
N-gram Parsing for Jointly Training a 
Discriminative Constituency Parser

Arda Celebi and Arzucan Ozgiir

Abstract— Syntactic parsers are designed to detect the complete 
syntactic structure of grammatically correct sentences. In this 
paper, we introduce the concept of n -gram parsing, which 
corresponds to generating the constituency parse tree of n 
consecutive words in a sentence. We create a stand-alone n -gram 
parser derived from a baseline full discriminative constituency 
parser and analyze the characteristics of the generated n -gram 
trees for various values of n . Since the produced n -gram trees are 
in general smaller and less complex compared to full parse trees, 
it is likely that n -gram parsers are more robust compared to full 
parsers. Therefore, we use n -gram parsing to boost the accuracy 
of a full discriminative constituency parser in a hierarchical 
joint learning setup. Our results show that the full parser jointly 
trained with an n -gram parser performs statistically significantly 
better than our baseline full parser on the English Penn Treebank 
test corpus.

Index Terms—Constituency parsing, n -gram parsing, discrim
inative learning, hierarchical joint learning.

I. INTRODUCTION

PARSING a natural language sentence is a process of 
characterizing the syntactic description of that sentence 

based on the syntax of its language. Over the last half-century, 
there have been many techniques developed to improve 
parsing accuracy. Some of the studies have targeted the model 
that the parser relies on, such as by replacing rule-based 
approaches [1], [2] with statistical models like generative [3],
[4] and discriminative ones [5], [6]. Others introduced external 
ways of boosting the parser, such as by using a reranker [7], 
[8], by bootstrapping it with itself in a self-training setup [9], 
or by using partial parsing in a co-training setup [10]. Another 
recent thread of research is about a more specialized form of 
the co-training approach, where multiple models from different 
domains are jointly trained together and help each other to 
do better. One example is [11], where they introduce the 
Hierarchical Joint Learning (HJL) approach to jointly train 
a parser and a named entity recognizer. Their HJL model 
achieved substantial improvement in parsing and named entity 
recognition compared to the non-jointly trained models.

In this paper, we aim to improve the accuracy of a 
discriminative constituency parser by training it together with 
another parser in the HJL setup. While our actual parser works

Manuscript received on December 7, 2012; accepted for publication on 
January 11, 2013.

Arda Celebi and Arzucan Ozgiir are with Department of Computer 
Engineering, Bogazici University, Bebek, 34342 Istanbul, Turkey (e-mail: 
{arda.celebi, arzucan.ozgur} @boun.edu.tr).

on complete sentences, its accompanying parser tackles the 
parsing task in a less complex way, that is, by parsing n-grams 
instead of complete sentences. To the best of our knowledge, 
this is the first study that introduces the concept of n-gram 
parsing. Even though syntactic parsers expect grammatically 
correct and complete sentences, an n-gram parser is designed 
to parse only n  consecutive words in a sentence. An outputted 
n-gram tree is still a complete parse tree, but it covers only n 
words instead of the whole sentence. We derive our n-gram 
parser from a discriminative parser which was implemented 
based on [12]. After analyzing the characteristics of n-gram 
parsing, we train the full parser together with the n-gram 
parser. Our underlying hypothesis is that the n-gram parser 
will help the full parser at cases where the n-gram parser 
does better. We performed experiments with different n-gram 
sizes on the English Penn treebank corpus [13] and obtained a 
statistically significant increase in the accuracy of the jointly 
trained full parser over the original (non-jointly trained) full 
parser.

This paper continues with the related studies. Following 
that, in Section III, we introduce the concept of n-gram 
parsing and the characteristics of the n-gram trees. In 
Sections IV and V, we describe how we perform discriminative 
constituency parsing and how we use the HJL approach, 
respectively. Before discussing the experiments, we introduce 
the data and the evaluation methods that we used in Section VI. 
We present the experimental results obtained with the n-gram 
parser alone and the jointly trained parser. We conclude and 
outline future directions for research in the last section.

II. Re l a t e d  W o r k

In this paper we tackle the problem of improving 
the performance of a discriminative constituency parser 
by training it with an n-gram parser using hierarchical 
joint learning. Although generative models [3], [4] still 
dominate the constituency parsing area due to their faster 
training times, a number of discriminative parsing approaches 
have been proposed in the recent years motivated by the 
success of discriminative learning algorithms for several NLP 
tasks such as part-of-speech tagging and relation extraction. 
An advantage of discriminative models is their ability to 
incorporate better feature rich representations. There are three 
different approaches for applying discriminative models to the 
parsing task. The first and perhaps the most successful one

ISSN 1870-9044; pp. 5-12 5 Polibits (47) 2013



Arda Çelebi and Arzucan Özgür

is to use a discriminative reranker to rerank the n-best list 
of a generative parser [5], [7], [6]. To our knowledge, the 
forest-based reranker in [8] is the best performing reranker 
that helps its accompanying parser to achieve an score 
of 91.7%*. The second approach considers parsing as a 
sequence of independent discriminative decisions [14], [15]. 
By discriminative training of a neural network based statistical 
parser, an F\ score of 90.1% is obtained in [15]. The third 
approach, which we adapted for this paper from [12], is to 
do joint inference by using dynamic programming algorithms 
in order to train models and use these to predict the globally 
best parse tree. With this, an score of 90.9% is achieved 
in [12]. Due to their notoriously slow training times, however, 
most discriminative parsers run on short sentences. That is 
why we use sentences that have no more than 15 words for 
full sentence parsing in this study.

