Patrones de implementacion para incluir
comportamientos proactivos

Mailyn Moreno, Alternan Carrasco, Alejandro Rosete y Martha D. Delgado

Resumen—1La programacion orientada a objeto enfrenta retos
como es el desarrollo de software en ambientes distribuidos. En
esta linea ha surgido el paradigma de agentes. Un agente exhibe
comportamientos que lo diferencia de un objeto, como la
autonomia y la proactividad. La proactividad permite
desarrollar sistemas dirigidos por metas, en los que no es
necesaria una peticion para que se inicie un trabajo. Incorporar
proactividad a un software es hoy una necesidad, existe una gran
dependencia de los sistemas computarizados y es mayor la
delegacion de tareas en ellos. Los patrones se han utilizado con
éxito en la reduccion de tiempo de desarrollo y el niimero de
errores en el desarrollo de software, ademas de ser una guia para
resolver un problema tipico. En este trabajo se presentan dos
patrones de implementacion para incorporar proactividad en un
software y facilitar el trabajo con los agentes. Se incluye un caso
de estudio del uso de los patrones propuestos en un observatorio
tecnoldgico.

Palabras claves—Agente, patrones, patron de implementacion,
proactividad.

Implementation Patterns to include
Proactive Behaviors

Abstract—ODbject oriented programming is facing challenges
such as the development of software in distributed environments.
Along this line has emerged the paradigm of agents. An agent
shows behaviors, such as autonomy and proactivity, that
differentiates it from an object. Proactivity allows developing
goal-directed systems, in which a request is not necessary to start
a task. Adding proactivity to a software is nowadays essential,
there is a big dependence on computer systems and it is greater
the delegation of tasks to them. The patterns have been used
successfully in reducing development time and the number of
errors in software, besides of being a guide to solve a typical
problem. In this paper, we present two implementation patterns
to add proactivity to software and to make it easier to work with
agents. A case study about the development of a technology
observatory using both patterns is also included.

Index Terms—Agent, patterns, implementation pattern, pro-
activity.

Manuscrito recibido el 18 de marzo de 2013; aceptado para la publicacidn
el 23 de mayo de 2013.

Mailyn Moreno, Alejandro Rosete y Martha D. Delgado pertenecen a la
Facultad de Ingenieria Informatica, Instituto Superior Politécnico “José
Antonio Echeverria”, La Habana, Cuba (e-mail: {my, rosete, marta}@ceis.
cujae.edu.cu).

Alternan Carrasco pertenece al Complejo de Investigaciones Tecnologicas
Integradas, La Habana, Cuba (e-mail: acarrasco@udio.cujae.edu.cu).

ISSN 1870-9044; pp. 75-88

I. INTRODUCCION

L paradigma de agentes constituye una tecnologia

prominente y atractiva en la informatica actual. Los
agentes y los sistemas multiagente estan contribuyendo
actualmente en dominios diversos, tales como recuperacion de
datos, interfaces de usuario, comercio electronico, robotica,
colaboracién por computadora, juegos de computadora,
educaciéon y entrenamiento, entre otras [1]. Ademas los
agentes estin emergiendo como una nucva manera de
pensamiento, como un paradigma conceptual para analizar
problemas y disefiar sistemas, y ocuparse de la complejidad,
distribucion ¢ interactividad; mientras que proporcionan una
nueva perspectiva en la computacion y la inteligencia [1]. Los
agentes son entidades que poseen propiedades como la
autonomia, la proactividad, la habilidad social, entre otras [2].
Existen agentes orientados a metas, que le dan solucion a
diferentes problemas. Entre las propiedades mas significativas
que diferencian a los agentes de los objetos esta la
proactividad, es decir, los agentes no s6lo actiian en respuesta
a su ambiente sino que son capaces de tener comportamiento
orientado a metas [3].

En la actualidad, los software mayormente se¢ construyen
bajo cl paradigma de orientacién a objetos, ya que este
paradigma ha alcanzado un gran auge [4]. En nuestros dias
hay una tendencia elevada de utilizar enfoques orientados a
objetos en todos los sistemas que se¢ construyen, debido a las
facilidades que brinda para la reutilizacién del cédigo [4]. Los
patrones de disefio son una muestra indiscutible de la fortaleza
que tiene la orientacidn a objetos [5].

Los patrones son una solucién a problemas tipicos y con su
empleo se puede hacer un desarrollo de software mas rdpido y
con mayor calidad [6].

En el desarrollo de un software orientado a objetos no se
tiene en cuenta los comportamientos proactivos que se puedan
incluir, los que pueden ser beneficiosos a los usuarios finales.
Esto sc debe a la naturaleza propia del objeto que exhibe un
comportamiento mediante la invocacidén de un método [7].

La proactividad es una caracteristica muy beneficiosa para
el software actualmente, se desea que los programas trabajen
por las personas con solo saber sus intereses. Con la
proactividad se pueden obtener asistentes personales en las
computadoras que ayuden en la basqueda de informacién [8]
y a la hora de la toma de decisiones [9]. En la vigilancia
tecnoldgica la proactividad es muy provechosa [10]. Segin
Henderson-Seller es posible obtener un sistema hibrido

Polibits (47) 2013

mailto:acarrasco@udio.cujae.edu.cu

Mailyn Moreno, Alternan Carrasco, Alejandro Rosete, and Martha D. Delgado

agente + objetos, donde se tenga en un software orientado a
objeto con caracteristicas de los agentes [3].

Se han desarrollado trabajos con patrones para la
orientacién a agentes con son [11], [12] pero estos no se
enfocan en la implementacién, o en problemas medulares
como la proactividad.

En este trabajo se hace una propuesta de patrones de
implementacidn que utilizan como base los patrones de disefio
de la orientacién a objetos y las recomendaciones de trabajos
de patrones para la orientacién a agentes para incorporar
proactividad a un software. Se aprovecha las ventajas que
provee la filosofia y las plataforma de desarrollo de agentes
para incluir este comportamiento. Se desarrolla un caso de
estudio sobre un observatorio tecnoldgico para aplicar los
patrones propuestos.

II. INGENIERIA DE SOFTWARE

La ingenieria de software es el uso de los principios de
ingenieria robustos, dirigidos a obtener software econémico
de gran fiabilidad, ademas de ser capaces de trabajar sobre las
maquinas reales con las que se cuentan. En el desarrollo de un
software es fundamental o casi imprescindible utilizar los
principios de la ingenieria de software. La misma comprende
todos los flujos de trabajo dentro el desarrollo de un software,
el andlisis, el disefio del sistema, la implementacion, las
pruebas, el control de versiones entre otros [13].

La ingenieria de software ha evolucionado por diferentes
ctapas para llegar a lo que existe hoy en dia. Por ejemplo pasé
por ¢l enfoque estructurado, luego llegé ¢l enfoque orientado
a objetos. El paradigma orientado a objetos fue un cambio en
la forma de pensar acerca del proceso de descomposicidon de
problemas [7]. Un objeto encapsula estados (valores de datos)
y comportamientos (operaciones). En la programacion
orientada a objetos la accidn se inicia mediante la trasmision
de un mensaje al objeto. Un objeto exhibird su
comportamiento mediante la invocacion de un método como
respuesta a un mensaje [7].

El enfoque orientado a objetos esta lejos de ser perfecto
para el desarrollo de un software, pero para la mayoria de los
desarrolladores es lo mejor que existe para el desarrollo de los
mismo [4]. En nuestros dias hay una tendencia elevada de
utilizar enfoques orientados a objetos en todos los sistemas
que se construyen, debido a las facilidades que brinda para la
reutilizacion del codigo [14].

En el desarrollo del software orientado objeto ha tomado
auge la utilizacién del Proceso Unificado de Desarrollo (RUP,
Rational Unified Process) [4], que es una propuesta de
proceso para ¢l desarrollo de software orientado a objetos que
utiliza UML (Unified Modelling Language) [15], [16] como
lenguaje que permite el modelado de sistemas con tecnologia
orientada a objetos.

RUP es un proceso de desarrollo dirigido por casos de uso.
Segiin [4] “Un caso de uso especifica una secuencia de
acciones, incluyendo variantes, que el sistema puede llevar a

Polibits (47) 2013

cabo, y que producen un resultado observable de valor para un
actor concreto”. La comunicacidn para iniciar un caso de uso
es a través de un mensaje o peticion de un actor. Esto implica
que los mismos no son autoiniciables, no tienen la iniciativa
de hacer algo sin una peticién u orden. Este comportamiento
es intrinseco en la orientaciéon a objetos porque los objetos
trabajan para dar respuesta a un mensaje.

