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Abstract—In this paper the variation of the velocity error 
of a four-bar mechanism with spring and damping forces 
is reduced by solving a dynamic optimization problem using 
a differential evolution algorithm with a constraint handling 
mechanism. The optimal design of the velocity control for the 
mechanism is formulated as a dynamic optimization problem. 
Moreover, in order to compare the results of the differential 
evolution algorithm, a simulation experiment of the proposed 
control strategy was carried out. The simulation results and 
discussion are presented in order to evaluate the performance 
of both approaches in the control of the mechanism.

Index Terms—Velocity control, differential evolution algo­
rithm, four-bar mechanism, dynamic optimization.

I. INTRODUCTION

THE four-bar mechanism (FBM) is extensively used in 
several engineering applications [1], [2], [3]. This is 

due to the topological simplicity, functional versatility and 
because this mechanism can generate a cyclic trajectory (path 
generation). Hence, the four-bar mechanism has been widely 
studied in the last decades. The path generation of the four-bar 
mechanism is achieved by using analytical, numerical and 
graphical methods [4]-[6]. Nevertheless, the statement of 
optimization problems to increase the number of precision 
points and the tracking precision are been used in the path 
generation of the FBM [7], [8].

In the analysis and design of the FBM the main assumption 
considers that the angular velocity of the actuator is constant. 
Nevertheless, it is not always fulfilled, if an electric motor 
drives the crank. For example, when the crank rotates, the 
center of mass of the FBM may move. The change of the 
inertia of the FBM yield an external load to the motor such 
that the angular velocity of the crank is not constant. Hence, 
it is important to select the appropriate control system that 
guarantee an uniform and efficient regulation of the angular 
velocity.
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There exist several advanced control strategy that may 
guarantee robustness in the angular velocity, such as robust 
control [9], adaptive control [10], etc. Nevertheless, from an 
industrial point of view, PID controllers can provide a good 
performance if the gains are correctly tuned in.

In this paper, the modified PID controller presented in [11] 
is used to regulate the angular velocity of a four-bar 
mechanism with spring and damping forces (FBM-SDF). The 
optimal PID control gains is found by considering a dynamic 
optimization problem and by using a constraint handling 
mechanism in the differential evolution algorithm to solve 
it. The effectiveness of the algorithm is shown in simulation 
results.

The paper is organized as follows: Section II presents the 
coupled dynamics of the four-bar mechanism with DC motor. 
Section III presents the control strategy for the system. In 
Section IV, the dynamic optimization problem is stated for 
finding the optimal control gains. The constraint handling 
differential evolution algorithm is show in Section V. The 
simulation results and discussion are given in Section VI and 
finally, the conclusions are drawn in Section VII.

II. D ynam ic  M odel

The four-bar mechanism with spring and damping forces 
(FBM-SDF) has one degree of freedom (dof) in the crank 
(link L 2). This dof is actuated by a DC motor. The schematic 
representation of the mechanism is shown in Fig. 1. The 
mass, the inertia, the length, the mass center length and
the mass center angle of the *-th link are represented by
m i , J i , L i , r i , ^ i , respectively. The angle of the *-th link with 
respect to the base frame (X-Y) is named as 0i . The stiffness 
constant of the spring and the damping coefficient of the 
damper are represented by k  and C .

The kinematic analysis [5] of the FBM-SDF is required 
to obtain the angular velocity 0i Vi =  2, 3 ,4  and the linear 
velocity vix, viy of the mass center of the *-th link with respect 
to the inertial frame. The angular and the linear velocity is 
described in (1)-(3).

0i =  Yi02 (1)

Vjx = a.j02 (2)

Ujy =  A  02 (3)
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where:

Fig. 1. Four-bar mechanism with spring and damping forces

where:

a 2 =  - r 2 sin(e2 +  ^ 2)

a s  =  - L 2 sin e2 -  rsYs sin(es +  ^s)
a4 =  — r4Y4 sin(e4 +  >̂4)

ß 2 =  r 2 cos(e2 +  ^ 2)

ßs =  L 2 cos e2 — rsYs cos(es +  ^s)

ß4 =  —r474 cos(e4 +  ^ 4)

Y2 =  1
L 2 sin(e4 — e2)

Ys =

Y4 =

Ls sin(es — e4) 
L 2 sin(es — e2) 
Ls sin(es — e4)

L =  K - P

where:

K  =  ^  Q m i (u2* +  uìy) +  2  M 2)

l 2P  =  -  k (e4 — e4,o)2

A (e2) =  ¿  (m i ( a 2 +  ß i2) +  Y2 J i)

m d , dL N dL dD
T = — ( ^ ^ ) ----------------1-—

d t vde2 de2 de2

D  =  2 C e4 (18)

The total and partial derivatives of (17) is given by (19).

