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Abstract—In this paper we use the statistics provided by a 
field experiment to explore the utility of supplying machine 
translation suggestions in a computer-assisted translation (CAT) 
environment. Regression models are trained for each user 
in order to estimate the time to edit (TTE) for the 
current translation segment. We use a combination of features 
from the current segment and aggregated features from 
formerly translated segments selected with content-based filtering 
approaches commonly used in recommendation systems. We 
present and evaluate decision function heuristics to determine 
if machine translation output will be useful for the translator 
in the given segment. We find that our regression models do 
a reasonable job for some users in predicting TTE given only 
a small number of training examples; although noise in the 
actual TTE for seemingly similar segments yields large error 
margins. We propose to include the estimation of TTE in 
CAT recommendation systems as a well-correlated metric for 
translation quality.

Index Terms—Machine translation, computer-assisted transla­
tion, quality estimation, recommender systems.

I. INTRODUCTION

R ECENT advances in Statistical Machine Translation 
(SMT) have been due to the large availability of parallel 

corpora. A natural goal is to apply machine translation to 
the computer-assisted translation (CAT) domain to increase 
translator productivity. CAT tools typically consist of a 
Translation Memory (TM) which stores segments that have 
been translated before by the users. When a translator is 
translating a new sentence, the sentence is first looked up in 
the TM and if there is a fuzzy match (a partial match score 
above a given threshold) the CAT tool suggests the translation 
in the TM to the translator. In the common scenario where 
the TM does not provide any suggestions to the translator, the 
translator must translate the segment from scratch.

The aim of CAT tools is to improve the productivity of 
translator and to ensure consistency. Integrating SMT system 
in a CAT tool has been shown to speed up the translation 
process [1]. Machine translation output provides excellent 
coverage that can help overcome sparsity in the TM; however,

Manuscript received on December 7, 2012; accepted for publication on 
January 11, 2013.

Prashant Mathur and Nick Ruiz are with University of Trento and FBK, 
Italy.

Marcello Federico is with FBK, Italy.

MT output can also add additional noise on the screen that 
can distract the translator from her task. Ideally, the goal for 
SMT in the CAT scenario is to provide machine translation 
suggestions only when their quality in order to guarantee an 
increase in the user’s productivity for a given segment.

The aim of the EU-funded MateCat1 project is to increase 
translator productivity by providing self-tuning, user-adaptive 
and informative MT in the CAT scenario. In this paper 
we propose the integration of a recommendation system 
framework using content-based filtering to suggest when MT 
output should be presented on the translator’s screen, based on 
the difficulty of the current segment and his previous behavior 
on similar segments. We do so by estimating the amount of 
effort, as a function of time, to translate the current segment, 
given a MT suggestion. Given the estimated time to translate a 
sentence, we attempt to define a decision function to determine 
if the MT output will increase the productivity of the translator.

This paper is organized as follows. In Section II we describe 
related work in the field of quality estimation. Section III 
outlines the conditions of a preliminary field test conducted 
at the beginning of the MateCat project. Section IV describes 
the methodology used to estimate the time to edit a sentence 
(TTE). Our experiment and results using the field test dataset 
are described in Sections V and VI, respectively. Finally, we 
discuss the results of the experiment and provide suggestions 
for future work.

II. Pr e v i o u s  W o r k

Automatic Quality Estimation (QE) for Machine Translation 
(MT) seeks to predict the usefulness of MT outputs without 
observing reference translations. QE can be cast as a machine 
learning problem whose goal is to predict a quality score based 
on one or more metrics, including human post-editing effort.

A baseline regression system was constructed in [2] for 
the WMT 2012 Quality Estimation shared task that uses 
MT and surface-level features derived from a training set to 
predict a user’s perceived level of post-editing effort for newly 
translated sentences. Levenshtein features are used in [3] 
which measure the distance between the current sentence with 
each of the closest entry in the training corpus. Low edit

1 http://www.matecat.com
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distances imply that the current sentence is close to the training 
set and thus its quality is expected to be high.