A. Tendencias de la Computacion

La historia de la computacién en la actualidad se ha
caracterizado por cinco importantes 'y continuas
tendencias [1]:

1. Ubicuidad

La ubicuidad es una consecuencia de la reduccidén constante
en el costo de la computacidn, posibilitando introducir el
poder de procesamiento en los lugares y con dispositivos que
no han sido rentables hasta ahora.

2. Interconexion

Hace dos décadas los sistemas de computadoras eran
entidades generalmente aisladas, solo se comunicaban con los
operadores humanos. Los sistemas de computadora hoy en dia
se conectan a una red en grandes sistemas distribuidos.
Internet es ¢l claro ejemplo en que se evidencia la dificultad
de encontrar computadoras que no tengan la capacidad y
necesidad de acceder a Internet.

3. Inteligencia

Esta tendencia estd dirigida hacia sistemas cada vez mas
complejos y sofisticados. Es por ello que la complejidad de
las tareas que es capaz el ser humano de automatizar y la
delegacion en las computadoras ha crecido regularmente.

4. Delegacion

La delegacion implica que se le dé el control a sistemas
informaticos de tareas cada vez mas numerosas ¢ importantes.
Se observa con regularidad que se¢ delegan tareas a los
sistemas de computadoras como pilotear acronaves.

5. Orientaciéon a humano

Esta ultima tendencia trata acerca del trabajo constante de
aumentar ¢l grado de abstraccién de las metaforas que se usan
para entender y usar las computadoras. Estas se acercan cada
vez mas a la forma humana de actuar, que reflejen la forma en
que el humano entiende el mundo. Esta tendencia es evidente
en todas las formas en que se interactua con las computadoras.

B. Retos

Ante las nuevas tendencias, la orientacion a objetos y RUP
tratan de adaptarse a los requisitos de los sistemas distribuidos
abiertos. Uno de los autores del conocido RUP, Grady Booch,
ha plantcado la necesidad de nuevas técnicas para
descomponer (dividir en pedazos mas pequefios que puedan
tratarse independientemente), abstraer (posibilidad de modelar
concentrandose en determinados aspectos y obviando otros
detalles de menor importancia), organizar jerarquicamente
(posibilidad de identificar organizaciones, gestionar la
relaciones entre los componentes de la misma solucion que

ISSN 1870-9044

incluso permitan su tratamiento de grupo como un todo segun
convenga y ver cédmo lograr que entre todos s¢ haga la
tarea) [17].

En esta misma lineca de desarrollo de software para
ambientes distribuidos cada dia toma mas fuerza un
paradigma que muchos consideran como el proximo paso de
avance en la tecnologia de desarrollo de software: los
agentes [17].

Construir software que resuclvan problemas de negocios
actuales no es una tarca ficil. Al incrementarse las
aplicaciones sofisticadas demandadas por diversos tipos de
negocios y competir con un ventaja en el mercado las
tecnologias orientadas a objetos pueden ser complementada
por las tecnologias orientas a agentes [3].

III. AGENTES

Aunque no hay total unificacion en cuanto a qué es un
agente, un intento de unificar los esfuerzos para ¢l desarrollo
de esta tecnologia puede encontrarse en FIPA (Foundation for
Intelligent Phisical Agents) [18] que los define como una
entidad de software con un grupo de propiedades entre las que
se destacan ser capaz de actuar en un ambiente, comunicarse
directamente con otros agentes, estar condicionado por un
conjunto de tendencias u objetivos, manejar recursos propios,
ser capaz de percibir su ambiente y tomar de él una
representacion parcial, ser una entidad que posee habilidades
y ofrece servicios, que puede reproducirse, etc. [1].

De forma general, varios autores reconocen en los agentes
diversas propicdades, entre las que se destacan el ser
autonomos, reactivos, proactivos y tener habilidad social [17],
[19], [20].

Los agentes brindan una via efectiva para descomponer los
sistemas complejos, son una via natural de modelarlos y su
abstraccién para tratar las relaciones organizacionales es
apropiada para estos sistemas [2].

Franklin, después de estudiar doce definiciones, llegé a la
conclusion que los agentes tienen entre sus propiedades
principales la autonomia, estar orientados a metas, ser
colaborativos, flexibles, autoiniciables, con continuidad
temporal, comunicativos, adaptativos y mdviles. Agrega que
un agente auténomo ¢s un sistema situado en un ambiente que
percibe el ambiente y actia sobre €L, en el tiempo, segun su
agenda propia y de esta manera produce efectos en lo que €1
mismo podra sentir en el futuro [21].

Russel y Norvig, tienen una vision mas flexible de los
agentes, como una herramienta para analizar sistemas y no
como una caracteristica abstracta que divida al mundo en
agentes y no-agentes [22].

De forma general las anteriores definiciones son validas,
con distintos grados de amplitud y reflejando aspectos
diferentes, aunque ninguna entra en contradiccién con las
otras. Se puede decir que las propiedades fundamentales de
los agentes son: autonomia, reactividad, proactividad y
habilidad social. Las mismas se¢ pueden resumir €omo

sigue [1].

ISSN 1870-9044

Patrones de implementacion para incluir comportamientos proactivos

1. Autonomia

Actiian totalmente independientes y pueden decidir su
propio comportamiento, particularmente como responder a un
mensaje enviado por otro agente.

2. Reactividad
Perciben del entorno y responden a los cambios de éste.

3. Proactividad

No sélo actuan en respuesta a su ambiente, sino que son
capaces de tener comportamiento orientado a metas y
objetivos. Pueden actuar sin que exista una orden externa,
tomando la iniciativa.

4. Habilidad Social

Tienen la capacidad de interactuar con otros agentes
mediante algin mecanismo de comunicacion. Esto le permite
lograr metas que por si solos no puede lograr.

Lo novedoso de los agentes es que pueden ser proactivos,
tienen un alto grado de autonomia y estan situados en un
entorno con ¢l que interactan. Esto se hace especialmente
cierto en dreas como ambientes inteligentes, negocio
electronico, servicios Web, bioinformatica, entre otras. Estas
arecas demandan software que secan robustos, que puedan
operar con diferentes tipos de ambientes, que puedan
evolucionar en ¢l tiempo para responder a los cambios de los
requisitos, entre otras caracteristicas.

La mayor diferencia del enfoque orientado a agentes con el
enfoque orientado a objetos, es que los agentes pueden tener
autonomia, mostrar comportamientos proactivos que no se¢
puedan predecir completamente desde el inicio [23].

Uno de los retos que enfrenta la orientacién a objetos
ademas, es sencillamente que no permite capturar varios
aspectos de los sistemas de agentes. Es dificil capturar en un
modelo de objetos nociones de los agentes como acciones que
se hacen proactivamente o reacciones dindmicas a un cambio
de su entorno.

Es la proactividad una de las caracteristicas mas distintivas
de los agentes [1], [24]. La proactividad es un
comportamiento dirigido por metas. El agente trabaja para
alcanzar una meta. El comportamiento proactivo permite que
se le pase las metas al software y este trabaje para cumplirlas
cuando tenga las condiciones para hacerlo.

Los agentes al tener habilidad social normalmente no se les
encuentra solos en un sistemas, sino que un sistema puede
estar compuesto por mas de un agente. Los Sistemas
Multiagente (SMA) estan compuestos por agentes que tienen
conocimiento sobre su entorno, que cumplen con objetivos y
metas determinadas por sus responsabilidades. Estos agentes
no son independientes aunque si autdénomos en mayor o
menor medida. Son entidades de un todo, donde pueden
interactuar entre cllos informando y consultando a otros
agentes teniendo en cuenta lo que realiza cada uno de ellos,
llegando a ser capaces de conocer ¢l papel que tienen todos
dentro del sistema segun la capacidad que cada uno tenga de
actuar y percibir [1].

Polibits (47) 2013

Mailyn Moreno, Alternan Carrasco, Alejandro Rosete, and Martha D. Delgado

Un aspecto clave para el desarrollo de los SMA ha sido la
especificacion de los lenguajes de comunicacidn de agentes
(ACL por sus siglas en inglés) [25]. Un ¢jemplo de ACL es
FIPA-ACL [26], [27].donde se define una biblioteca con una
lista de actos comunicativos estandares, cada uno descrito con
los parametros y sus significados, junto a especificaciones en
una logica de precondiciones v efectos racionales. Ademas,
los mensajes pueden ser descritos segin un acto
comunicativo, una accién ¢jecutada en un contexto
determinado que implica un grupo de consecuencias, que
permite a los agentes entender la intencion del mensaje
recibido, en la forma de compromisos, derechos y
comportamientos.

Para el desarrollo de sistemas multiagente existen varias
plataformas de desarrollo. JADE' est4 entre las mas conocida
y utilizada de las plataformas por las facilidades que brinda,
entre las que estan permitir el desarrollo de aplicaciones de
agentes en el cumplimiento con las especificaciones FIPA
para sistemas multiagente [28].

