
Recommending Machine Translation Output to
Translators by Estimating Translation Effort:

A Case Study
Prashant Mathur, Nick Ruiz, and Marcello Federico

Abstract—In this paper we use the statistics provided by a
field experiment to explore the utility of supplying machine
translation suggestions in a computer-assisted translation (CAT)
environment. Regression models are trained for each user
in order to estimate the time to edit (TTE) for the
current translation segment. We use a combination of features
from the current segment and aggregated features from
formerly translated segments selected with content-based filtering
approaches commonly used in recommendation systems. We
present and evaluate decision function heuristics to determine
if machine translation output will be useful for the translator
in the given segment. We find that our regression models do
a reasonable job for some users in predicting TTE given only
a small number of training examples; although noise in the
actual TTE for seemingly similar segments yields large error
margins. We propose to include the estimation of TTE in
CAT recommendation systems as a well-correlated metric for
translation quality.

Index Terms—Machine translation, computer-assisted transla­
tion, quality estimation, recommender systems.

I. INTRODUCTION

R ECENT advances in Statistical Machine Translation
(SMT) have been due to the large availability of parallel

corpora. A natural goal is to apply machine translation to
the computer-assisted translation (CAT) domain to increase
translator productivity. CAT tools typically consist of a
Translation Memory (TM) which stores segments that have
been translated before by the users. When a translator is
translating a new sentence, the sentence is first looked up in
the TM and if there is a fuzzy match (a partial match score
above a given threshold) the CAT tool suggests the translation
in the TM to the translator. In the common scenario where
the TM does not provide any suggestions to the translator, the
translator must translate the segment from scratch.

The aim of CAT tools is to improve the productivity of
translator and to ensure consistency. Integrating SMT system
in a CAT tool has been shown to speed up the translation
process [1]. Machine translation output provides excellent
coverage that can help overcome sparsity in the TM; however,

Manuscript received on December 7, 2012; accepted for publication on
January 11, 2013.

Prashant Mathur and Nick Ruiz are with University of Trento and FBK,
Italy.

Marcello Federico is with FBK, Italy.

MT output can also add additional noise on the screen that
can distract the translator from her task. Ideally, the goal for
SMT in the CAT scenario is to provide machine translation
suggestions only when their quality in order to guarantee an
increase in the user’s productivity for a given segment.

The aim of the EU-funded MateCat1 project is to increase
translator productivity by providing self-tuning, user-adaptive
and informative MT in the CAT scenario. In this paper
we propose the integration of a recommendation system
framework using content-based filtering to suggest when MT
output should be presented on the translator’s screen, based on
the difficulty of the current segment and his previous behavior
on similar segments. We do so by estimating the amount of
effort, as a function of time, to translate the current segment,
given a MT suggestion. Given the estimated time to translate a
sentence, we attempt to define a decision function to determine
if the MT output will increase the productivity of the translator.

This paper is organized as follows. In Section II we describe
related work in the field of quality estimation. Section III
outlines the conditions of a preliminary field test conducted
at the beginning of the MateCat project. Section IV describes
the methodology used to estimate the time to edit a sentence
(TTE). Our experiment and results using the field test dataset
are described in Sections V and VI, respectively. Finally, we
discuss the results of the experiment and provide suggestions
for future work.

II. Pr e v i o u s W o r k

Automatic Quality Estimation (QE) for Machine Translation
(MT) seeks to predict the usefulness of MT outputs without
observing reference translations. QE can be cast as a machine
learning problem whose goal is to predict a quality score based
on one or more metrics, including human post-editing effort.

A baseline regression system was constructed in [2] for
the WMT 2012 Quality Estimation shared task that uses
MT and surface-level features derived from a training set to
predict a user’s perceived level of post-editing effort for newly
translated sentences. Levenshtein features are used in [3]
which measure the distance between the current sentence with
each of the closest entry in the training corpus. Low edit

1 http://www.matecat.com

ISSN 1870-9044; pp. 47-53 47 Polibits (47) 2013

http://www.matecat.com

Prashant Mathur, Nick Ruiz, and Marcello Federico

distances imply that the current sentence is close to the training
set and thus its quality is expected to be high.