T  =  A (e2) e2 +  ^  —^ ^  +  kY4 (e4 — e4,0) +  C Y4e2 (19)2 de2

where:

A (e2) =  Co +  CiY2 +  C2Y4 +  CsYs cos (e2 — es — ^s)

(20)

(4)

(5)

(6)

(7)
(8) 

(9)

( 10)

( 11)

( 12)

Defining the Lagrangian function L (13), where K  and P  
is the kinetic and potential energy, respectively.

d£ Í M  =  2Ci-,s ̂  + 2 C 2Y4 ^de2 i Ys de2 +  2 Y4 de2

+  Cs cos (e2 — es — ^s)
de2

— Cs Ys (1 — Ys) sin (e2 — es — ^s) 
Co =  J 2 +  m 2r 2 +  msL2 

C i =  Js  +  m sr2 

C 2 =  J 4 +  m^ 2 

C4 =  2m 3L 2r 3 

-y s  =  L 2 (D i +  D 2 ) 
de2 Ls sin2 (es — e4)
dY4 L 2 (D s +  D 4)
de2 

D i 

D 2 

D 3

l 4 sin2 (es — e4)
(y4 — 1) sin (es — e4) cos (e4 — e2)

(y4 — Ys) sin (e4 — e2) cos (es — e4)

(ys — 1) sin (es — e4) cos (es — e2)

D 4 =  (y4 — Ys) sin (es — e2) cos (es — e4)

(21)
(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(13)

=  2 A (e2) 02 (14)

(15)

(16)

Using 02 as the generalized coordinate and following 
the methodology described in [11], the Euler-Lagrange 
formulation [12] which described the dynamic model of the 
FBM-SDF is given by (17), where D  is the Rayleigh’s 
dissipation function and 04jO is the angular position of the 
link 4 when the spring is in equilibrium.

In order to model the full dynamics of the FBM-SDF, the 
dynamic of the actuator [13] must be included. A schematic 
diagram of the DC motor is represented in Fig. 2, where L and 
R  represent the inductance and the armature resistance, *(t) 
and Vin(t) are the current and voltage input, respectively. J  
and B  is the inertia moment and the friction coefficient of the 
output shaft. TL, Tm and Vb is the load torque, the magnetic 
motor torque and the Back electromotive force of the motor, 
respectively. The motor constant is represented by K f  and the 
constant of the back electromotive force is represented by K b.

The dynamic model of the DC motor [14] consists 
on modeling the electrical and mechanical parts. Using 
Kirchhoff’s second law, the closed loop circuit of Fig. 2 can 
be written as (32).

L - ^  +  R* (t) =  Vin (t) — Kb0i 
dt

(32)

(17)
By using the Newton’s second law in the mechanical part 

of the DC motor, the equation (33) is obtanied, where T a and

2
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Fig. 2. Schematic diagram of a DC motor

Tb is the output torque of the shaft a and b, respectively (see 
Fig. 2).

Tm — B èl — Ta — T lL = J è  i (33) Fig. 3. Input angular velocity O2 of the FBM-SDF without a control strategy

The mechanical transmission among the two gears in the shafts 
is expressed in (34), where r* and N  V i =  1, 2 is the radius 
and the number of teeth of the gears.

Tb
Ta

Ol
è2

T2
Ti

N i
N i

= n (34)

Tb =  n (Vm -  T l  -  B è i -  J è 'i) (35)

Using the relation Q\ =  n 02 in (34), Tm =  K f i and TL =  0, 
the dynamic equation of the DC motor is given by (36)-(37).