La plataforma de agentes JADE trata de mantener en alto el
funcionamiento de un sistema de agentes distribuidos con el
lenguaje Java. De acuerdo con el enfoque de sistemas multi-
agente, una aplicacion sobre la base de la plataforma JADE se
compone de un conjunto de agentes cooperantes que Sse
pueden comunicar entre si a través del intercambio de
mensajes. Cada agente estd inmerso en un ambiente sobre el
que puede actuar y en los cuales los acontecimientos pueden
ser percibidos. El ambiente puede evolucionar de forma
dindmica y los agentes aparecen v desaparecen en ¢l sistema
de acuerdo a las necesidades y los requisitos de las
aplicaciones. JADE proporciona los servicios basicos
necesarios para la distribucién de aplicaciones en el ambiente
permitiendo a cada agente descubrir a otros dinimicamente y
comunicarse con ellos [29].

Para desarrollar un sistema multiagente los desarrolladores
necesitan implementar algunas funcionalidades que son de
vital importancia para la cjecucidon del sistema. Entre las
caracteristicas mas comunes estan las siguientes:

1. Ejecuciony control de la plataforma que contiene a los
agentes.

2. Gestionar ¢l ciclo de vida de los agentes.
Comunicar los agentes que viven dentro del sistema.

3.1. Enviar y recibir mensajes desde y hacia otros
agentes.

3.2. Procesar ¢l mensaje y tomar acciones dependiendo
de su contenido.

4. Comunicarse con los agentes coordinadores de la
plataforma.

4.1. Ver el estado de algiin médulo del sistema.

4.2. Buscar un agente para ver su estado.

! Java Agent DEvelopment Framework, http:/jade.tilab.com

Polibits (47) 2013

IV. PATRONES

El desarrollo de software basado patrones y modelos estd
rehaciendo el mundo de los desarrolladores de software [6].

De acuerdo con el diccionario de inglés Oxford* un patrén
“es una forma logica o regular”, “un modelo”, “cl disefio o las
instrucciones para hacer algo” o “un ¢jemplo excelente”.
Todos estos significados se aplican en ¢l desarrollo de
software, segin [30] la tercera definicidn es la mds acertada.

Christopher Alexander dice que, “Cada patrén describe un
problema que ocurre una y otra vez en nuestro entorno,
entonces describen el nmicleo de la solucion para ese problema,
de manera tal que usted pueda utilizar esta solucién un millén
de veces, sin tener que hacerlo dos veces de la misma
forma” [31]. Aunque es una definicidon para la arquitectura y
la construccién, s¢ puede utilizar para el desarrollo de
software. Los patrones, segun la disciplina de la Ingenieria de
Software en que s¢ manifiesta el problema que resuclven,
pueden ser de disefio, de implementacidn, etc. [5], [14].

“Los patrones de disefios son descripciones de las
comunicaciones entre objetos y clases que son personalizables
para resolver un problema general de disefio en un contexto
particular” [5].

Los patrones de implementacion son un moddulo de
software inico en un lenguaje de programacién en particular.
Una caracteristica crucial es que son ficilmente reconocibles
por ¢l software, lo que facilita 1a automatizacién [14], [32].

Los patrones de implementacidn comparten muchos
beneficios con los patrones de disefio por ejemplo establecen
un vocabulario. Como los patrones de disefio, los patrones de
implementacién proveen un medio para organizar y trasmitir
una base de conocimiento.

Segtin Beck “Los patrones de implementacién proveen un
catdlogo de problemas comunes en programacion y la forma
en que [...] se pueden resolver estos problemas™ [14].

Los patrones de implementacidon permiten que el trabajo de
los programadores sea mas efectivo a medida que gastan
menos tiempo en partes mundanas y repetitivas de su trabajo y
le dedican mas tiempo a resolver problemas verdaderamente
tnicos [14].

En general, un patroén tiene cuatro elementos esenciales [5]:

1. Nombre del patrdén

El nombre del patron es un indicador que se usa para
describir un problema, sus soluciones y consecuencias en
pocas palabras.

2. Elproblema
El problema describe cuando aplicar el patrén, explicando
el problema y su contexto.

3. La solucion

La solucién se compone de los elementos que resulten el
problema, sus relaciones, responsabilidades y las
colaboraciones.

% Oxford: Oxford English Dictionary, http://www.oed.com

ISSN 1870-9044

http://jade.tilab.com
http://www.oed.com

4. Las consecuencias

Las consecuencias son los resultados y los cambios
resultantes de aplicar el patréon lo que incluye su impacto
sobre la flexibilidad de un sistema, la extensibilidad o la
portabilidad.

Los patrones como idea y principio se pueden utilizar tanto
en la orientacion a objetos [5] y en la orientacion a agentes
[11], [12], [33]. En la orientacion a objetos los patrones mas
conocidos y utilizados son los patrones de disefio, ya que los
mismos se pueden llevar hasta la implementacion.

A. Patrones de Disefio en la orientacidn a objetos

Los patrones de disefio pueden ser de diferentes tipos
dentro de los cuales se encuentran los creacionales, los
estructurales y los de comportamiento [5], [6].

1. Patrones de creacion:

Ayudan a hacer un sistema independientemente de como
son creados, compuestos y representados sus objetos. Un
patrén creacional de clase utiliza la herencia para cambiar la
clase que es instanciada, mientras que un patron creacional de
objeto delegara la particularizacion a otro objeto. Dentro de
estos se encuentran: abstract factory, builder, factory method,
prototype y singleton.

2. Patrones estructurales

Los patrones estructurales se relacionan con el modo en que
las clases y objetos son compuestas para formar estructuras
mas grandes. Las clases de patrones estructurales usan, por
ejemplo, la herencia para componer o implementar interfaces.
Por ejemplo considere como la herencia miultiple mezcla dos
o mas clases en una, el resultado es una clase que combine las
propiedades de su clase padre. Este patron es particularmente
util para hacer bibliotecas de clases independientes
desarrolladas para trabajar juntas. Algunos de estos patrones
estructurales son: adapter, bridge, composite, decorator,

facade, flyweight y proxy.

3. Patrones de comportamiento

Los patrones de comportamiento tienen relacion con los
algoritmos y la asignacion de responsabilidades entre objetos.
Este no solo describe patrones de objetos o clases, sino
también la comunicacién entre ellos. Estos patrones
caracterizan flujos de control que son dificiles de seguir en
tiempo de ejecucion. Cambian su enfoque de flujo de control
para dejar que se concentre en la manera en que los objetos
son interconectados. Dentro de estos se localizan los
siguientes patrones: chain of Responsibility, command,
interpreter, iterator, mediator, memento, observer, state,
strategy, template method y visitor.

En este punto se quiere hacer énfasis en el patron Observer,
conocido también por Dependencia o Publicacion-
Suscripcion. Este patron define una dependencia de uno a
muchos entre objetos, de modo que cuando un objeto cambia
de estado, todas sus dependencias son notificadas vy
actualizadas automaticamente.

ISSN 1870-9044

Patrones de implementacion para incluir comportamientos proactivos

- A

PN : ‘-:‘95 Centro

\ Y N Y de noticias
4 & AN

% (Observable)

Recepcién
de noticias

‘ Emisién de noticias

R
RN

Usuarios registrados al centro de noticias
(Observer)

Fig. 1. Ejemplo del patron Observer.

Observable Observer

— .
Adicionar
observadores
"
w
Censar el
entorno
\)
Mo hay b Si hay
cambios " . camhios
o T
~
—" ~, - - .
Y Hotificar a los Realizar
~ observadores una accion
. S

Fig. 2. Diagrama de actividad del patron Observer.

La figura 1 muestra un caso tipico del patrén Observer. Se
trata de un centro de noticias al que estan inscritos usuarios
con sus preferencias. Al recibir noticias nuevas, el centro
distribuye las mismas segiun la preferencia de los usuarios
nscritos.

En la figura 2 se muestra el flyo de trabajo de los
componentes en el sistema. Esta figura 2 muestra el ciclo de
comportamiento del patron Observer. Se inicia con la adicion
de observadores, luego la instancia Observable monitorea el
entorno para ver si han ocurrido cambios. Si existe algo que
deba ser notificado a los observadores, envia un mensaje con
los datos necesarios para que las instancias de observadores
actlien en consecuencia. Este proceso se repite periodicamente
en el tiempo.

B. Patrones en la orientacién a agentes

En la orientacion a agentes se han propuesto patrones de
diseflo para resolver varios problemas propios de los sistemas
multiagente.