Sentences in a development set are ranked by their
sentence-level BLEU scores [4] and divided the development
set into quartiles in [5]. Inspired by TrustRank [6], additional
regression features are added to measure the distance between
the current sentence and the high or low quality quartile sets
in the development data. The distance is measured via n-gram
matches through a modified BLEU score and is evaluated in
both the source and the target language directions.

The prediction of word- and sentence-level MT errors are
treated as a sequence labeling task in [7], using alignment,
agreement, and POS-based features. Each token is labeled
by the type of error occurring (e.g. insertion, deletion,
substitution, or shift).

Quality estimation for MT is treated as a binary
classification problem for computer-assisted translation in [8].
They predict the usefulness of MT output over translation
memory recommendations in terms of the number of
words edited to match a reference translation. This metric
is known as the translation error rate (TER) [9]. The
system also provides confidence scores based on posterior
classification probabilities. A MT output is recommended if
its corresponding TER score is lower than that of a TM
suggestion.

Due to the nature of the field test, we treat the SMT system
as a black box and cannot use SMT-based features in our
model. However, we consider the reverse translation fuzzy
match score as a feature in our model.

III. F ie l d Te s t

The EU-funded project MateCat was launched in early
2012 with the aim to integrate Statistical Machine Translation
systems such as Moses [10] with a state-of-the-art CAT tool
to improve translator productivity. The goal of MateCat is to
seamlessly integrate a MT engine as a back-end process inside
the CAT tool. Translators will receive translations either from
TM matches or from the MT engine. One of the aims of the
project is to recommend MT outputs if the machine translation
requires less post-editing than the translation memory.

A feasibility study was conducted in [1] as a field test which
integrated a production-quality MT Engine (namely, Google
Translate2) in SDL Trados Studio3. Twelve professional
translators worked on real translation projects covering the
information technology and legal domains. Documents were
translated both from English to German and English to
Italian. The experiment was held in two parts. In the first
part, a baseline was established by providing translators with
only TM matches for suggestions. We refer to this baseline
as TM experiments. In the second part MT outputs were
viable alongside the TM matches. We refer to these as MT
experiments. To measure the productivity of translators two

2http://translate.google.com
3 http://www.trados.com/en/

indicators were used: the post editing speed which is the
average number of words processed by translator in one hour,
and the post editing effort which is the average percentage of
word changes applied by the translator on each suggestion.
The results from the experiment show that providing MT
recommendations significantly increased productivity across
all users.

IV. Me t h o d o l o g y

Modern recommendation systems typically use two
mechanisms: content-based and collaborative filtering. In
content-based filtering an item is recommended to a user based
on its similarity between items she previously observed. The
user’s judgments on previously seen items are stored in a user
profile, which may also contain additional user information.
An item profile is constructed based on a set of characteristics
or attributes describing it. The user’s profile is combined with
item profiles to find new items that a user may prefer. In a CAT
scenario, “item profiles” of previously translated segments can
be aggregated and used to predict a user’s judgment on the
quality of a machine translation in a future segment.

In collaborative filtering, a given user is compared
against a collection of other users with similar profiles
to provide recommendations for new items, even if the
items recommended are dissimilar to those preferred by the
user in the past. Such filtering increases the pool of items
that can be recommended to a user. In a CAT scenario,
translation recommendations could be provided based on the
previous translations of other users. Unfortunately, such an
approach is not useful in a professional translation scenario,
where translators must maintain consistency within their own
projects. Additionally, a careful look at the data provided in
the MateCat field test shows that the translators behave quite
differently. However, such an approach might be useful for
crowd-sourced or community-based translations with a large
number of amateur translators.