One of the aspects of our research is that it involves 
working with multiple parsers at the same time, that is the 
n-gram parser and the full sentence parser. There have been 
a couple of studies that experimented with multiple parsers 
in the literature. One example is [16] which extended the 
concept of rerankers by combining k-best parse outputs from 
multiple parsers and achieved an F\ score of 92.6%. In [17], 
Fossum and Knight worked on multiple constituency parsers 
by proposing a method of parse hybridization that recombines 
context-free productions instead of constituents in order to 
preserve the structure of the output of the individual parsers 
to a greater extent. With this approach, their resulting parser 
achieved an score of 91.5%, which is 1 point better than 
the best individual parser in their setup.

Another thread of research related to ours is jointly training 
multiple models. This evolved from the concept of multi-task 
learning, which is basically explained as solving multiple 
problems simultaneously. In the language processing literature, 
there have been a couple of studies where this concept 
is adapted for multi-domain learning [18], [19], [20]. In 
these studies, they make use of labelled data from multiple 
domains in order to improve the performances on all of them. 
In [11], for example, a joint discriminative constituency parser 
alongside a named-entity recognizer is used and substantial 
gains over the original models is reported. Like most of the 
prior research, a derivative of the hierarchical model, namely 
the Hierarchical Joint Learning (HJL) approach is used. In this 
paper, we adapted this approach by replacing the named-entity 
recognizer with an n-gram parser, which to our knowledge 
hasn’t been attempted before in the literature.

The most distinguishing contribution of our research is the 
introduction of n-gram parsing. To the best of our knowledge, 
n-gram parsing has never been considered as a stand-alone 
parsing task in the literature before. One reason might be that 
n-gram trees have no particular use on their own. However, 
they have been used as features for statistical models in either

1 The performance scores reported in this section are for Section 23 of the 
English Penn Treebank.

lexicalized or unlexicalized forms. For example, in [9] they 
are used to train the reranking model of the self-training 
pipeline. There are only a couple of studies in the literature 
comparable to our notion of n-gram trees. One of them is 
the stochastic tree substitution grammars (TSG) used in Data 
Oriented Parsing (DOP) models in [21]. However, unlike TSG 
trees, our n-gram trees always have words at the terminal 
nodes. Another related concept is the Tree Adjunct Grammar 
(TAG) and the concept of local trees proposed in [22]. As 
in the case of TSG trees, TAG local trees also differ from 
our n-gram trees by not having words at all terminal nodes 
but one. Another related study was performed in [23], where 
significant error reductions in parsing are achieved by using 
n-gram word sequences obtained from the Web.

In the literature, the concept of n-grams is used in a number 
of contexts to represent a group of n  consecutive items. 
This can be, for instance, characters in a string or words 
in a sentence. In our research, we consider an n-gram as n 
consecutive words selected from a sentence. n-gram parsing, 
then, refers to the process of predicting the syntactic structure 
that covers these n  words. We call this structure an n-gram 
tree. In this paper, we study the parsing of 3- to 9-grams in 
order to observe how n-gram parsing differs with length and at 
which lengths the n-gram parser helps the full parser more. A 
sample 4-gram tree which is extracted from a complete parse 
tree is shown in Figure 1. Compared to complete parse trees, 
n-gram trees are smaller parse trees with one distinction. That 
is, they may include constituents that are trimmed from one or 
both sides in order to fit the constituent lengthwise within the 
borders of the n-gram. We call such constituents incomplete, 
and denote them with the -INC functional tag. n-gram parsing 
is fundamentally no different than the conventional parsing of 
a complete sentence. However, n-grams, especially the short 
ones, may have no meanings on their own and/or can be 
ambiguous due to the absence of the surrounding context. 
Even though the relatively smaller size of n-gram trees makes 
it easier and faster to train on them, their incomplete and 
ambiguous nature makes the n-gram parsing task difficult. 
Despite all, n-gram parsing can still be useful for the actual 
full sentence parser, just like the partial parsing of a sentence 
used for bootstrapping [10]. In this paper, we train the full 
parser together with an n-gram parser and let the n-gram 
parser help the full parser at areas where the n-gram parser is 
better than the full one.

A. N-gram Tree Extraction Algorithm

In order to generate a training set for the n-gram parser, 
we extract n-gram trees out of the complete parse trees of the 
Penn Treebank, which is the standard parse tree corpus used in 
the literature [13]. Since we use sentences with no more than 
15 words (WSJ15) for complete sentence parsing, we use the 
rest of the corpus (WSJOver15) for n-gram tree extraction.