Polibits (47) 2013

Mailyn Moreno, Alternan Carrasco, Alejandro Rosete, and Martha D. Delgado

Uno de los primeros trabajo es propuesto en [34] v estd
enfocado en agentes moéviles con Aglets®. Ese trabajo incluye
tres clasificaciones muy orientadas a agentes méviles. Estan
los patrones de viaje (fraveling) que estan relacionados con el
reenvio y enrutamientos de los agentes mdviles, patrones de
tarcas (fask) para estructurar el trabajo con los agentes y
patrones de interaccion (interaction) para localizar y facilitar
las interacciones cntre los agentes. Los patrones estan
desarrollados en Java y enfocados en el disefio. Utilizan
diagramas de clases y de interaccién para exponerlos y
explicarlos.

En ese trabajo se presentan dos aplicaciones basadas en
agentes (File Searcher y Enhanced File Searcher), donde se
emplean combinaciéon de patrones. Esas aplicaciones se¢
utilizan para la implementacion de agentes moéviles que
buscan ficheros con cierta cadena en el nombre y que pueden
viajar por varios servidores para hacer la busqueda. En ambos
casos se basan en una filosofia reactiva donde los agentes
buscan lo que le pide un "master" y lo devuelven, pero no
conservan ninguna memoria de esa busqueda. Tampoco se
modela una solucién a la gestion de cambios en los ficheros
almacenados en los servidores sin necesidad de volver a
enviar la busqueda [34].

En[11]y [35] se enfatiza en la necesidad de los patrones de
disefio en orientacidén a agentes, como forma de recolectar y
formalizar experiencias para soluciones basadas en este
paradigma. En esc trabajo se¢ definen 4 clases de patrones:
metapatrones, patrones metaforicos, patrones arquitecturales y
antipatrones. Siguiendo esta clasificacion se desarrolla una
propuesta de 11 patrones. Segin Sauvage muchos patrones
orientados a agentes son recalmente patrones orientados a
objetos, ya que no van a aspectos singulares de la orientacion
a agentes, como la autonomia, las interacciones, entre otras
[11]. Ademas expresa que muchos patrones en la orientaciéon a
agentes se enfocan en ¢l disefio obviando la importancia de
tener patrones orientados a agentes en varias dimensiones
como el analisis o la implementacion.

En [36] se¢ presenta un esquema de clasificacion
bidimensional de los patrones. En su clasificacién segun el
aspecto de disefio (clasificacidn horizontal), estdn los
estructurales, de comportamiento, sociales y de movilidad.
Segtin el nivel de disefio (clasificacion vertical), estan los
patrones de analisis de roles, patrones de disefio de agentes,
patrones de disefio de sistema, patrones de la arquitectura del
agente y los patrones de implementacion del agente. Un
mérito importante de ese trabajo es que su clasificacion es
amplia v cubre varios niveles de abstraccidn. Aunque los
patrones se presentan en términos de los conceptos de la
metodologia ROADMAP [37] lo hace de una forma
abarcadora y general. Se exponen algunos ¢jemplos de
patrones de agentes y sus clasificaciones. Se enfatiza en que
esta clasificacion se enfoca mds en las nociones del paradigma
de agentes, no usando los de orientaciéon a objetos. Entre los

* Aglets, http://www.research.ibm.com/trl/aglets

Polibits (47) 2013

campos que sugicren para describir los patrones estan: el
aspecto de disefio (clasificacién horizontal) y el nivel de
disefio (clasificacion vertical) [36].

Existen otros trabajos, tal es el caso del repositorio de
patrones propuesto por ¢l grupo de desarrollo de la
metodologia PASSI que propone un conjunto de patrones,
algunos ¢jemplos son [33], [38]:

— Patrones multiagente que estdn relacionados con la
colaboracion entre dos o mas agentes

— Patrones para un solo agente donde se propone una
solucidn para la estructura interna de un agente junto con
sus planes de realizacion de un servicio especifico

— Patrones de comportamiento que proponen una solucion
para agregar una capacidad especifica al agente

— Patrones de especificacién de acciones que agregan una
funcionalidad simple al agente.

Todos estos patrones son para desarrollar un sistema multi-
agente mas robusto.

Sabatucci en el trabajo [12] se enfoca en patrones de disefio
y defiende que un aspecto importante de los patrones no e¢s
usarlo solos, sino hacer una combinacion de varios. En ¢se
trabajo se hace la formalizaciéon de los patrones con un
lenguaje que favorece la combinacion. Los patrones que
propone estan integrados a PASSI.

En ninguno de los patrones que se describen en los trabajos
anteriormente mencionados sobre patrones para la orientacion
a agentes s¢ hace énfasis en la proactividad o ambientes a
observar, sino en otras propiedades como la cooperacion, la
comunicacion, la estructura organizacional de los agentes u
otras. La mayoria de estos patrones s¢ enfocan en el disefio y
no en la implementacién. En esta direccion, no se conoce de
ningun trabajo enfocado en simplificar el trabajo con
JADE [39], encapsulando la soluciéon de problemas comunes
en la construccion de un SMA.

Particularmente estos dos aspectos (la proactividad, v la
simplificacion la configuracion de JADE) son dos problemas
comunes en muchas soluciones basadas en SMA, para las
cuales no s¢ conocen que hayan patrones definidos.

V. PATRONES DE IMPLEMENTACION PARA INCLUIR
PROACTIVIDAD

En esta seccion se proponen dos patrones de
implementacion. El patron Implementation JADE se enfoca
en simplificar la configuraciéon de JADE (para crear y manejar
agente) v el patron Proactive Observer JADE se enfoca en la
incorporacién de proactividad. Estos patrones siguen las
recomendaciones de [11] v [36] de que los patrones en la
orientacion a agentes se enfoquen a las propiedades singulares
de los agentes.

Como un patrén de implementacién debe estar hecho en un
lenguaje de programacion especifico, se utiliza el lenguaje
Java, que es el utilizado por la plataforma JADE. Teniendo en
cuenta la consolidacién alcanzada por JADE como plataforma

ISSN 1870-9044

http://www.research.ibm.com/trl/aglets

de software libre para el despliegue de un sistema multi-
agente y que esta basada en el estindar FIPA, se decidio
utilizar dicha plataforma para la propuesta de los patrones.

El patron Implementation JADE respeta la idea de
Beck [14] de que los patrones de implementacién traten de
que los programadores se enfoquen en lo que es realmente
singular de cada problema, ya que encapsula parte de la
complejidad del trabajo con JADE. Esto s¢ muestra en el
gjemplo que se¢ presenta en seccion siguiente. El patrdn
Implementation JADE desarrollado se usa luego en varios
lugares y simplificod el trabajo evitando "trabajo mundano y
repetitivo" [14] y enfocando el esfuerzo en "problemas
realmente tnicos" [14].

El patrdon Proactive Observer JADE respeta la sugerencia
de Sabatucci [12] de enfatizar en la composicidén de patrones
para crear nucvos patrones. Este patron tiene relacion con el
patron Ecological Recogniser mencionado en [36]. Ese patron
trata de inferir las intenciones de los agentes y se enfoca en el
descubrimiento. En el caso del Proactive Observer JADE las
intenciones s¢ conocen y s¢ relacionan con un ambiente que
se observa. Esto no estd concebido en Ecological Recogniser
en la forma de estar enfocado en la observacion y la decision
cuando la intencién es conocida

En la presentacién que sigue de ambos patrones se incluyen
los campos clasificacion horizontal y clasificacion vertical
sugerida en [36].

A. Descripcién de los patrones de implementacion en JADE
1. Patron Implementation JADE

Este patron simplifica el uso y configuracion de los
aspectos principales para ¢l trabajo en la plataforma JADE. A
continuacion se detallan los elementos esenciales del patrén:

Nombre del patrén: /mplementation JADE.

Problema: Especificamente, el patrén que aqui se describe
se debe utilizar cuando se quiera implementar las
caracteristicas mas comunes y que son de vital importancia
para la ¢jecuciéon del sistema de un sistema multi-agentes
mencionadas en la seccién I11.

Solucién: Este patron utiliza la plataforma JADE para el
trabajo con los agentes, sirviendo como intermediario a las
funcionalidades que implementa JADE.

El patron Implementation JADE contiene 7 grupos de
operaciones:

1. Inicializacién de la plataforma de agentes JADE.

1.1. Configurar algunos pardmetros de funcionamiento
de la plataforma.

1.2. Crear los contenedores (son necesarios para colocar
los agentes dentro).

1.3. Ejecutar los
correspondientes.

agentes en los contenedores

2. Unién a una plataforma ya existente.
2.1. En ocasiones es necesario tener a los agentes en

ISSN 1870-9044

Patrones de implementacion para incluir comportamientos proactivos

localidades fisicas diferentes, por lo que hay que
¢jecutar contenedores y agentes en una plataforma
que ya existia con anterioridad.