CAT systems aim at increasing the productivity of the
translators by providing translation suggestions, usually in
the form of a TM. It is a necessity that the translations
recommended from the MT system are good. If the cost of
post-editing a translation is higher than translating the segment
from scratch then it decreases the productivity of the user.
An ideal recommendation system suggests a translation only
when the cost of post-editing is low. Thus, we only use
content-based filtering, treating each translation segment as an
item to be compared against segments previously translated
by the same user. We combine features drawn from the
item profile of the current segment along with a collection
of item profiles of similar segments to predict the time
required to translate the segment. We call this the time to edit
(TTE). TTE is one of several indicators for translation effort.
If additionally providing MT outputs does not significantly
improve the translation effort over scenarios where only the
TM is available, then it is not useful to recommend the MT
output to the translator.

Polibits (47) 2G13 48 ISSN 1870-9044

http://translate.google.com
http://www.trados.com/en/

Recommending Machine Translation Output to Translators by Estimating Translation Effort: A Case Study

In [8], most of the features for translation recommendation
come directly from the SMT models (e.g. phrase translation
scores, language model scores). These features are combined
with system independent features such as language model
perplexity scores on target side, fuzzy match scores and
lexical translation scores from a word alignment model [11].
However, in this work we are restricted to the features used in
the field test. The underlying MT engine and language models
used by Google Translate are unavailable for analysis. Instead,
we used features in the MateCat field test, such as word count,
TTE on a sentence, match percent (percent match between a
TM and the current segment), and the after match score (how
close the suggestion and translation are).

However, there were several limitations in the original field
test. The translators worked remotely on a client system at
their respective locations and connected to a centralized server
which made it hard to capture the user/translator focused
features such as keystrokes, the actual time to translate a
sentence, and whether the translator actually used the MT
output or translated directly from scratch. In the absence of
such features we use a number of aggregated features obtained
from the similar segments to the current one being translated
(see section V-B). We borrow the idea of a pseudo fuzzy match
score from [8]. However, instead of Levenshtein distance we
use TER. There are two kinds of features, one representing
the statistics of current segment (current features) and the one
representing the statistics of the similar segments (aggregated
features). Both sets of features are taken from the TM and MT
outputs.

Table I provides a list of the features considered in this
paper. Features such as the source word count (W C S r) and
the TER of the reverse-translated MT output against the
source text (T E R S r) are computed on the current segment.
Several other features are computed on the collection of similar
TM and MT segments extracted by means of content-based
filtering. Aggregated features provide summary statistics on
the TTE and time for word (TFW, computed as TTE divided
by segment word count), as well as an estimate on the
translation error rate (T E R T g) and word counts on the MT
and post-edited outputs (W CmT and W C p e , respectively).
Each summary statistic yields three features, one for the
respective TM and MT aggregates and an additional feature
for their difference.

V. Ex p e r i m e n t

We perform our experiment on the English to German
translation of segments in the information technology domain.

A. Preprocessing
As in [1], segments where the processing time per word was

less than 0.5 seconds or greater than 30 seconds were removed
as outliers. Perfect (100%) TM matches were removed. After
filtering, the data set contains a total of 3670 segments,
subdivided among four users, as listed in Table II.

TABLE I
F e a t u r e s u s e d i n t h i s e x p e r i m e n t . Ce r t a i n f e a t u r e s a r e d e r i v e d

FROM THE CURRENT SEGM ENT, W HILE OTHERS ARE COMPUTED AS AN
AVERAGE OVER SIM ILAR SEG M ENTS . W ORD COUNT (WC) FOR SOURCE

(SR), MT, AND POST-EDITED (PE) SEG M ENTS; TTE AND TFW, AND TER
ON TARGET (TG) AND SOURCE (SR) SEGM ENTS .

Segment Current Similar
W C s r Y Y
W C m t N Y
W C p e N Y
t f w N Y
T T E N Y
T E R t g N Y
t e r s r Y N

TABLE II
Se g m e n t s p e r u s e r i n t h e E N >D E IT d o m a i n CAT s c e n a r i o . Th e

DATASET CONSISTS OF 3670 SEGM ENTS .