The pseudocode of our n-gram tree extraction algorithm 
is given in Fig. 2. It takes a complete parse tree as

Polibits (47) 2G13 6 ISSN 1870-9044



N-gram Parsing for Jointly Training a Discriminative Constituency Parser

Fig. 1. Sample 4-gram tree extracted from a complete parse tree

Require: n, width of the n-gram trees 
Require: tree, parse tree of a sentence 

len ^  length of the given sentence
i ^  0
while i < len — n  do

subtree ^  get subtree that covers [i, i + n] span 
tr im m ed  ^  trim subtree 's constituents outside the 
[i,i + n] span, if any
if tr im m ed  has any const. with no head child then 

i++ and continue 
end if
m arkedtree ^  mark all trimmed consts. as incomplete 
filte re d  ^  filter out incomplete unary rule chain from 
the ROOT, if any 
save f ilte re d  tree as n -gram tree 
i++ 

end while

Fig. 2. Extracting and storing n-gram trees from a parse tree

input and returns all the extracted valid n -gram trees. It 
starts by traversing the sentence from the first word and 
preserves the minimum subtree that covers n  consecutive 
words. While doing that, it may trim the tree from one or 
both sides in order to fit the constituents lengthwise within 
the borders of the n -gram. Hence, the extracted n -gram trees 
may contain incomplete and thus ungrammatical constituents, 
which is not something that a conventional parser expects as 
input. Nevertheless, we assume that not all of the trimmed 
constituents are ungrammatical according to the concept of 
generatively accurate constituents that we introduce in this 
paper. This concept stems from the concept of the head-driven 
constituency production process [3] where a constituent is 
theoretically generated starting from its head child and 
continuing towards the left and right until all children are 
generated. If the head child is the origin of the production, then 
it is safe to say that it defines the constituent. Therefore, our 
n -gram tree extraction process makes sure that the head child 
is still included in the trimmed constituents. Otherwise, the 
whole n -gram tree is considered generatively inaccurate and

is thus discarded. If all the heads are preserved, the algorithm 
marks the trimmed constituents with the -IN C  functional tag. 
For example, the PP constituent of the 4-gram tree in Figure 1 
is trimmed from right hand side and since the head child “IN” 
is still included in the constituent, it is considered generatively 
accurate. The corresponding constituent is marked with an 
-INC tag and the extracted tree is stored as a valid 4-gram 
tree. However, if we try to extract the next 4-gram in the same 
sentence, it would have failed due to not being able to keep 
the head of the rightmost NP. The -INC tags are later used 
in the features in order to let the n -gram parser better predict 
such incomplete cases. Following these steps, the extraction 
process filters out the incomplete chains of unary rules that 
can be reached from the RO O T  constituent. The algorithm 
also keeps the parent information of the R O O T  constituent 
of the n -gram tree as an additional context information.

B. Characteristics o f n-gram Trees

As we apply the extraction algorithm on the WSJOver15 
portion of the Penn Treebank, we get hundreds of thousands 
of n-gram trees for each value of n  in {3..9}. The 
analysis of these data sets reveals interesting points about 
the characteristics of such n-gram trees. Table I gives the 
percentages of the most common constituents in each n -gram 
training set along with the corresponding numbers obtained 
from the complete parse trees of the WSJ15 portion, which we 
use for training our full parser. The comparison indicates that 
the percentages of the noun (NP), verb (VP), and prepositional 
(PP) phrases in the n -gram trees are higher than the ones in 
the complete parse trees. On the other hand, the percentages of 
long-range constituents like S are lower for the n -gram trees, 
which is expected as the extraction process disfavors such 
constituents. Nonetheless, we see higher percentage in case 
of another long-range constituent SBAR, which exemplifies 
how the extraction process may still favor some long-range 
constituents. Based on this analysis, we may postulate that 
the increasing percentage of the NPs, VPs, and PPs per parse 
tree may help the n -gram parser do a better job in addition to 
the fact that they are smaller, thus less complex phrases.

ISSN 1870-9044 7 Polibits (47) 2G13



Arda Çelebi and Arzucan Özgür

TABLE I
Pe r c e n t a g e  o f  t h e  m o s t  c o m m o n  n o n -t e r m i n a l  c o n s t i t u e n t s  in  t r a i n i n g  s e t s

Model NP VP PP ADJP ADVP S SBAR QP
3-gram 21.20 10.82 6.25 1.04 1.03 4.68 1.43 0.96
4-gram 20.69 10.87 6.44 1.05 1.07 4.93 1.64 0.85
S-gram 20.39 10.87 6.45 1.06 1.10 5.11 1.75 0.80
6-gram 20.11 10.81 6.49 1.04 1.10 5.21 1.84 0.79
7-gram 19.86 10.78 6.49 1.02 1.11 5.29 1.92 0.78
8-gram 19.68 10.74 6.50 1.01 1.11 5.35 1.99 0.77
9-gram 19.54 10.68 6.50 1.00 1.10 5.39 2.04 0.76
Full (WSJ15) 18.74 9.51 4.21 1.05 1.69 6.91 1.00 0.60

III. D ISCRIM INATIVE CONSTITUENCY PARSING

In order to parse the n-grams and the complete sentences, 
we implemented a feature-rich discriminative constituency 
parser based on the work in [12]. It employs a discriminative 
model with the Conditional Random Field (CRF) based 
approach. Discriminative models for parsing maximize the 
conditional likelihood of the parse tree given the sentence. 
The conditional probability of the parse tree is calculated as 
in Equation 1, where Z s is the global normalization function 
and ^ (r |s ; 6) is the local clique potential:

l
P  (t\s; O) =  - f l  ^ (r |s; O),

r E t

where
Z s =  E n # r |s ;  O),

t ' e r ( s )  r e t '

^(r|s; O) =  e x p ^ O if i ( r ,  s).