Tb =  n K f  i (t) -  n 2B è2 -  n 2 J '

+  R i (t) =  Vi« (t) -  nkbè2

(36)

(37)

x =  f  (x, u (t), t)

x 2
Aq [A ix 2 +  A2x 2 +  n K fx s  +  As] 

L (u (t) -  n K bx 2 -  R x s )
(38)

where:

Aq
A (x i ) +  n 2 J  l

Substituting Ta from (33) to (34), the torque applied to the 
mechanical system is written as (35).

l  dA (x i ) 
i =  -  2 dxi 

A2 =  -  (C 7 24 +  n 2B ) 

As =  - k Y4 (è4 -  è4,Q)

(39)

(40)

(41)
(42)

Hence, the coupled dynamics of the DC motor with the 
FBM-SDF is given by combining (36), (37) and (19). Let the 
state variable vector x =  [x i, x 2, x 3]T =  [02 , 02,i]T and the 
input vector u  =  Vin , the coupled dynamics in a state space 
representation of the DC motor with the FBM-SDF is given 
by (38).

III. C ontro l  S trategy

In the synthesis of mechanism, the main assumption is to 
consider the input velocity as a constant. Nevertheless, this can 
no be ensured without a closed loop control system. In Fig. 3 
shows the behavior of the input angular velocity 02 when a 
constant voltage of 30 V olts is applied. It is observed that the 
input angular velocity is not constant. This is true because the 
four-bar mechanism presents dead-centre positions and it adds 
uncertain loads in the crank.

Based on the work of Tao and Sadler [11], the proposed 
control strategy is used in this paper. This controller is stated 
as in (43), where K p, K j  and K D is the proportional (P), 
integral (I) and derivative (D) gains, respectively. The velocity 
error and its derivative are represented by e(t) =  02 — 02 and 
e(t) =  — 02, where is the constant desired velocity.

u (t) =  K pe (t) f  O'2dt +  K j  f  e (t) dt +  K De (t) (43)
Jo Jo

IV. Dyna m ic  Optim iza tio n  Problem  to F ind  the

Optim u m  C o n tro ller  Gains for  C onstant  Input  
V elo c ity  of the  FBM -SD F

The dynamic optimization problem [15] consist on finding 
the optimum design variables p E R 3 such that minimize the

l
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objective function (44) subject to the closed-loop system of 
the FNM-SDF (45) with the initial state vector x 0, inequalities 
constraints (48) and bounds in the design variable (49).

m in F  ( ]P) (44)
p eR3

subject to:

X =  f  (lX , u (p, t ) , t ) (45)

u (t) =  K pe (t) f  0 
J 0

lX (0) =  x 0 (47)

g (J ) <  0 (48)

Pi, min < 1  <  Pi ,max (49)

In the next subsections, variables, functions and all parts 
that involve the dynamic optimization problem (D oP) are 
described.

A. Design Variable Vector

The design variable vector p  =  [K p, K D, K /]T g  R 3 
includes the gains of the modified PID controller.

B. Objective Function

The variation of the input velocity of the crank is chosen 
as the objective function in the optimization problem. This is 
an important issue due to a bad selection of the PID gains, 
the input velocity of the crank could be considerably affected. 
The objective function is written as in (50), where M a x  () 
and M i n () is the maximum and minimum value of the input 
velocity presented in the time interval [0, t f  ].

F (p ) =  |M a x (x 2(t)) — M i n (x 2(t ) ) | ; t  G [0, t f ] (50)

C. Constraints

The first constraint (45) is the solution of the differential 
equation of the dynamic model of the FBM-SDF choosing x 0 
as the initial condition. This constraints provide the dynamic 
behavior of the system in the optimization problem.

The inequality constraints consist on establishing that the 
rise time t r of the angular velocity of the crank 02(t) is less
than 0.1s and the overshoot does not exceed of 1.7% of the
desired angular velocity 02 . These constraints is stated as in 
(51) and (52), respectively.

gi : t r <  0.1s (51)

g2 : 02(tr) <  02 +  0.01702 (52)

The bounds in the design variable vector are defined by
Pi,min and p i,max V * =  1, <2, 3.

1 BEGIN
2 G =  0
3 Create a random population x G  Vi =  1 ,..., N P
6 Evaluate F (xG) , g(xG) , Vi =  1 ,..., N P
7 Do
8 For i =  1 to N P  Do
9 Select randomly {n  =  r 2 =  r3} e  xG.
10 j r a n d  = randint(1 , D)
11 For j  =  1 to D Do
12 If (randj [0, 1) < C R  or j  =  j r a n d ) Then
13 uj,G + 1 =  x r  1g +  F ( x ^  -  x -g )
14 Else
15 uj,G + 1 =  x j ,G
16 End If
17 End For
18 Evaluate F (UG+i) , g(uG+i)
19 If (g(UG+1) =  0 and g (x G)=0) Then
20 If (F (i+G+i) < F (xG)) Then
21 xG+i =  UG+i
22 Else
23 xG + i =  x G
24 End If
25 Else If (g(UG+i) < g (x ()) Then
26 x G + i=  UG+i
27 Else
28 xG+i =  xG; End If
29 End If
30 End For
31 G =  G +  1
32 While (G <  GM a x )