User TM Segments MT Segments
User 1 487 486
User 2 498 481
User 3 332 486
User 4 490 410

Data is split as follows: the first 10% of each split
is reserved as a burn-in to accumulate user statistics for
extracting similar segments. The remainder of the data is
split into 11 folds in a round-robin fashion to minimize
the effects of immediately translated segments (i.e., seg1 ^
fo ld \, seg2 ^ fo ld 2, ..., seg12 ^ fo ld \, etc.). Ten folds are
used for cross-validation purposes to evaluate the utility of the
regression model. The folds are later combined and used to
evaluate the final held-out set to provide a recommendation to
the user.

B. Extracting similar segments

In order to gather statistics on features not observable in the
current segment (see Table I), we compute aggregated features
from the statistics of similar segments, both in our TM and MT
experiments. We rely on the popular cosine similarity metric
using unigram features from the source text for identifying
similar segments. Given source language bag-of-word features
for segments A and B, cosine similarity is defined as:

similarity
Ai x Bi

i= 1 (1)

IJ2 (A i)2 x J E (B i)2
i=1 i=1

In order to simulate the computer-assisted translation
scenario, we only compute similarity scores on segments that
would appear in a user’s “translation cache” - e.g., segments
that were already translated by the user at a given point in the
TM or MT field test experiments. Since the purpose of the
experiment is to evaluate the utility of MT suggestions, the
cosine similarity is always calculated from a MT segment to
any previous segments.

ISSN 1870-9044 49 Polibits (47) 2G13

Prashant Mathur, Nick Ruiz, and Marcello Federico

In the cross-validation scenario, each segment in the training
fold draws similar segments from the burn-in set and the
previous segments in the training set. Formally, for foldi ,
similar segments are drawn from the previous segments in a
candidate pool defined by {burn-in, fold- i } where —i refers to
the cross-validated folds not labeled fold i . The test set draws
its similar segments from the candidate pool {burn-in, foldi }.

Average similarity scores per user under cross-validation
fold 3 are listed in Table III. Given that the average similarity
score (simavg) per user is low, we select candidate segments
with a similarity score higher than simavg, as an arbitrary
segment is semantically unrelated to a given segment. From
the remaining candidates, we establish a heuristic that selects
the candidates within 10% of the segment with the highest
similarity (selmax), or those candidates whose score is higher
than the average of the selected candidates (selavg). In other
words, we aggregate the similarity scores of segments whose
scores are greater than max(selmax — 0.1, selavg) from the
candidate pool.

The aggregated features described in the previous section
are computed by averaging the feature values of the similar
segments within the TM and MT experiments, respectively.
In some cases, no candidates are selected for the TM or
MT aggregation. In these cases, we substitute with average
statistics for the particular user across all segments in the
training set.

C. Predicting time to edit
We train linear regression models, combining features of

the current segment with statistics on the user’s behavior
on similar segments and call this the Aggregated regression
model. Similarly, we build baseline regression models just with
features from current segment (e.g. W C S r , T E R S r). Using a
10-fold cross validation strategy, we train 10 regression models
for each user based on the training set. Each model is designed
to predict the TTE for a given segment. We use the linear
regression classes provided by the Weka open-source machine
learning toolkit [12] to orchestrate our experiment. Our linear
regression models use M5 attribute selection [13] which
incrementally removes features with the smallest coefficient.
A ridge regularization parameter is fixed to 1.0 x 10-8 . The
regression results are averaged across each fold and reported
in Section VI. For the final MT output recommendation, we
train a model using all the training folds and evaluate on our
held-out test set.

D. Suggesting MT output
After predicting the TTE values on a held-out test set, we

recommend whether or not to present MT output to the user
by comparing the TTE of the current segment against the TTE
of segments with similar word counts in the MT and TM
experiments. Given a segment s and its predicted TTE x, we
evaluate the number of standard deviations of x from j MT and
j TM, the bootstrap mean of the TTE values in the MT and

TABLE IV
Av e r a g e p e r f o r m a n c e o f a g g r e g a t e d a n d b a s e l i n e s y s t e m s

AFTER 10-FOLD CROSS-VALIDATION FOR LINEAR REGRESSION MODELS
TRAINED FOR EACH U SER . AVERAGE NUM BER OF INSTANCES IN EACH

FOLD IS GIVEN BY Instances. Me a n A b s o l u t e E r r o r (MAE) AND Ro o t
MEAN SQUARE E RROR (RM SE) ARE IN SECO ND S .