Sentences in a development set are ranked by their 
sentence-level BLEU scores [4] and divided the development 
set into quartiles in [5]. Inspired by TrustRank [6], additional 
regression features are added to measure the distance between 
the current sentence and the high or low quality quartile sets 
in the development data. The distance is measured via n-gram 
matches through a modified BLEU score and is evaluated in 
both the source and the target language directions.

The prediction of word- and sentence-level MT errors are 
treated as a sequence labeling task in [7], using alignment, 
agreement, and POS-based features. Each token is labeled 
by the type of error occurring (e.g. insertion, deletion, 
substitution, or shift).

Quality estimation for MT is treated as a binary 
classification problem for computer-assisted translation in [8]. 
They predict the usefulness of MT output over translation 
memory recommendations in terms of the number of 
words edited to match a reference translation. This metric 
is known as the translation error rate (TER) [9]. The 
system also provides confidence scores based on posterior 
classification probabilities. A MT output is recommended if 
its corresponding TER score is lower than that of a TM 
suggestion.

Due to the nature of the field test, we treat the SMT system 
as a black box and cannot use SMT-based features in our 
model. However, we consider the reverse translation fuzzy 
match score as a feature in our model.

III. F ie l d  Te s t

The EU-funded project MateCat was launched in early 
2012 with the aim to integrate Statistical Machine Translation 
systems such as Moses [10] with a state-of-the-art CAT tool 
to improve translator productivity. The goal of MateCat is to 
seamlessly integrate a MT engine as a back-end process inside 
the CAT tool. Translators will receive translations either from 
TM matches or from the MT engine. One of the aims of the 
project is to recommend MT outputs if the machine translation 
requires less post-editing than the translation memory.

A feasibility study was conducted in [1] as a field test which 
integrated a production-quality MT Engine (namely, Google 
Translate2) in SDL Trados Studio3. Twelve professional 
translators worked on real translation projects covering the 
information technology and legal domains. Documents were 
translated both from English to German and English to 
Italian. The experiment was held in two parts. In the first 
part, a baseline was established by providing translators with 
only TM matches for suggestions. We refer to this baseline 
as TM experiments. In the second part MT outputs were 
viable alongside the TM matches. We refer to these as MT 
experiments. To measure the productivity of translators two

2http://translate.google.com
3 http://www.trados.com/en/

indicators were used: the post editing speed which is the 
average number of words processed by translator in one hour, 
and the post editing effort which is the average percentage of 
word changes applied by the translator on each suggestion. 
The results from the experiment show that providing MT 
recommendations significantly increased productivity across 
all users.

IV. Me t h o d o l o g y

Modern recommendation systems typically use two 
mechanisms: content-based and collaborative filtering. In 
content-based filtering an item is recommended to a user based 
on its similarity between items she previously observed. The 
user’s judgments on previously seen items are stored in a user 
profile, which may also contain additional user information. 
An item profile is constructed based on a set of characteristics 
or attributes describing it. The user’s profile is combined with 
item profiles to find new items that a user may prefer. In a CAT 
scenario, “item profiles” of previously translated segments can 
be aggregated and used to predict a user’s judgment on the 
quality of a machine translation in a future segment.

In collaborative filtering, a given user is compared 
against a collection of other users with similar profiles 
to provide recommendations for new items, even if the 
items recommended are dissimilar to those preferred by the 
user in the past. Such filtering increases the pool of items 
that can be recommended to a user. In a CAT scenario, 
translation recommendations could be provided based on the 
previous translations of other users. Unfortunately, such an 
approach is not useful in a professional translation scenario, 
where translators must maintain consistency within their own 
projects. Additionally, a careful look at the data provided in 
the MateCat field test shows that the translators behave quite 
differently. However, such an approach might be useful for 
crowd-sourced or community-based translations with a large 
number of amateur translators.