3. Volver a conectar a un agente que ha perdido a la
plataforma que lo mangja.

3.1. En el escenario en que un agente est¢ de forma
fisica en una localidad diferente, puede ser posible
que la plataforma colapse por alguna razén y sin
embargo, que sea necesario que los agentes sigan
trabajando de forma independiente.

3.2. Luego cuando la plataforma vuelva a funcionar, los
agentes pueden reincorporarse a su plataforma
correspondiente y socializar los resultados que
obtuvieron mientras trabajaban solos.

4. Implementar un comportamiento ciclico para poder
procesar los mensajes que recibe un agente determinado.

4.1. El desarrollador puede decidir qué tipo de mensaje
son aceptados.

4.2, Permite que el desarrollador procese el mensaje
como desee.

5. Todo el trabajo relacionado con enviar mensajes hacia los
agentes.

5.1. El desarrollador puede enviar mensajes a un agente
con una gran variedad de parametros, que van desde
los mas basicos a los mas complejos.

5.2. La mayoria de las veces solo se necesita enviar un
mensaje sencillo a un agente conocido, pero en otras
ocasiones, ¢l procesamiento ¢s mayor.

6. Trabajo con el agente AMS (Agent Management Service)

6.1. El AMS tiene un registro de los agentes y sus

atributos.

6.2. Controla el buen funcionamiento de la plataforma.

6.3. Incluir maneras de interactuar con ¢l AMS para
conocer datos sobre los agentes de la plataforma.
Ejemplo: saber donde estin los agentes para
comunicarse con ellos o el estado de un contenedor

determinado.
7. Trabajo con el agente DF (Directory Facilitator)

7.1. El control que tiene el DF sobre los agentes es
comparado con ¢l de las paginas amarillas.

7.2. Con ¢l DF se puede encontrar un agente que cumpla
con un atributo determinado siempre y cuando ese
agente s¢ haya registrado con ¢l DF.

7.3. Del mismo modo que con ¢l AMS, aqui estan las
posibles maneras de comunicarse con el DF para
obtener los datos que el desarrollador necesita.

Para lograr estas operaciones mencionadas anteriormente se
definieron un grupo de clases con funcionalidades generales.

Init Platform inicializa la plataforma JADE con las
configuraciones que esta permite, como por ejemplo, ¢l puerto
de conexién. Se encarga de crear los contenedores en los que
se almacenaran los agentes ¢ inicializa los agentes.

Polibits (47) 2013

Mailyn Moreno, Alternan Carrasco, Alejandro Rosete, and Martha D. Delgado

Join_Platform crea los contenedores y agentes externos, que
son subscritos a una plataforma que ha sido inicializada.

Work DF contiene todo el trabajo que s¢ realiza en
coordinacion con el DF (Directory Facilitator), que es similar
a las paginas amarillas de la guia telefonica. Registra en el
directorio del DF el servicio que un agente ofrece, para
ofrecer la posibilidad de buscar agentes en esos registros.

Work ACL engloba el trabajo que se realiza con el uso de
los mensajes ACL (Agent Communication Language).
Configura los mensajes con los pardmetros que son
introducidos como: tipo de mensaje, ¢l contenido del mensaje,
la identificacion de los agentes involucrados en la
comunicacién, ¢l objeto que se quiere enviar, etc.

Work AMS contiene todo el trabajo que se¢ realiza en
coordinaciéon con el AMS (Agent Management System).
Devuelve la descripciéon del agente que cumple con la
condicién que el usuario desce.

Behaviour Receive Msg implementa un Cyclic Behaviour,
para obtener y procesar los mensajes ACL que le llegan al
agente al que pertenece. Brinda la posibilidad de extender el
método "processMessage", que se ejecuta cuando se obtiene
un mensaje.

El diagrama de clase donde s¢ exponen las principales
clases del patron Implementation JADE estdn en la figura 3
junto con las clases del otro patrén de implementacidén que
aqui s propone.

Consecuencias: Este patron encapsula la capa de
abstraccion que facilita la configuracion del patron Proactive
Observer JADE.

Su objetivo es simplificar el desarrollo de un conjunto de
agentes, al tiempo que garantiza ¢l cumplimiento de los
estandares a través de un amplio conjunto de servicios del
sistema y los agentes con JADE. Permite que los
desarrolladores puedan hacer uso de la tecnologia de agentes
de una forma mas sencilla

Clasificacion horizontal: Estructural y social.
Clasificacion vertical: Implementacion del agente.

2. Patron Proactive Observer JADE

Este patron utiliza los principios de patrdn de
comportamiento Observer [5] y los combina con el patron
Implementation JADE.

Nombre del patrén: Proactive Observer JADE.

Problema: Sc¢ utiliza el patron en cualquicra de las
siguientes situaciones:

Cuando una abstraccion tiene dos aspectos, uno en funciéon
de las demas.

Cuando hay un cambio en una entidad, y es necesario
cambiar a los demds y no s¢ sabe cuantas entidades mas
habria que cambiar.

Cuando un entidad debe ser capaz de notificar a otras
entidades sin hacer suposiciones acerca de quiénes son estas
entidades.

* Comportamiento implementado en JADE para efectuar una accién
indefinidamente.

Polibits (47) 2013

Solucién: Para implementar el patron se necesitan de dos
entidades: “Observable” y “Observer”.

Entre los métodos mas relevantes de la entidad

“Observable” estan los siguientes:

1. Censar el ambiente cada determinado tiempo para
detectar algtin cambio.

2. Gestionar una lista con los observadores que se
subscriban.

3. Notificar a los observadores con los datos
encontrados en ¢l cambio ocurrido.

La entidad “Observer” tiene que tener métodos como:

1. Implementar el proceso de subscripcion a la lista del
“Observable”.

2. Actualizar su estado interno.

Esta permite realizar una accidén cuando se le notifique del
cambio.

Para lograr una implementacién genérica del patron con
agentes, se deben crear fundamentalmente dos entidades:
Observer y Observable. Los agentes que cumplirdn con estos
roles tendran la capacidad de comunicarse y actuar
auténomamente, pudiendo hasta cambiar su comportamiento
dependiendo de las situaciones a las que se enfrenten.

El Agente Observable debe tener una lista interna de los
agentes Observer para poder alertarlos de los cambios que
detecta. Ademas debe esperar los mensajes de subscripcidn de
los agentes Observer para poder sumarlos a la lista
mencionada y enviar la respuesta de la subscripcién. Por
ultimo debe tener la capacidad de enviar un mensaje a los
Observers con los datos necesarios del cambio encontrado.

El agente Observer tiene que conocer los Observables
existentes en ¢l entorno para luego decidir a cual subscribirse.
Ademas debe actualizar su estado cuando le llegue un
mensaje con los datos que describen el cambio ocurrido y
actuar en consecuencia.

De forma general se necesita que estos agentes se ejecuten
en una infraestructura que gestione los mensajes y ¢l ciclo de
vida de los agentes.

Como se describi6 anteriormente en el patron
Implementation JADE se implementaron un grupo de clases
para facilitar ¢l trabajo con la plataforma de agentes JADE.
Sobre la base de estas clases se realizaron otras que ¢jecutan
las funcionalidades del patron Proactive Observer JADE para
incluir proactividad. De esta forma, los siguientes pasos deben
ejecutarse en el momento de comenzar a utilizar el patron
Proactive Observer JADE creado:

1. Iniciar la plataforma a través de la clase de apoyo
Init Paltform.

2. Crear los contenedores que contienen a los agentes.

3. Afadir los agentes necesarios a los contenedores.

4. El usuario programador debe implementar las
acciones del Observable y los Observers. En este
caso la clase creada para este fin es Agent Actions.

ISSN 1870-9044

Patrones de implementacion para incluir comportamientos proactivos

Join_Platform

-hosthame : String
-t . Rurtime

-agentContainers : HashiMap=K-=String, \V-=AgertContainer=

+int{ hostMame : String) : void

+oreatefgentContainer(containerMame : Strin
+addAgert ToCortainer(cortainerMame : String, agentMame : String, agentClass : String, agentArgs : Object[1" 1 : void

: woic]

Bahaviour_Receive_Msg

<< JavaElement>>+action() : void{Javadnnotations = @Override}
+processMessagel msg - AGLMessage) : void

MyObserverAgent

ObserverAgent

<=JavaElement=> ==setter=>&setup() : void{Javasnnotations = @Override }

<=JavaElement=>#handleinform{ msg : ACLMessage) : void{JavaAnnaotations = @0Override}

<csetters>#setup() : void
#akeDown() : void
#handlelnform(msg : ACLMessage) : void

ObservablaTickar

ObservableAgent

<zconstructor==+ObservableTicker{ a: Agent, period : long)
<<l avallement==+onTick() : voidkJavaAnnotations = @ Override}
+Zreaci()

i)

|

MyObservableTicker

<=gonstructor==+MyOhservableTicker{ a : Agent, period : long)
== JavaElement==+onTick() : void{JavaAnnetations = @Override}

-ohservers : LinkedList<E-=AID=

<<getter=>#setup(tickTime : long) : void
#takeDown() : void
+notifyOkservers(content ; String) woid

MyObservableAgent

=<JavaElement== =<setter==#setup() : void{JavaAnnotations = @Owverricle}

Init_Platform

-t . Rurtime

-agentContainers : HashiMap=K-=String, V-=AgentContainers

+init() : void
-wait until JADE awake() . void
+ereateAgentContainer(cortainerName : String) : void

Fig. 3. Diagrama de clases de los patrones Implementation JADE'y Proactive Observer JADE.