Fig. 4. CHDE algorithm

V. DIFFERENTIAL EVOLUTION ALGORITHM

In the last decades, the use of heuristic techniques have 
been used in engineering problems [16], [17]-[19]. This 
is due to the increment of the technological advances 
and because problems are non-convex, discontinuous and/or 
present discrete variables that make it difficult (or imposible) 
to solve them by traditional optimization techniques such as 
nonlinear programming techniques.

In this work, the differential evolution (DE) algorithm [20] 
with a constraint-handling mechanism [17] is used to solve 
the dynamic optimization problem. The constraint-handling 
differential evolution (CHDE) algorithm is shown in Fig. 4. 
The constraint handling mechanism is included in the selection 
operation between the trial vector UG+i and the target vector 
x lG in order to remain one of them in the population for the 
next generation. This mechanism consists on passing the best 
individual between them for the next generation (elitism). The 
best individual is the individual without constraint violation 
and with less or equal objective function value or when both 
individuals are unfeasible, the best individual is the one with 
less constraint violation (see line 19 and 25 of Fig. 4).

For more details of the algorithm consult [20] and [17].

VI. S im u lation  Results

The simulation results consist on using the CHDE algorithm 
in the dynamic optimization stated above. Four parameters

2dt +  K i  / e (t) dt +  K n e (t) (46)
o
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in the CHDE algorithm must be chosen. In this case, the 
population size NP consists of 100 individuals. The scaling 
factor F  and the crossover constant C R  are randomly 
generated in the interval F  g [0.3,0.9] at each generation, and 
in the interval C R  g [0.8,1) at each optimization process. The 
stop criterion is when the number of generations is fulfilled 
G Max =  2°°.

The CHDE algorithm is programmed in Matlab Release 
7.9 on a Windows platform. Computational experiments were 
performed on a PC with a 1.83 GHz Core 2 Duo processor and
2 GB of RAM. Ten independent runs of the CHDE algorithm 
are performed.

On the other hand, in order to solve the dynamic 
optimization problem (44)-(49), the closed-loop system (45) 
must be solved numerically. Hence, the Runge-Kutta method 
(RKM) is used to solved it, with initial condition chosen as 
x 0 =  [0, 0 , 0]T, with a desired velocity selected as =  30 
r a d /s  and with the kinematic and dynamic parameters of the 
coupled dynamics proposed as in Table I.

The bound of the design variable vector is defined as
p i,min =  0 .1, Pi,max =  50 ^   ̂ 1  2  3 .

All runs of the algorithm converge to the optimum 
design variable vector p* =  [50,16.1881,1.4394]T with a 
performance function value of F(p*) =  0.2389. This means 
that local solutions are not found by the algorithm and the 
found solution can be considered as the global one. The mean 
of the time spends to converge the algorithm is ten minutes.

However, in order to compare the behavior of the system 
performance with the optimum design variable vector p*, the 
behavior of the system performance with PID gains obtained 
by a trial and error procedure is carried out. Such tuning is 
called experimental tuning in this paper. The experimental 
tuning considers the bounds p ijmin and p ijmax.

In general, the design of a PID controller of linear system 
is broadly studied [21]. Nevertheless, the design of a PID 
controller of non-linear systems is not a trivial task. Tuning 
of a PID controller by using bifurcation theory is used for 
non-linear system [22]. From the feedback control strategy 
proposed in the closed loop system, the choice of the controller 
gains is realized so that ensures the desired convergence. The 
closed loop stability of the proposed strategy is stated by 
considering the convergence of the tracking errors.

The experimental tuning procedure is done by keeping in 
mind that the higher the proportional gain the lower the

TABLE I
PARAMETERS OF THE FBM-SSDF AND THE DC MOTOR

FBM-SDF’s parameters
L1 =0.5593[m] 
L2 = 0.102[m] 
Ls = 0.610[m] 
L4 = 0.406[m]

r2 = 0 [m]

J2 = 0.00071 [kg m2] 
J3 = 0.0173 [kg m2J 
J4 = 0.00509 [kg m2]

^2 = ^3 = ^4 = 0 [rad] 
r 3 = 0.305 [m]

m2 = 1.362 [kg] 
m3 = 1.362 [kg] 
m4 = 0.2041 [kg]

r4 = 0.203 [m]
Motor’s parameters

R = 0.4 [Q] 
Kb = 0.678[V s]

L = 0.05[H ]
B = 0.226[Nms]

Kf = 0.678 [Nm/A] 
J  = 0.056[kgm2]

3 !