Baseline Aggregated
User Instances Corr. MAE RMSE Corr. MAE RMSE
1 38.9 0.6128 31.94 4S.70 0.6300 31.16 44.87
2 38.6 0.6371 2S.79 47.3S 0.6362 25.82 48.47
3 38.6 0.5102 18.39 38.S8 0.4672 19.56 39.47
4 33.0 0.5293 13.34 2S.72 0.4947 14.29 26.70

TM experiments for segments with a source-side word count in
the range [WCSr (s) — 1, W CSr (s) +1]. Thus, the following
criterion (inspired by the Z-score) is defined for recommending
MT output:

f (x) =
1: |(x — jM T) / & MT | < |(x — jTM) / &TM |
0 : otherwise

(2)
<r* is the standard deviation of segments in the corresponding
sample. We use the bootstrap mean as a robust mean estimate
to account for outliers.

VI. RESULTS

The results for cross-validation and the final evaluation are
reported below.

A. Regression results

1) Cross validated models: Average regression results
along with baseline results per user are reported in Table IV.
While Users 3 and 4 have a lower correlation coefficient, the
Root Mean Square Error (RMSE) remains relatively low with
respect to Users 1 and 2. In particular, User 4’s regression
curve implies that many of the model features do not contribute
to the predictive power of the model. In fact, a baseline system
using only two features performs better than an aggregated
system for all the users except User 1. This is likely due to
the fact that there are few samples in our data set available
for aggregation. The following features have a significant
contribution to the regression model: current W CS r , SW C Sr
for similar TM and MT segments, and SWCt g .

2) Final models: Regression results of the final test per user
are reported in Table V and regression coefficients for each
attribute are reported in Table VI. The correlation coefficients
are higher than those of the cross-validation experiment.

Here, the aggregated system performs better than baseline
only for Users 1 and 3. The majority of errors occur in
segments with high word counts, or “outlier” cases where
either an identical match appears in the translation memory or
the user took an abnormally long amount of time to translate
a segment.

Polibits (47) 2G13 50 ISSN 1870-9044

Recommending Machine Translation Output to Translators by Estimating Translation Effort: A Case Study

TABLE III
Si m i l a r s e g m e n t e x t r a c t i o n f o r t w o r a n d o m l y s e l e c t e d s e g m e n t s u n d e r c r o s s -v a l i d a t i o n f o l d 3. Ca n d i d a t e s m u s t h a v e a

SIM ILARITY SCORE ABOVE THE U SE R ’S AVERAGE SIM ILARITY SCO RE . TO BE SELECTED , CANDIDATES M UST BE W ITHIN 0.1 OF THE MOST SIM ILAR
SEGMENT IN THE POOL SELm a x OR THE CANDIDATE AVERAGE SELav g - W HICHEVER IS GREATER .

User Seg. Exp. Candidates Selected sela v g sima v g selm i n selm a x

User 3 11710 MT 47 3 0.327 0.227 0.236 0.530
User 3 11710 TM 65 21 0.307 0.218 0.221 0.447
User 4 13421 MT 49 5 0.347 0.227 0.230 0.542
User 4 13421 TM 261 14 0.369 0.229 0.230 0.607

TABLE VI
Co e f f i c i e n t s f o r t h e l i n e a r r e g r e s s i o n m o d e l f e a t u r e s l i s t e d i n Ta b l e I. F e a t u r e s f o r t h e c u r r e n t s e g m e n t a r e l a b e l e d “Cu r r ”.

F e a t u r e s c o m p u t i n g t h e d i f f e r e n c e b e t w e e n t h e MT a n d TM a g g r e g a t i o n s a r e l a b e l e d “D i f f ”.