(1)

(2)

(3)

sentence are then used to update the parameter values at each 
iteration. As in [12], we use stochastic gradient descent (SGD), 
which updates parameters with a batch of training instances 
instead of all in order to converge to the optimum parameter 
values faster:

f i (r , s) -  e o [fi r n  -  -^2.
r e t  )  °

(S)

The probability of the parse tree t given the sentence s is the 
product of the local clique potentials for each one-level subtree 
r  of a parse tree t which is normalized by the total local clique 
potential of all possible parse trees defined by t(s ) . Note that 
the clique potentials are not probabilities. They are computed 
by taking the exponent of the summation of the parameter 
values 6 for the features that are present for a given subtree r. 
The function /¿(r, s) returns 1 or 0 depending on the presence 
or absence of feature i in r, respectively. Given a set of training 
examples, the goal is to choose the parameter values 6 such 
that the conditional log likelihood of these examples, i.e., the 
objective function L  given in Equation 5, is minimized:

L(D; 6) =  E E ( / (r, s), 6) — (4)
( t , s ) € V  \ r e t  )

_  6i

2a2i
When the partial derivative of our objective function with 

respect to the model parameters is taken, the resulting gradient 
in Equation 5 is basically the difference between the empirical 
counts and the model expectations, along with the derivative 
of the L 2 regularization term to prevent over-fitting. These 
partial derivatives which are calculated with the inside-outside 
algorithm by traversing all possible parse trees for a given

We use the same feature templates of [12] and the same 
tool [24] to calculate the distributional similarity clusters 
which are used in the feature definitions. However, we use 
a different combination of corpora to calculate these clusters. 
We gathered an unlabelled data set of over 280 million words 
by combining Reuters RCV1 corpus [25], Penn treebank, and 
a large set of newswire articles downloaded over the Internet. 
Despite the difference, we tried to keep the size and the types 
of contents comparable to [12]. We use the default parameter 
settings for the tool provided by [24] and set the number of 
clusters to 200. In order to handle out-of-vocabulary (OOV) 
words better, we also introduce a new lexicon feature template 
(prefix, suffix, base(tag) ), which makes use of the most 
common English prefixes and suffixes. A feature is created by 
putting together the prefix and suffix of a word, if available, 
along with the base tag of that word. If it does not have 
any prefixes or suffixes, NA is used, instead. As for n-gram 
parsing, we did not include or exclude any features. Like 
in [12], we also implemented chart caching and parallelization 
in order to save time.

IV. H i e r a r c h i c a l  J o i n t  Le a r n i n g

In this section, we show how we jointly train the n-gram 
parser and the full parser. We use an instance of the multi-task 
learning setup called the Hierarchical Joint Learning (HJL) 
approach introduced in [11]. HJL enables multiple models to 
learn more about their tasks due to the commonality among 
the tasks. By using HJL, we expect the n-gram parser to help 
the full parser in cases where the n-gram parser is better.

As described in [11], the HJL setup connects all the base 
models with a top prior, which is set to zero-mean Gaussian in 
our experiments. The only requirement for HJL is that the base 
models need to have some common features in addition to the 
set of features specific to each task. As both parsers employ 
the same set of feature templates, they have common features

Polibits (47) 2G13 8 ISSN 1870-9044



N-gram Parsing for Jointly Training a Discriminative Constituency Parser

through which HJL can operate. All the shared parameters 
between base models are connected to each other through this 
prior. It keeps the values of the shared parameters from each 
base model close to each other by keeping them close to itself.

The parameter values for the shared features are updated by 
incorporating the top model feature into the parameter update 
function as in Equation 6. While the first term is calculated 
by using the update value from Equation 5, the second term 
ensures that the base model m is not getting apart from the 
top model by taking the difference between the top model and 
the corresponding shared parameter value. The variance a 2d is 
a parameter to tune this relation:

d L h i e r  (D; 0) d L h i e r  ( D j Om ) Om . i  O*

dOm

dL h i e r  ( D ;  O)

dO* .i

O* i  Om

TABLE II
Nu m b e r  o f  p a r s e  t r e e s  f o r  e a c h  p a r s e r

Model Training Set Dev. Set Test Set
3-gram 384,699 1,742 2,495
4-gram 318,819 1,341 1,916
S-gram 267,155 1,050 1,506
6-gram 227,505 807 1,158
7-gram 195,229 635 891
8-gram 168,07S 486 667
9-gram 145,040 349 491
Full 9,753 421 603

(6)

As shown in Equation 7, the updates for the top model 
parameter values are calculated by summing the parameter 
value differences divided by the base model variance , and 
then by subtracting the regularization term to prevent over
fitting:

-  % .  (7)

As in the case of the discriminative parser described 
in the previous section, SGD is used for faster parameter 
optimization. At each epoch of SGD, a batch of training 
instances is selected uniformly from each model in the setup. 
The number of training instances coming from each set, hence, 
depends on the relative sizes of the training sets.

crossing with the actual correct spans, and the percent of 
guessed trees that have no crossing brackets with respect to 
the corresponding gold tree. In order to better understand 
the n-gram parser and the jointly trained parser, we also 
evaluate how accurately these parsers handle different types 
of constituents.

