ) r ( k i +  a i )

r ( N  +  £ n=i « i ) M k i! r ( a i )

where J 2  n=i k  =  N  and a i are param eters o f the
corresponding D irichlet distribution. N ote that we can obtain 
a distribution over X N by P o l ( k / N |a ) .  The Polya family 
o f distributions can be seen as the discrete counterpart o f 
the D irichlet family and is the result o f integrating out the 
underlying probabilities drawn from  a D irichlet distribution in 
a m ultinom ial distribution.

Consider the examples defined by Table I (where n  =  3) 
and the results o f applying the uncertainty measures, shown 
in Table II.

The purpose o f examples A and B  is to how different 
measures deal w ith two distributions that put all second-order 
probability on high entropy points; on the one hand A 
where the second-order distribution has support only on the 
m axim um  entropy point, on the other B  where there is a 
uniform  distribution on three different points that are close to 
the m axim um  entropy. In Table II we see that H , the entropy 
o f the second-order distribution is the only m easure that makes 
m uch o f the fact that the second-order distribution has support 
on three points rather than one.

In examples C, D and E we look at sym m etric Polya 
distributions with parameters 1 /3  (Perks), 1 /2  (Jeffreys) 
and 1 (Bayes-Laplace), respectively. The first-order level 
m easure W H and the second-order level m easure H  increase 
with the D irichlet param eters while the other second-order 
level m easure W D kl  decreases. If  we interpret the D irichlet 
param eters as a m easure o f the am ount o f available data higher 
param eter values would give m ore (first order-) probabilistic 
credibility to the m ean probability vector.

If  the param eters are equal, the m ean would be the 
m axim um  entropy point o f the simplex. In our examples 
then, first-order uncertainty would increase (as does W H), and 
second-order uncertainty decrease (since there is m ore data to 
support a particular first-order probability).

We m ay also note that G S U  gives infinite values in 
these cases. This is because there are zero-valued first-order 
probabilities with positive second-order probability. It could 
be argued that zero-valued first-order probabilities x i should 
be excluded, since the event that x i is the probability o f is 
im possible and does not belong in the outcom e space. On the 
other hand it is feasible that (on a second-order level) it is 
possible but not certain that an event can not occur, i.e. that 
neither x i = 0  or x i >  0 can be ruled out.
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TABLE II
Results of applying the uncertainty measures to the examples

First-order Second-order Aggregated
Examples W h D I H WDkl GSU H (m)

A 1.5850 0.0000 0.0000 0.0000 1.5850 1.5850
B 1.5834 0.0333 1.5850 0.0016 1.5865 1.5850
C 0.6852 0.5682 5.5146 0.8997 x 1.5850
D 0.8285 0.5682 5.8399 0.7565 x 1.5850
E 1.0486 0.5682 6.0444 0.5364 x 1.5850
F 1.2516 0.5000 0.8113 0.1768 2.0016 1.4284
G 1.4455 0.2500 1.5850 0.1091 1.7233 1.5546
H 2.6972 0.5000 2.3962 0.2858 3.7249 2.9830
I 2.6972 0.5000 2.5850 0.3408 3.4749 3.0379
J 1.2358 0.5333 1.4591 0.3189 2.0803 1.5547
K 1.2200 0.5333 1.5850 0.3633 2.0635 1.5833

V I. p r o p e r t ie s

In [16] there are sets o f requirem ents for uncertainty 
m easures both for credal sets and for second-order probability 
distributions. Likewise there is in [21] a list o f requirem ents 
fo r measures o f uncertainty, but designed for belief functions 
(see [9]). Since the requirem ents of [21] do m ake sense 
when translated to a second-order probability setting we will 
consider also these, some o f them also coincide with the 
requirem ents o f [16]. Please note that since belief functions 
in the language o f second-order probability is best translated 
as lower bounds o f first-order probabilities that in turn do not 
determ ine unique second-order distributions, the translation of 
properties m ust at times be ad hoc. Strictly speaking then, the 
requirem ents below that are taken from  [21] is to be considered 
as inspired by [21] rather than literal translations.

Below we describe these requirem ents briefly, as far as 
they can be expressed in the terms used in this paper. The 
original authors have different notation, and in the case 
o f [21] inform ation is carried by belief functions instead of 
second-order distributions. Let U (X ,p )  denote an uncertainty 
m easure for a second-order probability distribution p  with 
support on X .

(i) C o n ic id e s  w ith  en tro p y  C1 in [16], (1) in [21]. 
U ncertainty coincides with entropy if  all second-order 
probability is put on a single vector. That is, If p (x )  =  1 
for some x  G X , then U (X ,p )  =  H (x ) .