User W C s r W Ct g W e p e
Curr TM MT Diff TM MT Diff TM MT Diff

1 5.485 -3.580 -2.232 -2.850 -1.419 3.869 0.000 4.584 -2.908 4.646
2 5.398 8.582 -7.832 11.014 -5.526 3.136 -5.515 -2.570 3.949 -3.382
3 3.516 1.427 -5.051 0.000 -1.114 1.849 0.000 -1.634 3.793 0.000
4 2.233 0.000 0.000 -3.156 0.000 0.000 0.000 0.000 0.000 3.061

User t f w T T E T E R t g t e r s r
Intercept TM MT Diff TM MT Diff TM MT Curr

1 -25.742 0.000 1.574 0.000 -0.134 0.314 0.242 0.158 0.000 0.144
2 -21.001 0.000 2.580 0.000 -0.387 0.412 0.483 0.000 0.000 0.000
3 -16.399 0.000 1.570 1.210 0.000 -0.167 -0.223 0.134 0.000 0.000
4 5.263 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

TABLE V
Pe r f o r m a n c e o f Ba s e l i n e v e r s u s A g g r e g a t e d s y s t e m a f t e r
FULL TRAINING OF LINEAR REGRESSION MODELS FOR EACH U SER ,

EVALUATED ON THE TEST SET. CORRELATION (CO RR .), MEAN A BSOLUTE
E r r o r (MAE), Ro o t M e a n Sq u a r e E r r o r (RMSE).

Baseline Aggregated
User Instances Corr. MAE RMSE Corr. MAE RMSE

1 40 0.6551 29.54 47.19 0.6682 28.16 46.31
2 38 0.7359 23.57 33.20 0.7290 23.13 33.81
3 40 0.7001 13.01 17.19 0.7466 12.53 16.92
4 34 0.6702 11.81 15.81 0.6270 11.95 16.49

a) Important features.: For all users, the average
time-for-word (TFW) feature for similar TM segments was
not useful. In addition, the average TER for MT segments
and the average TER difference were not used. Naturally,
the word count of the current segment was proportional
to the TTE. Likewise, the average word counts and their
computed difference were significant features. The reverse
TER score (T E R S r) was not significant. All other features
were significant.

b) Example predictions.: Table VII shows time-to-edit
(TTE) prediction results for User 3. While IDs #15, #18, #19
have a relatively good error bound, outliers such as #32 drive
up the RMSE. Incidentally, the MT output provided for the 5-
word source segment in #32 was “Die andere MLV ausgewählt
wird.”, which only requires one word swap operation.

While the MT output aligns closely with the user’s draft
translation in ID #21, the regression model provided an much
higher estimate. In this example, a total of 170 MT candidates
with similarity scores above the user average (22.65%) were
available, providing a group average of 38.46%. However,
only one segment was selected (94.28% similar). No other

candidates are within 10% of the highest candidate; thus, the
MT statistics were unreliable. We further note that of 1488
training instances, 512 segments had only one similar MT
segment in the aggregation; 75 segments had none (using
global user averages instead).

B. Recommendation based on time to edit
Given the TTE predictions from our regression models,

we provide recommendations on whether to provide MT
suggestions to the translator. Figure 1 lists the confusion
matrices for each user’s regression model and Table VIII lists
the precision, recall, and F-measure for each user.

Ta F a

e
e

T
F

25 7
5 3

Ta F a

e
e

T
F

14 8
6 10

Ta F a

e
e

T
F

21 6
8 5

(a) User 1 (b) User 2 (c) User 3
Ta F a

e
e

T
F

9 10
6 9

(d) User 4

Fig. 1. Confusion matrices for each user. T a and Fa correspond to the actual
values. Te and F e correspond to the estimated values.

TABLE VIII
P r e c i s i o n , R e c a l l , F-M e a s u r e f o r e a c h u s e r

User Precision Recall F-Measure
1 77.77 72.41 74.99
2 63.63 70.00 77.13
3 78.25 83.33 80.71
4 47.36 60.00 52.93

Understandably, due to the lack of useful features in User
4’s regression model, the overall MT suggestion results are

ISSN 1870-9044 51 Polibits (47) 2013

Prashant Mathur, Nick Ruiz, and Marcello Federico

TABLE VII
Sa m p l e t i m e - t o -e d i t a s e n t e n c e (TTE) p r e d i c t i o n s f o r Us e r 3. “M T?” r e f e r s t o t h e a c t u a l / e s t i m a t e d r e s u l t o f t h e c l a s s i f i c a t i o n

MODEL AFTER APPLYING THE DECISION FUNCTION DEFINED IN (2).