VI. Ex p e r i m e n t s  a n d  D i s c u s s i o n

A. Baseline Parser
Our baseline parser is a discriminative constituency parser 

that runs on complete sentences. In order to make it run at 
its best, we set the learning factor n to 0.1 and the variance 
a d to 0.1. We do 20 passes over the training set and use the 
batch size of 15 for the purpose of SGD. Table III shows the 
results we obtained with these settings on the development and 
test sets of WSJ15 portion of the Penn treebank. Our baseline

TABLE III
Re s u l t s  o n  t h e  Pe n n  t r e e b a n k

d

V. Ex p e r i m e n t a l  Se t u p

A. Data
We evaluate our models by using the English Penn treebank 

corpus [13]. Like previous studies in this field, we use sections 
02-21 for training, 22 for development, and 23 for testing. 
For complete sentence parsing, we use only the sentences 
that have no more than 15 words, that is WSJ15. To train 
the n-gram parsers, on the other hand, we use the rest of 
the Penn treebank, which we call WSJOver15. To test the 
n-gram parsers, we use the n-gram trees extracted from the 
development and the test sets of the WSJ15 in order to make 
the results more comparable with the full parser. By using our 
n-gram tree extraction algorithm, we extract n-gram trees for 
n  =  [3, 9]. Table II gives the number of parse trees in the 
training, development and test sets of each parser.

B. Evaluation
We use the evalb script2 to get labelled precision, recall, 

and F1 scores. These are calculated based on the number of 
nonterminals in the parser’s output that match those in the 
standard/golden parse trees. We also report the percentage 
of completely correct trees, the average number of brackets

2The evalb script is available on http://nlp.cs.nyu.edu/evalb.

Dataset Precision Recall F i  score
Dev. Set 87.5 88.1 87.8
Test Set 86.4 86.4 86.4

parser achieves an score of 87.8% on the development set 
and 86.4% on the test set. compared to the results obtained 
in [12], our implemented version’s performance is a couple 
of points behind. The difference might be caused by small 
implementation details as well as by the different corpus that 
we used to calculate the distributional similarity clusters as 
discussed in Section IV.

B. N -gram Parser
Before training the full parser with the n-gram parser 

using HJL, we test the stand-alone n-gram parsers in order 
to understand where they are good at or where they fail, 
especially with respect to the full parser. We experimented 
with seven different n-gram sizes, i.e., with n  =  [3,9]. Even 
though there are hundreds of thousands of training instances 
for each parser available from the WSJOver15 portion of the 
Penn treebank, we train our models with 20,000 instances 
due to time and computational constraints. For a statistically 
more reliable evaluation, we report the averages of the scores 
obtained from five randomly selected versions of each training 
set.

ISSN 1870-9044 9 Polibits (47) 2G13

http://nlp.cs.nyu.edu/evalb


Arda Çelebi and Arzucan Özgür

TABLE IV
Re s u l t s  o f  t h e  «,-g r a m  p a r s e r s  f o r  t h e  d e v e l o p m e n t  s e t

Model Precision Recall F 1 score Exact Avg CB No CB TagAcc
3-gram 86.37 86.60 86.49 73.13 0.02 98.15 86.80
4-gram 85.55 85.89 85.72 66.50 0.08 94.86 87.88
5-gram 86.91 86.29 86.60 61.68 0.10 93.02 89.95
6-gram 86.68 86.41 86.54 54.76 0.16 89.33 90.67
7-gram 87.49 87.00 87.24 51.29 0.21 86.52 92.17
8-gram 87.12 86.77 86.94 49.48 0.28 83.05 92.63
9-gram 87.69 86.96 87.33 46.68 0.35 79.41 92.91

TABLE V
F i  SCORES ON THE MOST COMMON CONSTITUENTS FROM THE DEVELOPMENT SET

Model NP VP PP S SBAR ADVP ADJP QP
3-gram 89.26 89.86 92.04 84.69 56.31 73.19 46.50 75.27
4-gram 88.02 89.79 90.72 83.52 61.43 73.23 48.23 75.77
5-gram 88.35 90.42 89.81 85.77 72.39 76.31 52.22 72.96
6-gram 87.65 91.04 89.03 86.11 71.49 75.16 52.00 74.34
7-gram 87.80 91.73 88.40 87.39 77.91 76.87 50.09 84.45
8-gram 87.22 92.29 87.81 87.18 76.43 77.84 49.05 86.73
9-gram 87.79 91.76 87.33 87.46 76.37 72.21 53.66 86.43
Full 88.77 89.81 88.79 90.91 80.56 79.42 59.31 94.21

We use the same experimental setup of the baseline full 
parser. However, we optimize the parameters specifically for 
n-gram parsing. To make the n-gram parser run at its best, we 
set the learning factor n to 0.05 and the variance a 2 to 0.1. 
Instead of doing 20 iterations like we did for the full parser, we 
observe that 10 iterations are enough. We choose a batch size 
of 30, instead of 15 for the SGD. Both decisions are related to 
the fact that the n-gram trees are relatively smaller compared 
to the complete parse trees. Thus, an n-gram parser requires 
a larger batch of training instances, but takes fewer iterations 
to get to its best performance.