(ii) C o n tin u o u s  C2 in [16]. U  is continuous in p.
(iii) S y m m e tr ic  C3 in [16]. U  is symmetric, i.e. invariant 

under perm utations in the vectors x , i.e.. if  Y  =  
{ ( xn( i ) , xn(2), . . . x n ( n ) ) | x  G X } where n  is a 
perm utation o f { 1 , 2 , . . . ,  n} , U (X ,p )  =  U (Y ,p ).

(iv) H a r tle y  (2) in [21]. For a  uniform  second-order 
distribution, i.e. p  s.t. p (x )  =  1 / |X  | for x  G X , 
uncertainty equals U (X ,p )  =  log2 |X |,  the Hartley 
m easure o f X .

(v) R a n g e  (3) in [21]. The range o f U  is the interval
[0 , log2 |Q|] =  [0 , log2 n].
(v ') W ith an alternative interpretation, (v)’ requires the 

range to be [0 , log2 |X |].

(vi) A d d it iv e  C4 in [16], (5) in [21]. Additivity, i.e. if  X  is the 
cartesian product A  x B  and A  and B  are independent 
so th a tp ( (x , y ))  =  p (x )p (y ) ,  th e n U (X ,p )  =  U ( A , p )  +  
U  ( B, p) .

(vii) S u b a d d itiv e  C5 in [16], (4) in [21]. Subadditivity, i.e. if 
X  is the cartesian product A  x B , then

(viii) B o u n d e d  b y  e n tro p y  N C 1’ in [16]. The uncertainty o f a 
second-order distribution is at least as high as the entropy 
o f any o f the first-order probability distributions in its 
support. U (X ,p )  >  m ax xeX H (x ) .

(ix) B o u n d e d  b y  c re d a l s e t  NC3 in [16]. If  n  is a partition 
o f X  and C o n v (X ) is the convex hull o f X , then 
U '( n ( C o n v ( X ))) >  U ( n ( X ) , p ) ,  where U ' is the 
corresponding uncertainty m easure for a credal set.

(ix' ) For some o f the measures considered here 
(W H , H , W D k l  , H ( ^ ) )  it is not possible to remove 
the second-order distribution p. But we m ight 
form ulate a version o f NC3 that retains some of 
w hat we believe is intended by the requirem ent. 
Short o f rem oving p  we replace p  with the 
m axim um  entropy second-order distribution. We 
declare requirem ent (ix)’ to be that U ( X , p )  <  
U  (X , q), where q is the uniform  second-order 
distribution on X .

In Table III we sum m arize our findings o f whether the 
measures studied here fulfill the requirem ents. H ( ^ )  in the 
rightm ost column refers to the sum o f W H  and W Dkl .

V II. S u m m a r y  a n d  C o n c l u s io n s

In this paper, we have suggested a division o f uncertainty 
between two levels corresponding to first and second-order 
probability. W ith such a division it becomes possible to 
distinguish between on the one hand uninform ativeness in the 
guise o f a uniform  probability distribution over the possible 
outcomes and on the other hand uninform ativeness in the form  
o f a uniform  second-order distribution. In the first case we are 
sure of being uncertain but in the other we express uncertainty 
on a higher level.

We studied the behavior o f six different uncertainty 
measures, two fo r each uncertainty level and two for
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TABLE III
Properties of th e  u n ce rta in ty  measures. Notes: 1 WH +  W Dkl  f ul f i l l s  requirem ent (iv) if and only  if ^  = 1 / n  fo r  i = 1 , . . .  , n.  2 
Example A in Table II serves as co u n te r example in the  negative cases. 3 proved in [16]. 4 Examples F, G and H in Table II serve

TOGETHER AS COUNTER EXAMPLE SINCE THE UNCERTAINTIES OF ROW F AND G SHOULD ADD TO THE VALUE IN H. 5 WE HAVE NOT FOUND NEITHER
proof n o r counterexam ple. 6 Examples F, G and I in Table II serve to g e th e r  as co u n te r example since th e  sum of the

UNCERTAINTIES OF ROW F AND G SHOULD NOT BE LESS THAN THE VALUE IN I. 7 NOT APPLICABLE SINCE WE HAVE FOUND NO WAY OF DEFINING A
corresponding m easure fo r  a  c re d a l set, i.e. w ith o u t th e  second-order p robability  d istribu tion . 8 SEE examples J and K.