Se implementd6 el patron Proactive Observer JADE
utilizando agentes, con las clases que proporciona JADE,
logrando que el patron funcione en un ambiente distribuido. A
continuacion se explican las clases que le dan las
funcionalidades al patron.

Agent Actions tiene un método ObserverAction que se
¢jecuta cuando al agente Observer le llega un mensaje y un
método ObservableAction que censa el ambiente cada
determinado tiempo. La clase estd disefiada para que el
usuario coloque el cddigo de las acciones que desea realizar
en cada caso.

ObservableAgent extiende de Agent, escucha los mensajes
del tipo Subscribe [27] que le llegan de un Observer. Cuando
un mensaje de este tipo es recibido, se decide si adicionarlo a
la lista de Observers o no. Si hay alglin cambio se notifica a
los Observers que se encuentren en la lista. La observacion
del ambiente se realiza usando la implementacién del
ObservableTicker.

ISSN 1870-9044

ObserverAgent extiende Agent, al ejecutarse se subscribe a
un Observable y espera el mensaje de respuesta de si fue
subscrito o no. Espera por la notificacion del Observable y
realiza alguna accion.

ObservableTicker extiende el funcionamiento de
“TickerBehaviour” de JADE. Brinda la posibilidad de
extender el método "onTick”. Este método se encarga de cada
cierto tiempo verificar si hubo algiin cambio en ¢l entorno.

Las clases que heredan de estas tres ultimas, llamadas con el
sufijo My, son aquellas que el programador debe implementar
para que realicen las operaciones que se necesiten. Por
¢gjemplo, como revisar ¢l ambiente y qué hacer cuando al
Observer le llega la notificacion de que Observable encontrd
algo monitoreando ¢l ambiente.

La figura 3 muestra ¢l diagrama de las clases principales del
patron Implementation JADE 'y del patrdn Proactive
Observer JADE. La figura 4 describe el modelo en capas que
muestra como se relacionan las clases.

Polibits (17) 2013

Mailyn Moreno, Alternan Carrasco, Alejandro Rosete, and Martha D. Delgado

Capa especifica

R
Agent_Actions %
-,

Capa general \

Software de Sistema

5
| .
| £
| L
\-.
i
____________ o
ACLMes=zage
_________ & f_ _\‘_ — — — P — =
4 K
i 4y
‘HTTP ‘ |TCPIIP‘

Fig. 4. Diagrama en capas de la relacion entre las clases.

: ObserverAgent |

| : ObservableTicker

: ObservableAgent

|
1: Creacién del comportamiento periddico

P

3 Adiciona un observador o no a la lista

4. Envia mensaje de respuesta

2 Mengaje ACL para subscribirse

G Notiﬁcq al Observable si hubo cambios

|5: Censa el entorna

L

7. Maotifica a los Observadores del cambio OCul'I'idD

8 Actualiza el estado

Fig. 5. Diagrama de secuencia del funcionamiento de Proactive Observer JADE

El funcionamiento de las entidades que se ejecutan en el
patron Proactive Observer JADE puede entenderse mejor en
el diagrama de secuencia de la figura 5. Se indican las
diferentes llamadas a las funciones de los agentes para que se
vea la interaccion entre ellos.

Las clases representadas en este diagrama interactian de
manera que Observabledgent llama al constructor de
ObservableTicker, para que asi se pueda censar el ambiente

Polibits (17) 2013

cada cierto tiempo. ObserverdAgent envia un mensaje a
ObservableAgent para subscribirse a ¢l y espera la respuesta
del mismo.

ObservableTicker 1lama al método “onTick” para censar el
entorno y ver si ha ocurrido algin cambio. Si hay cambios
entonces notifica a Observabledgent para que envie un
mensaje a los observadores de su lista, los que a su vez
actualizan su estado.

ISSN 1870-9044

Ohser

vahl
omer | yaie;

Ohserve
r_Agent1
I

Ohserve
r_Agent2
I

] |
L REQUEST0|(52 52)
REQUEST:1 (53 59)
INFORM:0 (5|2 128 §2) .
INFORM:1 (5-3 130 53)
REQUEST:2{(2-4 24)
REQUEST:3 (35 34)
INFORM:2 (2|4 134 2-4)
INFRM:3 (35 136 $.5)
REQUEST:4 (07 07)
REQUEST:5|(0-6 0-6)
INFQRM:4 (0-7 146 §-7)
INFORM:5 (O}6 147 0-6)
SUBS RIBE:B(153EID)
SUBSCRIBE:{ (148 6 0)
AGREE:S (153 150,4_0)
AGREE:7 (142 181 8_0) o
ORM:S (156 _ [) "
INFORM:E|(156)

18 >

”

v

v

© ® N D s W N
x

>
o
r

-
pre
v

O §
w N

-
b

-
O

-
=]

-
~

Fig. 6. Vista del despliegue del Proactive_Observer JADE

Entre las funcionalidades mas importantes del
Proactive Observer JADE, que utiliza como base el
Observable, es la gestion de los Observers, avisandoles de los
cambios encontrados. A su vez, los Observers deben
subscribirse a un Observable cuando se inician.

De acuerdo a estas caracteristicas se implementd un agente
Observable que al iniciar espera un mensaje de subscripcion
de los sucesores y ejecuta un comportamiento “7icker” que
censa el ambiente para informar de algiin cambio ocurrido.
Cuando inicia el Observer, él conoce quien debe ser su
predecesor, y le envia un mensaje de subscripcion. El ciclo de
ejecucion del patron sigue los pasos explicados anteriormente
y se muestran en la figura 6.

Los cuadrados de color rojo representan los agentes que se
estan ejecutando en la plataforma JADE. Las flechas son los
mensajes que son enviados entre ellos en el transcurso del
tiempo. Ademas los mensajes de un mismo color significan
que uno es respuesta del otro. Los primeros dos mensajes son
parte del funcionamiento de JADE, y como se puede observar
las flechas van desde el ams al df y a otro agente. Esto
significa que el primero esta reportando alguna informacion
interna de JADE. Para un mejor entendimiento, se detallaran
solo los mensajes relacionados con el agente Observer 1.
Pero cabe destacar que los demas Observer también realizan
las mismas actividades.

En la figura 6 se muestran los mensajes numerados, a
continuacion se explican algunos de ellos segin esa
numeracion:

3. primer mensaje relacionado con el patron, donde el
Observer 1 se registra al directorio del df Luego el df
informa de que el registro fue realizado.

7: respuesta recibida del mensaje 3.

ISSN 1870-9044

Patrones de implementacion para incluir comportamientos proactivos

10: enviado desde el Observer 1 hacia el ams para pedir la
identificacion del agente Observable al cual quiere
subscribirse.

14: respuesta recibida del mensaje 10.
19: el Observer 1 se subscribe a Observable.
21: el Observer 1 recibe la respuesta de la subscripcion.

27: Observable le
encontrado.

informa a Observer 1 del cambio

Consecuencias: A partir del uso del patron se garantiza que
las entidades Observer reciban una notificacion encontrada
por la entidad Observable y puedan tomar decisiones o
realizar una accion. Con el uso del patron se logra ademas el
funcionamiento de los agentes con un despliegue distribuido.

Clasificacion horizontal: Estructural, de comportamiento y
social.

Clasificacion vertical: Implementacion del agente.

VI. APLICACION DE LOS PATRONES EN UN CASO DE ESTUDIO

La proactividad se puede utilizar en cualquier sistema para
aumentar sus prestaciones de cara al usuario. Algunos agentes
pueden verse como un “objeto astuto” o un “objeto que puede
decir no”. Viéndolo asi un sistema hibrido agentet+objetos es
completamente viable [3].

Para lograr incorporar comportamientos proactivos en un
software orientado a objetos, lograr una hibridacion y manejar
la proactividad en software orientados a objetos se pueden
utilizar los dos patrones de implementacion propuestos.