Table IV shows the averaged F\ scores obtained with all 
seven n-gram parsers on the development set. The comparison 
of our n-gram parsers with each other reveals a couple of 
interesting points. Firstly, using bigger n-gram trees in general 
leads to slightly higher F\ scores, but the increase in precision 
is more apparent. Secondly, the fact that the 3-gram parser 
achieves an F\ score of 86.5% by guessing 73.13% of the 
parse trees exactly, suggests that finding the exact n-gram tree 
is mostly an easy job, yet a small set of 3-gram trees contain 
most of the errors. This observation does not hold for larger 
n  values, since the parsing task becomes more difficult for 
bigger trees.

In order to do further analysis, we investigate how 
accurately the n-gram parsers handle the different types of 
constituents. Table V shows the average F\ scores of each 
n-gram model for the most common constituents. The first 
thing to notice is the degrading performance of handling 
noun (NP) and prepositional (PP) phrases, and the improving 
performance of handling verb phrases (VP) and declarative 
clauses (S) as n  increases. When n  increases, longer as well 
as more complex NPs and PPs are introduced. This results in 
degrading performance for such phrases.

On the other hand, as the sizes of the n-gram trees increase, 
it becomes easier to handle long-range constituents like VPs

and Ss, since the parser sees more of them in the training 
set. The same argument holds for the remaining types of 
constituents in Table V. Another interesting point is the 
significantly lower accuracies of the n-gram parsers on QPs, 
especially with smaller n-gram trees.

TABLE VI
A c c u r a c y  o n  t h e  i n c o m p l e t e  c o n s t i t u e n t s

IN THE DEVELOPMENT SET

Model

% of Incomplete 
Constituents 

in Golden Trees

Incomplete
Constituent
Accuracy

% of Unidentified 
Incomplete Const. 

w.r.t. All Unidentifieds
3-gram 22.0 86.65 26.2
4-gram 17.4 85.78 21.1
5-gram 14.5 84.20 16.7
6-gram 12.3 83.41 15.2
7-gram 10.8 83.32 13.9
8-gram 9.5 83.92 11.5
9-gram 8.7 84.94 10.4

Table VI shows the performances of the n-gram parsers 
on the incomplete constituents, as well as the percentages 
of constituents that are incomplete and the percentages 
of unidentified constituents from the golden trees that are 
incomplete. In most cases, as n  increases, the accuracies 
on the incomplete constituents decreases. The contribution 
of the incomplete constituents to the number of unidentified 
constituents decreases as well.

However, this is more attributed to the fact that their 
percentage with respect to all constituents drops as n  increases. 
Another point to notice is that despite its high performance, 
more than a quarter of the constituents unidentified by the
3-gram parser are incomplete. Considering that the 3-gram 
parser predicts 73.13% of the parse trees completely, it is 
highly likely that the performance of the 3-gram parser is 
affected by such constituents.

Polibits (47) 2G13 10 ISSN 1870-9044



N-gram Parsing for Jointly Training a Discriminative Constituency Parser

TABLE VII
Av e r a g e d  F 1 s c o r e s  o f  t h e  b a s e l i n e  f u l l  p a r s e r  (B) j o i n t l y  t r a i n e d  w i t h  e a c h  «,-g r a m  m o d e l

Results for Dev. Set of the WSJ15 Results for Test Set of the WSJ15
Model(s) 1K 2K 5K 10K 1K 2K 5K 10K
B+3-gram 87.60 87.69 87.97 87.91 86.37 86.07 86.23 86.21
B+4-gram 87.93 87.98 87.99* 87.70 86.52 86.42*** 86.44 86.54
B+5-gram 87.72 87.67 88.00 87.72 86.36 85.84 86.35 86.33
B+6-gram 87.88 87.73 88.12** 87.66 86.55 85.95 86.24 86.31
B+7-gram 87.83 87.94 88.05 87.72 86.58 86.16 86.24 86.42
B+8-gram 87.93 87.91 87.96 87.78 86.57** 86.45 86.16 86.43
B+9-gram 88.19* 87.89 87.89 87.86 86.46 86.42 86.44 86.59***

TABLE VIII
F 1 s c o r e s  o f  t h e  j o i n t l y  t r a i n e d  p a r s e r  o n  t h e  m o s t  c o m m o n  c o n s t i t u e n t s  in  t h e  d e v e l o p m e n t  s e t