ID Segment Translation w c TTE Est TTE Error MT?
15 In the License Allocations tab you can

explicitly add a new eQube-BI TcRA
context that can connect to the current
license server.

In der Registerkarte Lizenzzuweisung können
Sie explizit einen neuen eQube - BI TCRA
Kontext hinzufügen, der sich mit dem aktuellen
Lizenzserver verbinden kann.

22 66 70.12 4.12 1/1

18 You need to assign roles to users so that
they can perform certain operations.

Sie müssen Rollen Benutzern zuweisen, sodass
sie bestimmte Operationen durchfahren können.

14 12 10.48 -1.52 1/1

19 Add Role Rolle hinzufügen 2 11 10.99 -0.01 0/0
20 Click Submit, if you want to submit the

details you entered.
Klicken Sie auf Senden, wenn Sie die Details
übermitteln mochten, die Sie eingegeben haben.

11 20 26.97 6.97 1/0

21 Click the role on the left side of the
screen, to which you want to assign
operations.

Klicken Sie auf die Rolle auf der linken Seite
des Bildschirms, der Sie Operationen zuweisen
möchten.

17 17 36.94 19.94 1/1

32 The other MLV gets selected. Die andere MLV wird ausgewahlt. 5 66 18.64 -47.36 0/1

low. For the other three users, we report higher F-measures that
suggest a correlation between the estimated and actual TTE
scores in terms of our goodness measure. However, what does
this say about our goodness measure? The right-most column
of Table VII lists the actual vs. estimated predictions for the
example segments translated by User 3. ID #20 consists of 11
words having a TTE difference of approximately 7 seconds.
Looking more closely, for User 3, fiTM < AMT, which
implies that MT is not useful for any segments of this length
(At m = 2.47, <tt m = 1.51, Am t = 2.69, <t t m = 3.80). This
underlies the importance of significance testing as one of the
missing components in our decision function.

Co n c l u s i o n a n d f u t u r e w o r k

In conclusion, we address the problem of quality estimation
for machine translation in the CAT scenario by constructing
regression models tailored to each translator in order to
estimate the productivity of a user. We estimate user
productivity in terms of the time taken to edit a translation
(TTE). We combine features from the current segment with
aggregated features from similar segments in two field test
experiments. We find that a trained regression model predicts
TTE reasonably well given a limited data set drawn from the
preliminary MateCat field test outlined in [1], with exceptions
explained by user inconsistencies and limitations in the data
captured.

The estimated TTE values for each segment in our test
set is compared against the mean TTE values for similarly
long segments in the TM and MT sub-experiments. Segments
whose TTE is closer to the MT experiment’s mean than
its TM counterpart are judged to indicate that suggesting
machine translation output will improve user productivity. We
evaluate this decision function against the actual TTE values to
measure the consistency of the regression model. After careful
evaluation, we see that this heuristic is deficient in accurately
suggesting MT output to the translator in cases where the
population means of similarly long TM and MT segments are
close. As such, the choice of a decision function should be
revisited.

One potential source of problems in the regression model is
that each segment contains a limited number of content words.
In practice, the content words are the biggest determiners
of coherence in a text. Thus, we propose to add additional
features based on the content words to our regression model.
Additionally, we propose to add the average similarity scores
and the average word length between the current segment and
the aggregated TM and MT segments.

Ac k n o w l e d g m e n t s

This work is partially funded by the European Commission
under the FP7 project MateCat, Grant 287688. The authors
wish to thank Georgia Koutrika for her valuable suggestions
in this experiment.

Re f e r e n c e s

[1] M. Federico, A. Cattelan, and M. Trombetti, “Measuring User
Productivity in Machine Translation Enhanced Computer Assisted
Translation ,” in AMTA 2012, San Diego, California, October 2012.