Un caso a tener en cuenta la proactividad es en la

construccion de un observatorio tecnolégico. Un observatorio
es una herramienta para realizar vigilancia tecnologica, que
reconoce cambios en el dominio de informacién que procesa,
gestiona y observa, por lo tanto, teniendo en cuenta
comportamientos previos, puede avisar con antelacion de
ciertas variaciones o diferencias en parametros que evalua,
generando un conocimiento con un alto nivel de importancia
al ser actual y novedoso, que puede ser utilizado por los
receptores que tengan interés en esa informacion [40].
Una situacion que aiin no tiene una respuesta acertada, es que
muchos OT operan gracias a las personas que trabajan
dandole soporte, buscando, procesando, resumiendo,
colocando noticias en los sitios web e informando a los
clientes de sus descubrimientos. El desarrollo y buen
funcionamiento de un OT enfrenta no sélo el problema
relacionado con el numero y nivel académico del personal que
lo integra [40]. También es necesario que los OT tengan la
capacidad de ser proactivos en cuanto a la busqueda de
informacion, de estar orientados a metas a partir de las
necesidades de sus usuarios. Los observatorios deben utilizar
un método claro, riguroso y neutro de alerta temprana para sus
usuarios [10].

Descripcion general del Observatorio Tecnologico: FEl
sistema se divide en una capa cliente y una capa que
representa al observatorio como se ve en la figura 7. El
sistema tiene agentes personales, estos son una frontera entre

Polibits (47) 2013

Mailyn Moreno, Alternan Carrasco, Alejandro Rosete, and Martha D. Delgado

&
Intgrfaz p— .Qsﬁ
Gréfica
Capa cliente j
Observatorio
— : N Agente
. Personal
Repositorio
\—/

Agente
Fuente Dato
Fig. 7. Vista esquematica del observatorio.

el usuario y el observatorio, son los encargados de representar
al usuario en todo momento. El Agente Personal (AP) se
dedica a gestionar la informacion que el usuario necesita y lo
hace a partir de sus intereses. También tiene un repositorio, al
cual se subscriben los AP, de esta manera, publicando la
documentacion perteneciente a las linea de investigacion de
Sus usuarios.

Otros pueden acceder a ella cuando sea necesario. Ademas
tiene agentes Fuentes de Datos que estan alerta a los pedidos
de descarga y busqueda de los AP. Si alguien necesita una
informacién en especifico ésta es pedida a su Agente
Personal, que busca en las fuentes de datos disponibles y
envia la respuesta al usuario.

Problemas: En este sistema se presentan dos problemas
fundamentales que son tratados por los patrones descritos en
este documento.

1. El primero estd relacionado con la dificultad del trabajo
con JADE de forma general, ya sea la gestiéon de los
agentes, los contenedores, la plataforma, envio y
recepcion de mensajes ACL, ete.

2. Otro problema se encuentra cuando un especialista
necesita una informacién que es relevante para su trabajo
y debe esperar a que en la planificacion de su Agente
Personal, se realice la busqueda de recursos. Esto
conlleva a que el especialista debe esperar un tiempo para
recibir resultados de la busqueda.

Se quiere que de forma periddica el AP haga un
reconocimiento del entorno para encontrar informacién nueva
y relevante para su usuario. Primero, debe comunicar con
otros AP y si estos no dan una respuesta satisfactoria debe
pasar a tramitar sus pedidos con el Agente Fuente de Datos.
Cuando se encuentra algo nuevo el AP debe enviar un correo
electronico a su usuario con los resultados.

Soluciones: En la implementaciéon del sistema se utilizo el
patrton Implementation JADE vy el patron Proactive
Observer JADE. A continuacién se explica cémo fueron
usados cada uno.

Polibits (17) 2013

1. EI sistema del Observatorio utiliza las clases de apoyo
para ejecutar la Plataforma JADE, brindadas por el patréon
Implementation JADE, para inicializar los contenedores
y los agentes, para comunicarse con los agentes del
servidor JADE (ams y df), ademas envia y recibe los
mensajes ACL entre agentes. El programador realiza
todas estas funciones de forma sencilla y flexible con el
minimo esfuerzo posible.

2. Se implement6 un agente FuentedeDatos_Agent que
extiende las funcionalidades de la clase ObservableAgent,
que por las caracteristicas de este sistema la funcién que
efectiia es gestionar un sitio (repositorio). También se
implementaron tres agentes Personal_Agent que
extienden la clase ObserverAgent, que en este sistema
atiende a los especialistas. Ambas clases se vinculan por
medio del patron Proactive_Observer JADE.

De forma natural el agente personal solicita la bisqueda de
documentos a los agentes fuentes de datos del sistema, de
forma que los dultimos realizan busquedas en sus
correspondientes sitios y devuelven una lista de aquellos
documentos que cumplan con las palabras pedidas por los
usuarios.

Al utilizar el patron Proactive Observer JADE una persona
puede desear subscribirse a un sitio, consiguiendo que el
agente Fuente de Dato que gestiona ese sitio pueda enviar
resultados en el momento en que los encuentra al Agente
Personal que atiende a ese usuario. Este ultimo entonces envia
un correo con los resultados encontrados antes de tener que
realizar una busqueda que viene condicionada por la
planificacién en su ciclo.

Los tres Agentes Personales asumen el rol de Observer vy el
Agente Fuente de Datos el de Observable. En la figura 8 se
muestra como los Agentes Personales se subscriben al Agente
Fuente de Datos de la misma forma en que fue explicado el
patrdn Proactive Observer JADE anteriormente. En los
mensajes del 31-33 estdn los envios de informaciones
encontradas para estos tres especialistas, en el momento en
que se encuentran los documentos para ellos.

En la figura 9 se muestra un ejemplo del correo enviado por
el Agente Personal al especialista.

Todo la informacién relevante a un usurario se obtiene de
forma proactiva, con solo decir sus intereses. Fl agente
personal que representa al usuario con sus intereses,
utilizando el patrén Proactive Observer JADE, se mantiene
buscando cada cambio, en los sitios que se escogen. Cuando
hay un cambio, el usuario recibe un correo con 1o nuevo
encontrado en los sitios o lo que ha socializado otro agente
personal.

VII. CONCLUSIONES

En este trabajo se propuso dos patrones de implementacion
utilizando como base el patrén de disefio de la orientacion a
objeto Observer y siguiendo la filosofia de agentes. Para
desarrollar el patron Implemetation JADE se tomé como base
la plataforma de desarrollo de agentes JADE y en el mismo se

ISSN 1870-9044

B snifferD@SMAObservatorio:1099/JADE - Sniffer Agent

Patrones de implementacion para incluir comportamientos proactivos

Actions About
¥ |2 HH) eea H

¢ 1 AgentPlatforms
¢ £ ThisPlatform

¢ @ Main-Container

E RMA@SWAODservatorio: 1| :

REQUEST:O[-11 -11)

ams@SMAObservatorio: 1] ;

F 33

REQUESTA[-10 -10)

df@SMAObservatorio: 109 :
@ sniffer0@SMAObservatori(-

IMFORM:1 (10 910 -10)

¢ @@ Personal_Agents :
@ AP_1046@SMACbservatg :

INFORM O (-11 909 -11)

¥

@ AP_1079@SMACbservatd a

m

EST:Z (13 -1 b
hl

AP_1052@3MACbservatq |

REQUEST:4(-14 -14)

B AP_44@SMAObservalorid |

R I T T S R

F 3

REGQUESTS[:15 -15)

@ sniffero-on-Personal_Ager -
¢ @8 Server_Agents o I

Downloader_Agent@SMA{ ;| '

B FTP_CCI@SMAObsevaldilie

@ Indexer_Agent@SwWAObsg || 2

INFORM:4(-14 971 143
>

&
INFRRM:3 (13 971

d Trust_Agent@SMAObseny ;| '#
sniffer0-on-Server_Agents :

REQUEST:O (-15 -1 bl
bl

INFORM:S (-15 002 -15)

Foos

UEST: 1 (018,
=

REQUEST:3 (20 20)

7 018

INFOIRM:O (-18 D33 {15)
>

»

4| i I D

REQUEST.4 (033
REQUESTHDZ2)
UEST4 033, [)

r

5

el

REQUESTH @42 3

¥

]

EQUEST:S 040 |)
&

RERUEST:S (048 |)

Fig. 8. La pantalla de ciclo de vida de los patrones Implementation JADE y el patron Proactive Observer JADE en el Observatorio

Las palabras buscadas fueron: web service, team foundation server
El Observatorio ha encontrado 52 recursos v 0 URL que pueden ser de su interés.

A continuacién se muestra la cantidad de recursos encontrados de cada fuente.
FIP CCI 49
FIP_TELECO 3

Recursos organizados por orden de relevancia.