Model(s) NP VP PP S SBAR ADVP ADJP QP
B+3-gram 88.91 89.87 89.39 90.20 80.09 80.05 64.51 92.44
B+4-gram 88.82 90.30 89.43 90.26 81.00 79.51 61.65 92.14
B+5-gram 89.10 90.21 89.23 90.22 79.44 79.56 61.23 92.68
B+6-gram 89.19 90.15 89.30 90.26 80.55 79.75 63.18 93.07
B+7-gram 89.04 90.19 89.15 90.35 80.73 79.31 62.93 93.03
B+8-gram 88.96 90.17 88.90 90.27 80.91 79.26 61.11 92.48
B+9-gram 88.86 90.14 89.06 90.12 79.45 79.07 62.38 92.74
Baseline (B) 88.77 89.81 88.79 90.91 80.56 79.42 59.31 94.21

C. Jointly Trained Parser

In order to boost the accuracy of the full parser, we train 
it along with each n-gram parser. For the full and n-gram 
models, we use the previously used variance settings, that is 
0.1. We set the top model variance to 0.1 as well. We set 
the learning factors for the n-gram models and the top model 
to 0.1, whereas we use 0.05 for the full parsing model. With a 
lower learning rate, we make sure that the full parsing model 
starts to learn at a slower pace than usual so that it doesn’t 
directly get into the effect of the accompanying n-gram model. 
As in the case of the baseline full parser, we do 20 passes over 
the training set and at each iteration, we update the parameters 
with a batch of 40 training instances gathered from all training 
sets in the setup.

In order to evaluate the effect of the training set size for 
each n-gram model, we use training sets of four different 
sizes for the n-gram parsers. We execute each experiment 
three times with randomly selected training sets. Table VII 
shows the averaged F 1 scores obtained by the jointly trained 
full parser on the development and test sets of the Wsj15. 
The rows indicate which models are trained together, whereas 
each column corresponds to a training set of different size 
for the n-gram model. In case of the full parser, we use the 
standard training set of the Penn treebank, which contains 
9,753 instances.

Scores in bold in Table VII indicate that the value is 
significantly3 better than the baseline value according to the 
t-test. When we compare the results with the baseline F 1 score 
of 87.8% on the development set and 86.4% on the test set, we 
observe slight improvement at some of the configurations. In 
general, the jointly trained full parser outperforms the baseline

3 The superscript * adjacent to the F i scores indicates that its significance is
p  < 0.01. In case of ** and ***, it is p  < 0.005 and p  < 0.001, respectively.

parser when it is trained alongside an n-gram parser that uses 
a relatively smaller training set, like 5,000 instances for the 
development set and 1,000 instances for the test set. The best 
results though, are obtained by jointly training the baseline 
parser with the 9-gram parser. These results are statistically 
significantly better than the ones of the non-jointly trained full 
parser both for the development and test sets. In addition to 
these comparisons, we also observed that within 20 iterations, 
the jointly trained full parser reaches its best performance 
faster with respect to the baseline parser, which shows the 
push of the n-gram parser over the full parser.

We also analyze how accurately the jointly trained parser4 
handles different constituent types. Table VIII shows the 
averaged F i scores for the most common constituent types 
in the development set. The results indicate a couple of 
interesting reasons behind the slight improvement of the jointly 
trained full parser over the baseline. The first one is the slight 
improvement on NPs as the n-grams are getting bigger, which 
is especially visible with the best performing configuration 
among them, that is the one with the 6-gram model. PPs and 
VPs are also better processed with almost all jointly trained 
models. The biggest improvement is seen with the adjective 
phrases (ADJPs), especially when smaller n-grams are used. 
Even though the impact of ADJPs to the overall result is 
small compared to the other phrase types like NPs and PPs, 
this improvement is still worth mentioning. It is interesting to 
note that the same analysis on the stand-alone n-gram parsers 
reveals that they are not that good with ADJPs. Another thing 
to notice is the degrading performance over the QPs, as well as 
sBAR and s  type constituents due to the fact that the n-gram 
parsers perform relatively worse on them (see Table V).

4Each accompanying n-gram parser in the HJL setup uses 5,000 training 
instances.

ISSN 1870-9044 11 Polibits (47) 2G13



Arda Çelebi and Arzucan Özgür

VII. Co n c l u s i o n  a n d  F u t u r e  W o r k

In this paper, we introduced n-gram parsing and analyzed 
how it is different than full sentence parsing. We observed 
that the bigger n-grams we use, the better accuracies we get, 
mostly due to increasing context information. We showed that 
the n -gram parsers are better than the full parser at parsing 
NPs, VPs, and PPs, but worse at parsing Ss and SBARs. 
After analyzing the stand-alone n -gram parsers, we used them 
for jointly training a full discriminative parser in the HJL 
setup in order to boost the accuracy of the full parser. We 
achieved statistically significant improvement over the baseline 
scores. The analysis of the results obtained with the jointly 
trained parser revealed that the resulting parser is better at 
processing NPs, VPs, PPs, and surprisingly ADJPs. However, 
it is negatively influenced by the performance of the n-gram 
parser over constituents like S and SBAR. Furthermore, it 
achieves its best performance faster than the baseline parser, 
indicating yet another benefit of training alongside an n-gram 
parser.