First-order Second-order Aggregated
Requirement W h D I H W D KL G S U H (m)

(i) Coincides with entropy Yes No No No Yes Yes
(ii) Continuous Yes Yes Yes Yes Yes3 Yes
(iii) Symmetric Yes Yes Yes Yes Yes3 Yes
(iv) Hartley No No Yes No No No1
(v) Range Yes Yes No Yes No Yes
(v') No2 No2 Yes No2 Yes No2
(vi) Additive Yes No4 Yes Yes Ye s 3 Yes
(vii) Subadditive ?5 ?5 6oN 6oN ?5 No6
(viii) Bounded by entropy No No No No Yes3 No
(ix) Bounded by credal set

z Yes z z Yes3 z

(ix') No8 Yes Yes ?5 No8 No

the aggregated uncertainty. We introduced a new m easure 
for aggregated uncertainty, the sum o f w eighted entropy 
and Kullback-Leibler divergence, where the weights are 
second-order probabilities.

Furtherm ore, we showed that such a m easure is equivalent 
to the entropy of the m ean first-order probability distribution. 
In the paradigm  o f two levels o f  uncertainty, the entropy 
o f  the m ean could be viewed as the am ount o f  uncertainty 
that can be distributed on the first and second-order levels. 
From  such a perspective it is im possible to unequivocally 
express unqualified ignorance, i.e. one m ust declare how 
the uncertainty is distributed. A nd unless some reasonable 
principle o f  uninform ative distribution o f  uncertainty is 
form ulated we cannot say that first-order uncertainty is m ore 
or less uncertain than second-order uncertainty.

We com pared the m easures by a set o f properties that has 
previously been utilized by [16] and [21]. O ur separation 
o f measures into first, second-order and aggregated is not 
very well reflected in the properties that are held, there is 
no apparent pattern distinguishing the groups of measures. 
The relation o f measures and properties could be seen as 
a degree o f  quality for the measures, the m ore properties 
held the better. On the other hand it could be discussed 
how appropriate the properties are for first and second-order 
m easures o f uncertainty.

For example property (viii) seems at odds with the idea 
that a  second-order probability distribution weighs first-order 
distributions differently. From  our perspective it is perfectly 
reasonable that an uncertainty m easure for a  second-order 
distribution is lower than the entropy of any first-order 
distribution in its support, a t least if  this distribution has 
low second-order probability. If  a distributions’ second-order 
probability is low then it and its properties have a 
correspondingly low impact.

If we com pare our aggregated m easure with the 
GSU-measure, several differences can be found. Perhaps the

first notably such is that GSU gives to as a result for examples 
C - E in Table II while our m easure are always finite. As 
previously m entioned, the reason for such a result is due to 
that a positive second-order probability was assigned to a zero 
first-order probability. Beside the differences in properties, 
found in Table III, the GSU-m easure also seems to put m ore 
emphasis on the first-order level, as is seen from  examples A 
and B.

In exam ple A there is no uncertainty at the second level but 
a m axim um  o f uncertainty on the first level, while in example 
B the second-order uncertainty is uniform ly distributed around 
this m axim al first-level uncertainty. In this case D I and the 
GSU-m easure gives a aggregated uncertainty that is a bit 
higher in exam ple B w hilst our m easure gives the same am ount 
o f  uncertainty, however, distributed differently among the first 
and second-order level. As for examples A and B, the pure 
entropy m easure H  stands out since it measures the uncertainty 
o f Exam ple A as zero but the uncertainty of B as the maximal 
log2 3. This exam ple shows that it could be problem atic to 
use a pure second-order probability entropy m easure unless 
you do believe that belief in three different but close points 
should reflect m uch higher uncertainty than belief in a single 
point. H  is also unique among the m easures studied here in 
that it is bounded by the num ber o f first-order distributions 
in the support o f the second-order distributions, giving much 
higher uncertainty values for Exam ples C, D and E than the 
others except GSU.

We have introduced a new dim ension o f uncertainty but 
m any questions remain. W hat should be required o f measures 
for first- and second-order uncertainty of second-order 
distributions? Is it possible to express a larger am ount 
o f uncertainty with higher-order distributions? And how is 
uncertainty on higher levels to be m easured?

The assum ption o f  discrete distributions causes many 
questions. See for instance the discussion above about the 
m easure H , does a finer granularity imply greater uncertainty?
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The points in the real-valued probability simplex that have no 
support in our discrete examples, should they be viewed as 
non-existent or simply as (second-order) im possible? Under 
w hat circumstances can discrete second-order distributions 
be seen as corresponding to reality, or when can they be 
justified as approxim ations or sim plifications? And w hat 
consequences do such considerations have on the properties 
that are desired for uncertainty measures? A nd how could 
uncertainty measures for continuous second-order distributions 
be designed and interpreted? These and sim ilar questions are 
to be addressed in future research.
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