31

l !

«

i l  

1
1 1.2  1 4  I t  1.8 I I.2 1 4  I .t  I .t  l

t  [s]

Fig. 5. Angular velocity of the crank with both tuning approaches: the 
optimum and experimental tuning

speed fluctuation and the steady-state error. On the other 
hand, excessively high proportional gains may lead to a large 
amount of overshoot if the derivative gain is not large enough. 
Additionally, increasing the derivative gain will decrease the 
overshoot, but the system response will be slower during the 
start-up period. The found gains need to fulfill the estimated 
performance, overshoot <  1.5%, steady-error< 1.0% and rise 
tim e< 0.1 second. The resulting design variable vector with 
the experimental tuning is p*t =  [45.55,5.25,1]T with a 
performance function value of F(p*t ) =  0.2702.

It is important to remark that in the experimental tuning 
procedure, several possible solutions were obtained,but they 
were not feasible from the optimization problem point of view. 
After several trials, we finally find the vector p*t which fulfill 
the constraints in the optimization problem.

In Fig. 5, the angular velocity of the crank with both tuning 
approaches is shown. It is observed that in the optimum 
tunning, the angular velocity presents a deviation of 0.79% 
from the desired angular velocity. Also, the angular velocity 
deviation on the second case was 0.9%. Finally, the rise time 
by each one of the approaches were 0 .1s and less of 0 .1s, 
respectively. This indicates that the constraints in the dynamic 
optimization problem are satisfied.

On the other hand, the behavior of the control signal with 
the optimum design variable vector and with the experimental 
tuning is shown in Fig. 6 . As it is observed, the control signal 
of the optimum approach has a lower overshoot than the 
second approach to reach the reference value of 30 r a d /s .  
This implies greater energy consumption by using the gains 
of the experimental tuning. Also, both approaches produce a 
control signal which compensates the nonlinear loads in order 
to reduce the angular velocity variation.

In Fig. 7, a zoom of the angular velocity of the crank

1 1

H 
i 

.  Í

Í
1

: : : Optimum tuning

: : : : : — Iria i and errar tuning
1.....:.......
1
1

1 . . . . . . :. . . . . . . .
1
1
1
1
1
1......:......
j
1 ¡ ¡
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Fig. 6. Control signal dynamic behavior with both approaches
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Fig. 7. Angular velocity of the crank between the time period of 0.05s and 
1s with both approaches

with both approaches in the time period between 0.05s and 
1s is shown. It is observed that in the experimental tuning 
procedure, the rise time of the angular velocity is less than 
the optimum approach. However, the steady state behavior of 
the optimum approach is most softly than the experimental 
tuning procedure.

It is important to comment the although both approaches 
produce good results, the best of them is the optimal one. In 
addition, the CHDE algorithm is successfully applied to tuning 
the PID controller without requiring a priori knowledge of the 
system and in the experimental tuning procedure is necessary 
this knowledge.

VII. C o n clu sio n

In this paper, the optimal gains of a PID controller for 
a four-bar mechanism with spring and damping forces is 
found by using a differential evolution algorithm with a 
constraint handling mechanism. In order to compare the 
performance of the system with the optimum control, an 
alternative experimental tuning procedure is carried out. The 
variation of the crank’s velocity error for a four-bar mechanism 
with spring and damping forces is reduced by using both 
approaches. In addition, the rise time and the overshoot of 
the velocity signal are limited to be in an closed interval. 
However, simulation results of the closed-loop system show 
that the found optimal gains provide a better performance than 
the gains obtained by experimental tuning procedure.

Finally, the main advantage of using the differential 
evolution algorithm with a constraint handling mechanism for 
finding the optimum PID gains is that it does not require 
a priori knowledge of the system and it is easy to program 
it. Therefore the CHDE algorithm is becoming more used to 
solve this kind of nonlinear and discontinuous problems.

Further research involves the redesign of the structural and 
controller parameters considering the dynamic model and by 
using alternative evolutive algorithms.
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