As future work, we plan to improve our baseline parser 
in order to make the jointly trained parser more competitive 
with respect to its peers in the literature. We will explore new 
approaches for selecting better n -gram trees to improve the 
quality of the training data. We also plan to use multiple n- 
gram parsers in joint training instead of just one. In addition, 
we will use the n-gram trees and the HJL setup to build a 
self-trained parser by expanding the n-gram parser’s training 
data with n -gram trees extracted from the output of the full 
sentence parser. This will enable the full sentence parser to be 
indirectly trained with its own output.

Ac k n o w l e d g m e n t s

We thank Brian Roark and Suzan Uskudarli for their 
invaluable feedback. This work was supported by the Bogazici 
University Research Fund 12A01P6.

r e f e r e n c e s

[1] T. Kasami, “An efficient recognition and syntax-analysis algorithm 
for context-free languages,” Technical report, Air Force Cambridge 
Research Lab, 1965.

[2] J. Earley, “An effcient context-free parsing algorithm,” Communications 
o f the ACM, vol. 13(2), pp. 94-102, 1970.

[3] M. Collins, “Head-driven statistical models for natural language 
parsing,” Ph.D. dissertation, Department of Computer and Information 
Science, University of Pennsylvania, 1999.

[4] E. Charniak, “Statistical parsing with a context-free grammar and word 
statistics,” Proceedings o f AAAI-97, pp. 598-603, 1997.

[5] A. Ratnaparkhi, “Learning to parse natural language with maximum 
entropy models,” Machine Learning, vol. 34(1-3), pp. 151-175, 1999.

[6] E. Charniak, “A maximum-entropy-inspired parser,” Proceedings o f the 
North American Association o f Computational Linguistics, 2000.

[7] M. Collins, “Discriminative reranking for natural language parsing,” 
Proceedings o f ICML-2000, pp. 175-182, 2000.

[8] L. Huang, “Forest reranking: Discriminative parsing with non-local 
features,” Proceedings o f Ninth International Workshop on Parsing 
Technology, pp. 53-64, 2005.

[9] D. McClosky, E. Charniak, and M. Johnson, “Effective self-training for 
parsing,” Proceedings o f HLT-NAACL, 2006.

[10] S. Abney, “Part-of-speech tagging and partial parsing,” Corpus-Based 
Methods in Language and Speech Processing, Kluwer Academic 
Publishers, Dordrecht, 1999.

[11] J. R. Finkel and C. D. Manning, “Hierarchical joint learning: Improving 
joint parsing and named entity recognition with non-jointly labeled data,” 
Proceedings o f ACL 2010, 2010.

[12] J. R. Finkel, A. Kleeman, and C. D. Manning, “Efficient, feature-based 
conditional random field parsing,” Proceedings o f ACL/HLT-2008, 2008.

[13] M. Marcus, B. Santorini, and M. A. Marcinkiewicz, “Building a 
large annotated corpus of English: The Penn Treebank,” Computational 
Linguistics, vol. 19(2), pp. 313-330, 1993.

[14] A. Ratnaparkhi, “A linear observed time statistical parser based on 
maximum entropy models,” Proceedings o f EMNLP, pp. 1-10, 1997.

[15] J. Henderson, “Discriminative training of a neural network statistical 
parser,” 42nd ACL, pp. 96-103, 2004.

[16] H. Zhang, M. Zhang, C. L. Tan, and H. Li, “K-best combination of 
syntactic parsers,” Proceedings o f EMNLP 2009, pp. 1552-1560, 2009.

[17] V. Fossum and K. Knight, “Combining constituent parsers,” Proceedings 
o f NAACL 2009, pp. 253-256, 2009.

[18] H. Daume III and D. Marcu, “Domain adaptation for statistical 
classifiers,” Journal o f Artificial Intelligence Research, 2006.

[19] J. R. Finkel and C. D. Manning, “Nested named entity recognition,” 
Proceedings o f EMNLP 2009, 2009.

[20] ------ , “Joint parsing and named entity recognition,” Proceedings o f the
North American Association o f Computational Linguistics, 2009.

[21] R. Bod, R. Scha, and K. Sima’an, “Data oriented parsing,” CSLI 
Publications, Stanford University, 2003.

[22] A. Joshi, L. Levy, and M. Takahashi, “Tree adjunct grammars,” Journal 
o f Computer and System Sciences, vol. 10:1, pp. 136-163, 1975.

[23] M. Bansal and D. Klein, “Web-scale features for full-scale parsing,” 
Proceedings o f 49th Annual Meeting o f ACL: HLT, pp. 693-702, 2011.

[24] A. Clark, “Combining distributiona and morphological information for 
part of speech induction,” Proceedings o f the tenth Annual Meeting o f  
the European Association fo r  Computational Linguistics (EACL), pp. 
59-66, 2003.

[25] T. Rose, M. Stevenson, and M. Whitehead, “The Reuters corpus 
volume 1 - from yesterday’s news to tomorrow’s language resources,” 
Proceedings o f the 3rd international conference on language resources 
and evaluation., 2002.

Polibits (47) 2G13 12 ISSN 1870-9044