CAT systems aim at increasing the productivity of the 
translators by providing translation suggestions, usually in 
the form of a TM. It is a necessity that the translations 
recommended from the MT system are good. If the cost of 
post-editing a translation is higher than translating the segment 
from scratch then it decreases the productivity of the user. 
An ideal recommendation system suggests a translation only 
when the cost of post-editing is low. Thus, we only use 
content-based filtering, treating each translation segment as an 
item to be compared against segments previously translated 
by the same user. We combine features drawn from the 
item profile of the current segment along with a collection 
of item profiles of similar segments to predict the time 
required to translate the segment. We call this the time to edit 
(TTE). TTE is one of several indicators for translation effort. 
If additionally providing MT outputs does not significantly 
improve the translation effort over scenarios where only the 
TM is available, then it is not useful to recommend the MT 
output to the translator.
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In [8], most of the features for translation recommendation 
come directly from the SMT models (e.g. phrase translation 
scores, language model scores). These features are combined 
with system independent features such as language model 
perplexity scores on target side, fuzzy match scores and 
lexical translation scores from a word alignment model [11]. 
However, in this work we are restricted to the features used in 
the field test. The underlying MT engine and language models 
used by Google Translate are unavailable for analysis. Instead, 
we used features in the MateCat field test, such as word count, 
TTE on a sentence, match percent (percent match between a 
TM and the current segment), and the after match score (how 
close the suggestion and translation are).

However, there were several limitations in the original field 
test. The translators worked remotely on a client system at 
their respective locations and connected to a centralized server 
which made it hard to capture the user/translator focused 
features such as keystrokes, the actual time to translate a 
sentence, and whether the translator actually used the MT 
output or translated directly from scratch. In the absence of 
such features we use a number of aggregated features obtained 
from the similar segments to the current one being translated 
(see section V-B). We borrow the idea of a pseudo fuzzy match 
score from [8]. However, instead of Levenshtein distance we 
use TER. There are two kinds of features, one representing 
the statistics of current segment (current features) and the one 
representing the statistics of the similar segments (aggregated 
features). Both sets of features are taken from the TM and MT 
outputs.

Table I provides a list of the features considered in this 
paper. Features such as the source word count (W C S r ) and 
the TER of the reverse-translated MT output against the 
source text (T E R S r ) are computed on the current segment. 
Several other features are computed on the collection of similar 
TM and MT segments extracted by means of content-based 
filtering. Aggregated features provide summary statistics on 
the TTE and time for word (TFW, computed as TTE divided 
by segment word count), as well as an estimate on the 
translation error rate (T E R T g ) and word counts on the MT 
and post-edited outputs (W CmT and W C p e , respectively). 
Each summary statistic yields three features, one for the 
respective TM and MT aggregates and an additional feature 
for their difference.

V. Ex p e r i m e n t

We perform our experiment on the English to German 
translation of segments in the information technology domain.

A. Preprocessing
As in [1], segments where the processing time per word was 

less than 0.5 seconds or greater than 30 seconds were removed 
as outliers. Perfect (100%) TM matches were removed. After 
filtering, the data set contains a total of 3670 segments, 
subdivided among four users, as listed in Table II.

TABLE I
F e a t u r e s  u s e d  i n  t h i s  e x p e r i m e n t . Ce r t a i n  f e a t u r e s  a r e  d e r i v e d

FROM THE CURRENT SEGM ENT, W HILE OTHERS ARE COMPUTED AS AN 
AVERAGE OVER SIM ILAR SEG M ENTS . W ORD COUNT (WC) FOR SOURCE 

(SR), MT, AND POST-EDITED (PE) SEG M ENTS; TTE AND TFW, AND TER 
ON TARGET (TG) AND SOURCE (SR) SEGM ENTS .

Segment Current Similar
W C s r Y Y
W C m t N Y
W C p e N Y
t f w N Y
T T E N Y
T  E R t g N Y
t e r s r Y N

TABLE II
Se g m e n t s  p e r  u s e r  i n  t h e  E N >D E IT d o m a i n  CAT s c e n a r i o . Th e  

DATASET CONSISTS OF 3670 SEGM ENTS .