[2] L. Specia, M. Turchi, Z. Wang, J. Shawe-Taylor, and C. Saunders,
“Improving the confidence of machine translation quality estimates,”
in Machine Translation Summit XII, Ottawa, Canada, 2009.

[3] C. Buck, “Black box features for the WMT 2012 quality estimation
shared task,” in Proceedings of the Seventh Workshop on Statistical
Machine Translation. Montreal, Canada: Association for Computational
Linguistics, June 2012.

[4] C.-Y. Lin and F. J. Och, “Orange: a method for evaluating automatic
evaluation metrics for machine translation,” in Proceedings o f Coling
2004. Geneva, Switzerland: COLING, Aug 23-Aug 27 2004, pp. 501­
507.

[5] R. Soricut, N. Bach, and Z. Wang, “The SDL Language Weaver Systems
in the WMT12 Quality Estimation Shared Task,” in Proceedings o f
the Seventh Workshop on Statistical Machine Translation. Montreal,
Canada: Association for Computational Linguistics, June 2012, pp.
145-151. [Online]. Available: http://www.aclweb.org/anthology/W12-
3118

[6] R. Soricut and A. Echihabi, “TrustRank: Inducing Trust in Automatic
Translations via Ranking,” in ACL, 2010, pp. 612-621.

[7] N. Bach, F. Huang, and Y. Al-Onaizan, “Goodness: a
method for measuring machine translation confidence,” in
Proceedings o f the 49th Annual Meeting o f the Association
fo r Computational Linguistics: Human Language Technologies -
Volume 1, ser. HLT ’11. Stroudsburg, PA, USA: Association for
Computational Linguistics, 2011, pp. 211-219. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2002472.2002500

Polibits (47) 2G13 52 ISSN 1870-9044

http://www.aclweb.org/anthology/W12-
http://dl.acm.org/citation.cfm?id=2002472.2002500

Recommending Machine Translation Output to Translators by Estimating Translation Effort: A Case Study

[8] Y. He, Y. Ma, J. van Genabith, and A. Way, “Bridging SMT and TM
with Translation Recommendation,” in Proceedings o f the 48th Annual
Meeting o f the Association fo r Computational Linguistics. Uppsala,
Sweden: Association for Computational Linguistics, July 2010, pp.
622-630. [Online]. Available: http://www.aclweb.org/anthology/P10-
1064

[9] M. Snover, B. Dorr, R. Schwartz, L. Micciulla, and J. Makhoul, “A
study of translation edit rate with targeted human annotation,” in In
Proceedings o f Association fo r Machine Translation in the Americas,
2006, pp. 223-231.

[10] P. Koehn, H. Hoang, A. Birch, C. Callison-Burch, M. Federico,
N. Bertoldi, B. Cowan, W. Shen, C. Moran, R. Zens, C. Dyer, O. Bojar,
A. Constantin, and E. Herbst, “Moses: Open source toolkit for statistical

machine translation,” in ACL, 2007.
[11] P. F. Brown, S. A. Della Pietra, V. J. Della Pietra, and R. L. Mercer, “The

mathematics of statistical machine translation: Parameter estimation,”
Computational Linguistics, vol. 19, no. 2, pp. 263-312, 1993. [Online].
Available: http://aclweb.org/anthology-new/J/J93/J93-2003.pdf

[12] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The weka data mining software: an update,” SIGKDD Explor.
Newsl., vol. 11, no. 1, pp. 10-18, Nov. 2009. [Online]. Available:
http://doi.acm.org/10.1145/1656274.1656278

[13] J. R. Quinlan, “Learning with continuous classes,” in Proceedings o f
the 5th Australian Joint Conference on Artificial Intelligence. World
Scientific, 1992, pp. 343-348.

ISSN 1870-9044 53 Polibits (47) 2013

http://www.aclweb.org/anthology/P10-
http://aclweb.org/anthology-new/J/J93/J93-2003.pdf
http://doi.acm.org/10.1145/1656274.1656278