User TM Segments MT Segments
User 1 487 486
User 2 498 481
User 3 332 486
User 4 490 410

Data is split as follows: the first 10% of each split 
is reserved as a burn-in to accumulate user statistics for 
extracting similar segments. The remainder of the data is 
split into 11 folds in a round-robin fashion to minimize 
the effects of immediately translated segments (i.e., seg1 ^  
fo ld \, seg2 ^  fo ld 2, ..., seg12 ^  fo ld \, etc.). Ten folds are 
used for cross-validation purposes to evaluate the utility of the 
regression model. The folds are later combined and used to 
evaluate the final held-out set to provide a recommendation to 
the user.

B. Extracting similar segments

In order to gather statistics on features not observable in the 
current segment (see Table I), we compute aggregated features 
from the statistics of similar segments, both in our TM and MT 
experiments. We rely on the popular cosine similarity metric 
using unigram features from the source text for identifying 
similar segments. Given source language bag-of-word features 
for segments A  and B, cosine similarity is defined as:

similarity
Ai x Bi

i= 1 (1)

IJ2  (A i)2 x J E  (B i)2 
i=1 i=1

In order to simulate the computer-assisted translation 
scenario, we only compute similarity scores on segments that 
would appear in a user’s “translation cache” -  e.g., segments 
that were already translated by the user at a given point in the 
TM or MT field test experiments. Since the purpose of the 
experiment is to evaluate the utility of MT suggestions, the 
cosine similarity is always calculated from a MT segment to 
any previous segments.

ISSN 1870-9044 49 Polibits (47) 2G13



Prashant Mathur, Nick Ruiz, and Marcello Federico

In the cross-validation scenario, each segment in the training 
fold draws similar segments from the burn-in set and the 
previous segments in the training set. Formally, for foldi , 
similar segments are drawn from the previous segments in a 
candidate pool defined by {burn-in, fold- i } where —i refers to 
the cross-validated folds not labeled fold i . The test set draws 
its similar segments from the candidate pool {burn-in, foldi }.

Average similarity scores per user under cross-validation 
fold 3 are listed in Table III. Given that the average similarity 
score (simavg) per user is low, we select candidate segments 
with a similarity score higher than simavg, as an arbitrary 
segment is semantically unrelated to a given segment. From 
the remaining candidates, we establish a heuristic that selects 
the candidates within 10% of the segment with the highest 
similarity (selmax), or those candidates whose score is higher 
than the average of the selected candidates (selavg). In other 
words, we aggregate the similarity scores of segments whose 
scores are greater than max(selmax — 0.1, selavg) from the 
candidate pool.

The aggregated features described in the previous section 
are computed by averaging the feature values of the similar 
segments within the TM and MT experiments, respectively. 
In some cases, no candidates are selected for the TM or 
MT aggregation. In these cases, we substitute with average 
statistics for the particular user across all segments in the 
training set.

C. Predicting time to edit
We train linear regression models, combining features of 

the current segment with statistics on the user’s behavior 
on similar segments and call this the Aggregated regression 
model. Similarly, we build baseline regression models just with 
features from current segment (e.g. W C S r , T E R S r ). Using a 
10-fold cross validation strategy, we train 10 regression models 
for each user based on the training set. Each model is designed 
to predict the TTE for a given segment. We use the linear 
regression classes provided by the Weka open-source machine 
learning toolkit [12] to orchestrate our experiment. Our linear 
regression models use M5 attribute selection [13] which 
incrementally removes features with the smallest coefficient. 
A ridge regularization parameter is fixed to 1.0 x 10-8 . The 
regression results are averaged across each fold and reported 
in Section VI. For the final MT output recommendation, we 
train a model using all the training folds and evaluate on our 
held-out test set.

D. Suggesting MT output
After predicting the TTE values on a held-out test set, we 

recommend whether or not to present MT output to the user 
by comparing the TTE of the current segment against the TTE 
of segments with similar word counts in the MT and TM 
experiments. Given a segment s and its predicted TTE x, we 
evaluate the number of standard deviations of x from j MT and 
j TM, the bootstrap mean of the TTE values in the MT and

TABLE IV
Av e r a g e  p e r f o r m a n c e  o f  a g g r e g a t e d  a n d  b a s e l i n e  s y s t e m s

AFTER 10-FOLD CROSS-VALIDATION FOR LINEAR REGRESSION MODELS 
TRAINED FOR EACH U SER . AVERAGE NUM BER OF INSTANCES IN EACH 

FOLD IS GIVEN BY Instances. Me a n  A b s o l u t e  E r r o r  (MAE) AND Ro o t  
MEAN SQUARE E RROR (RM SE) ARE IN SECO ND S .

Baseline Aggregated
User Instances Corr. MAE RMSE Corr. MAE RMSE
1 38.9 0.6128 31.94 4S.70 0.6300 31.16 44.87
2 38.6 0.6371 2S.79 47.3S 0.6362 25.82 48.47
3 38.6 0.5102 18.39 38.S8 0.4672 19.56 39.47
4 33.0 0.5293 13.34 2S.72 0.4947 14.29 26.70

TM experiments for segments with a source-side word count in 
the range [WCSr (s) — 1, W CSr (s) +1]. Thus, the following 
criterion (inspired by the Z-score) is defined for recommending 
MT output:

f  (x) =
1: |(x — jM T ) /  & MT | < |(x — jTM  ) / &TM |
0 : otherwise

(2)
<r* is the standard deviation of segments in the corresponding 
sample. We use the bootstrap mean as a robust mean estimate 
to account for outliers.

VI. RESULTS

The results for cross-validation and the final evaluation are 
reported below.

A. Regression results

1) Cross validated models: Average regression results 
along with baseline results per user are reported in Table IV. 
While Users 3 and 4 have a lower correlation coefficient, the 
Root Mean Square Error (RMSE) remains relatively low with 
respect to Users 1 and 2. In particular, User 4’s regression 
curve implies that many of the model features do not contribute 
to the predictive power of the model. In fact, a baseline system 
using only two features performs better than an aggregated 
system for all the users except User 1. This is likely due to 
the fact that there are few samples in our data set available 
for aggregation. The following features have a significant 
contribution to the regression model: current W CS r , SW C Sr 
for similar TM and MT segments, and SWCt g .

2) Final models: Regression results of the final test per user 
are reported in Table V and regression coefficients for each 
attribute are reported in Table VI. The correlation coefficients 
are higher than those of the cross-validation experiment.

Here, the aggregated system performs better than baseline 
only for Users 1 and 3. The majority of errors occur in 
segments with high word counts, or “outlier” cases where 
either an identical match appears in the translation memory or 
the user took an abnormally long amount of time to translate 
a segment.
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TABLE III
Si m i l a r  s e g m e n t  e x t r a c t i o n  f o r  t w o  r a n d o m l y  s e l e c t e d  s e g m e n t s  u n d e r  c r o s s -v a l i d a t i o n  f o l d  3. Ca n d i d a t e s  m u s t  h a v e  a

SIM ILARITY SCORE ABOVE THE U SE R ’S AVERAGE SIM ILARITY SCO RE . TO BE SELECTED , CANDIDATES M UST BE W ITHIN 0.1 OF THE MOST SIM ILAR 
SEGMENT IN THE POOL SELm a x  OR THE CANDIDATE AVERAGE SELav g  -  W HICHEVER IS GREATER .

User Seg. Exp. Candidates Selected sela v g sima v g selm i n selm a x

User 3 11710 MT 47 3 0.327 0.227 0.236 0.530
User 3 11710 TM 65 21 0.307 0.218 0.221 0.447
User 4 13421 MT 49 5 0.347 0.227 0.230 0.542
User 4 13421 TM 261 14 0.369 0.229 0.230 0.607

TABLE VI
Co e f f i c i e n t s  f o r  t h e  l i n e a r  r e g r e s s i o n  m o d e l  f e a t u r e s  l i s t e d  i n  Ta b l e  I. F e a t u r e s  f o r  t h e  c u r r e n t  s e g m e n t  a r e  l a b e l e d  “Cu r r ”. 

F e a t u r e s  c o m p u t i n g  t h e  d i f f e r e n c e  b e t w e e n  t h e  MT a n d  TM a g g r e g a t i o n s  a r e  l a b e l e d  “D i f f ”.

User W C s r W  Ct g W  e  p e
Curr TM MT Diff TM MT Diff TM MT Diff

1 5.485 -3.580 -2.232 -2.850 -1.419 3.869 0.000 4.584 -2.908 4.646
2 5.398 8.582 -7.832 11.014 -5.526 3.136 -5.515 -2.570 3.949 -3.382
3 3.516 1.427 -5.051 0.000 -1.114 1.849 0.000 -1.634 3.793 0.000
4 2.233 0.000 0.000 -3.156 0.000 0.000 0.000 0.000 0.000 3.061

User t f w T T E T  E R t g t e r s r
Intercept TM MT Diff TM MT Diff TM MT Curr

1 -25.742 0.000 1.574 0.000 -0.134 0.314 0.242 0.158 0.000 0.144
2 -21.001 0.000 2.580 0.000 -0.387 0.412 0.483 0.000 0.000 0.000
3 -16.399 0.000 1.570 1.210 0.000 -0.167 -0.223 0.134 0.000 0.000
4 5.263 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

TABLE V
Pe r f o r m a n c e  o f  Ba s e l i n e  v e r s u s  A g g r e g a t e d  s y s t e m  a f t e r
FULL TRAINING OF LINEAR REGRESSION MODELS FOR EACH U SER , 

EVALUATED ON THE TEST SET. CORRELATION (CO RR .), MEAN A BSOLUTE
E r r o r  (MAE), Ro o t  M e a n  Sq u a r e  E r r o r  (RMSE).

Baseline Aggregated
User Instances Corr. MAE RMSE Corr. MAE RMSE

1 40 0.6551 29.54 47.19 0.6682 28.16 46.31
2 38 0.7359 23.57 33.20 0.7290 23.13 33.81
3 40 0.7001 13.01 17.19 0.7466 12.53 16.92
4 34 0.6702 11.81 15.81 0.6270 11.95 16.49

a) Important features.: For all users, the average 
time-for-word (TFW) feature for similar TM segments was 
not useful. In addition, the average TER for MT segments 
and the average TER difference were not used. Naturally, 
the word count of the current segment was proportional 
to the TTE. Likewise, the average word counts and their 
computed difference were significant features. The reverse 
TER score (T E R S r ) was not significant. All other features 
were significant.

b) Example predictions.: Table VII shows time-to-edit 
(TTE) prediction results for User 3. While IDs #15, #18, #19 
have a relatively good error bound, outliers such as #32 drive 
up the RMSE. Incidentally, the MT output provided for the 5- 
word source segment in #32 was “Die andere MLV ausgewählt 
wird.”, which only requires one word swap operation.

While the MT output aligns closely with the user’s draft 
translation in ID #21, the regression model provided an much 
higher estimate. In this example, a total of 170 MT candidates 
with similarity scores above the user average (22.65%) were 
available, providing a group average of 38.46%. However, 
only one segment was selected (94.28% similar). No other

candidates are within 10% of the highest candidate; thus, the 
MT statistics were unreliable. We further note that of 1488 
training instances, 512 segments had only one similar MT 
segment in the aggregation; 75 segments had none (using 
global user averages instead).

B. Recommendation based on time to edit
Given the TTE predictions from our regression models, 

we provide recommendations on whether to provide MT 
suggestions to the translator. Figure 1 lists the confusion 
matrices for each user’s regression model and Table VIII lists 
the precision, recall, and F-measure for each user.
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Fig. 1. Confusion matrices for each user. T a and Fa correspond to the actual 
values. Te and F e correspond to the estimated values.

TABLE VIII
P r e c i s i o n , R e c a l l , F-M e a s u r e  f o r  e a c h  u s e r

User Precision Recall F-Measure
1 77.77 72.41 74.99
2 63.63 70.00 77.13
3 78.25 83.33 80.71
4 47.36 60.00 52.93

Understandably, due to the lack of useful features in User 
4’s regression model, the overall MT suggestion results are
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TABLE VII
Sa m p l e  t i m e - t o -e d i t  a  s e n t e n c e  (TTE) p r e d i c t i o n s  f o r  Us e r  3. “M T?” r e f e r s  t o  t h e  a c t u a l / e s t i m a t e d  r e s u l t  o f  t h e  c l a s s i f i c a t i o n

MODEL AFTER APPLYING THE DECISION FUNCTION DEFINED IN (2).

ID Segment Translation w c TTE Est TTE Error MT?
15 In the License Allocations tab you can 

explicitly add a new eQube-BI TcRA 
context that can connect to the current 
license server.

In der Registerkarte Lizenzzuweisung können 
Sie explizit einen neuen eQube - BI TCRA 
Kontext hinzufügen, der sich mit dem aktuellen 
Lizenzserver verbinden kann.

22 66 70.12 4.12 1/1

18 You need to assign roles to users so that 
they can perform certain operations.

Sie müssen Rollen Benutzern zuweisen, sodass 
sie bestimmte Operationen durchfahren können.

14 12 10.48 -1.52 1/1

19 Add Role Rolle hinzufügen 2 11 10.99 -0.01 0/0
20 Click Submit, if you want to submit the 

details you entered.
Klicken Sie auf Senden, wenn Sie die Details 
übermitteln mochten, die Sie eingegeben haben.

11 20 26.97 6.97 1/0

21 Click the role on the left side of the 
screen, to which you want to assign 
operations.

Klicken Sie auf die Rolle auf der linken Seite 
des Bildschirms, der Sie Operationen zuweisen 
möchten.

17 17 36.94 19.94 1/1

32 The other MLV gets selected. Die andere MLV wird ausgewahlt. 5 66 18.64 -47.36 0/1

low. For the other three users, we report higher F-measures that 
suggest a correlation between the estimated and actual TTE 
scores in terms of our goodness measure. However, what does 
this say about our goodness measure? The right-most column 
of Table VII lists the actual vs. estimated predictions for the 
example segments translated by User 3. ID #20 consists of 11 
words having a TTE difference of approximately 7 seconds. 
Looking more closely, for User 3, fiTM < AMT, which 
implies that MT is not useful for any segments of this length 
(At m  =  2.47, <tt m  =  1.51, Am t  =  2.69, <t t m  =  3.80). This 
underlies the importance of significance testing as one of the 
missing components in our decision function.

Co n c l u s i o n  a n d  f u t u r e  w o r k

In conclusion, we address the problem of quality estimation 
for machine translation in the CAT scenario by constructing 
regression models tailored to each translator in order to 
estimate the productivity of a user. We estimate user 
productivity in terms of the time taken to edit a translation 
(TTE). We combine features from the current segment with 
aggregated features from similar segments in two field test 
experiments. We find that a trained regression model predicts 
TTE reasonably well given a limited data set drawn from the 
preliminary MateCat field test outlined in [1], with exceptions 
explained by user inconsistencies and limitations in the data 
captured.

The estimated TTE values for each segment in our test 
set is compared against the mean TTE values for similarly 
long segments in the TM and MT sub-experiments. Segments 
whose TTE is closer to the MT experiment’s mean than 
its TM counterpart are judged to indicate that suggesting 
machine translation output will improve user productivity. We 
evaluate this decision function against the actual TTE values to 
measure the consistency of the regression model. After careful 
evaluation, we see that this heuristic is deficient in accurately 
suggesting MT output to the translator in cases where the 
population means of similarly long TM and MT segments are 
close. As such, the choice of a decision function should be 
revisited.

One potential source of problems in the regression model is 
that each segment contains a limited number of content words. 
In practice, the content words are the biggest determiners 
of coherence in a text. Thus, we propose to add additional 
features based on the content words to our regression model. 
Additionally, we propose to add the average similarity scores 
and the average word length between the current segment and 
the aggregated TM and MT segments.
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