Lista de recursos encontrados:

Nombre: Professional Team Foundation Server 2010 pdf
Relevance: 93.04
Term - Frequency:
web service - 19
team foundation server - 2120
Page count: 722
Author: Ed Blankenship, Martin Woodward, Grant Hollidav & Brian Keller
Creation date: 2011/03/15 08:52:35
Modification date: 2011/05/18 22-57-22
Title: Professional Team Foundation Server 2010

Fig. 9.Correo electrénico de resultado de la ejecucion de los patrones
Implementation JADE'y el patrén Proactive Observer JADE en el
Observatorio

da una capa de abstraccidbn para ¢l trabajo con las
funcionalidades de agente de una forma sencilla. Este patron
sirvié como nucleo para el patron Proactive Observer JADE
permite incluir entidades que a partir de una meta y cambios
en ¢l ambiente que revisan se realice una accién proactiva.
Ambos patrones se utilizaron en un caso de estudio
relacionado con problemas en un observatorio tecnoldgico. Al

ISSN 1870-9044

aplicar los patrones en el caso de estudio se pudo comprobar
que se pudo agregar de forma satisfactoria un comportamiento
proactivo beneficioso para el usuario. La inclusién de
caracteristicas proactivas en un Observatorio Tecnoldgico
mejora el rendimiento del mismo, yva que ¢l sistema es capaz
de adelantarse a las solicitudes de informacion de los usuarios.
Los patrones propuestos presentan una alta reutilizaciéon para
los programadores que deseen utilizarlos, debido a la facilidad
del lenguaje Java con el que fueron desarrollados. Con los
mismos s¢ puede incorporar proactividad en un sistema y
manejar de una forma sencilla los agentes.

Referencias

[1]1 M. Wooldridge, “An Introduction to MultiAgent Systems,” 2nd ed.
John Wiley & Sons, 2009.

[2] N.R. Jennings. (2000). “On agent-based software engineering,”
Artificial Intelligence, 117(2), pp. 277-296.

[3] B. Henderson-Sellers and P. Giorgini, “Agent-Oriented
Methodologies,” 1st ed. Hershey: Idea Group Inc, 2005.

[4] L Jacobson, G. Booch and J. Rumbaugh, “The Unified Software
Development Process,” reprint ed. Prentice Hall, 2012.

[5] E. Gamma, Design Patterns: “Elements of Reusable Object-oriented
Software,” ed. Pearson Education, 2004,

[6] A. Shalloway and J.J. Trott, “Design Patterns Explained: A New
Perspective on Object-Oriented Design,” ed. Addison-Wesley, 2002.

[71 T. Budd, “An introduction to object-oriented programming,” 3rd ed.
Addison-Wesley, 2002.

[8] C. Ruey Shun and C. Duen Kai. (2008). “Apply ontology and agent
technology to construct virtual observatory,” Expert Systems with
Applications, 34(3), pp. 2019-2028.

Polibits (17) 2013

Mailyn Moreno, Alternan Carrasco, Alejandro Rosete, and Martha D. Delgado

(9
[10]

(1]

[12]

[13]
[14]
[13]
[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[23]

A. Adla. (2006). “A Cooperative Intelligent Decision Support System
for Contingency Management,” Journal of Computer Science, 2(10).

L. Rey Vazquez. (2009). “Informe APEI sobre vigilancia tecnoldgica”,
Asociacion Profesional de Especialistas en Informacion. [Online].
Auvailable: http:/eprints.rclis.org/17578.

S. Sauvage, “Agent Oriented Design Patterns: A Case Study,” in Proc.
of the Third International Joint Conference on Autonomous Agents and
Multiagent Systems, Vol. 3, 2004, pp. 1496-1497.

L. Sabatucci, M. Cossentino and S. Gaglio, “A Semantic Description
For Agent Design Patterns,” in Proceedings of the Sixth International
Workshop "From Agent Theory to Agent Implementation” (AT2A1-6) at
The Seventh International Joint Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS 2008), 2008, pp. May 13.

R.S. Pressman, “Software engineering: a practitioner's approach”, 7th
ed. McGraw-Hill Higher Education, 2010.

K. Beck, “Implementation patterns,” 1st ed. Addison-Wesley, 2008.

M. Fowler, “UML distilled”, 3rd ed. Addison-Wesley, 2004.

J. Rumbaugh, 1. Jacobson and G. Booch, “The Unified Modeling
Language Reference Manual,” 2nd reprint ed. Addison-Wesley, 2010.
N.R. Jennings, “An agent-based approach for building complex
software systems,” Comm. of the ACM, 44(4), 2001, pp. 35-41.

FIPA, “FIPA Agent Management Specification,” Foundation for
Intelligent Physical Agents, 2003. [Online]. Available: http://www.
fipa.org/specs/fipa00023/XC00023H.html.

F. Zambonelli and A. Omicini, “Challenges and Research Directions in
Agent-Oriented Software Engineering,” Autonomous Agents and
Multi-Agent Systems, 9(3), 2004, pp. 253-283.

F. Dignum er al., “Open Agent Systems,” in Agent-Oriented Software
Engineering VIII, Springer Berlin Heidelberg, 2008, pp. 73-87.

S. Franklin and A. Graesser, “Is it an Agent, or Just a Program?: A
Taxonomy for Autonomous Agents,” in Proceedings of the Workshop

on Intelligent Agents 1[I, Agent Theories, Architectures, and
Languages, 1997, pp. 21-35.
S. Russell and P. Norvig, “Artificial Intelligence: A Modem

Approach,” 3rd, illustrated ed. Prentice Hall, 2010.

B. Henderson-Sellers, “From Object-Oriented to Agent-Oriented
Software Engineering Methodologies,” in Sofiware Engineering for
Multi-Agent Systems 111, Springer Berlin Heidelberg, 2005, pp. 1-18.
S.A. O’Malley and S.A. Deloach, “Determining When to Use an
Agent-Oriented Software Engineering Paradigm,” in Agent-Oriented
Software Engineering I1, Springer, 2002, pp. 188-205.

E. German and L. Sheremetov, “An Agent Framework for Processing
FIPA-ACL Messages Based on Interaction Models,” in Agent-Oriented
Software Engineering VII, Springer, 2008, pp. 88—102.

Polibits (47) 2013

88

[26]

[27]

[28]
[29]
[30]

[31]

[32]

[33]

[34]

[33]

[36]

[37]

[38]

[39]

[40]

FIPA, “FIPA Communicative Act Library Specification,” Foundation
for Intelligent Physical Agents, 2003. [Online]. Available: http://www.
fipa.org/specs/fipa00037/SCO0037]. html.

FIPA, FIPA ACL Message Structure Specification. Foundation for
Intelligent Physical Agents, 2003. [Online]. Available: http://www.
fipa.org/specs/fipa00061/SCO0061G.himl.

F. Bellifemine er al., “Jade—A Java Agent Development Framework,”
in Multi-Agent Programming, Springer US, 2005, pp. 125-147.

F.L. Bellifemine, G. Caire and D. Greenwood, “Developing Multi-
Agent Systems with JADE,” ed. Wiley, 2007.

P. Evitts, “A UML pattern language,” ed. Macmillan Technical
Publishing, 2000.

C. Alexander, S. Ishikawa and M. Silverstein, “A Pattern Language:
Towns, Buildings, Construction,” 21th ed. New York: Oxford
University Press, 1977.

J. Gil and 1. Maman, “Implementation Patterns. Department of
Computer Science Technion-Israel Institute of Technology”, 2004.
[Online]. Available: http://www.cs.technion.ac.il/~imaman/stuff/ip-
ecoop05.pdf

M. Cossentino, L. Sabatucci and A. Chella, “Patterns Reuse in the
PASSI Methodology,” in Engineering Societies in the Agents World
1V, Springer Berlin Heidelberg, 2004, pp. 294-310.

Y. Aridor and D.B. Lange, “Agent design patterns: elements of agent
application design,” in Proceedings of the Second international
conference on Autonomous agents, 1998, pp. 108-115.

S. Sauvage, “Design Patterns for Multiagent Systems Design,” in
MICAI 2004: Advances in Artificial Intelligence, Springer Berlin
Heidelberg, 2004, pp. 352-361.

A. Oluyomi, S. Karunasekera and L. Sterling, “An Agent Design
Pattern Classification Scheme: Capturing the Notions of Agency in
Agent Design Patterns,” in Proceedings of the Ith Asia-Pacific
Software Engineering Conference, 2004, pp. 456—463.

F. Bergenti, M.-P. Gleizes and F. Zambonelli, Methodologies and
Software Engineering for Agent Systems: The Agent-Oriented
Software Engineering Handbook, ed. Springer, 2004.

A. Chella, M. Cossentino and L. Sabatucci. “Tools and patterns in
designing multi-agent systems with PASSL” WSEAS Transactions on
Communications, 3(1), 2004, pp. 352-358.

F. Bellifemine e al., “JADE-A Java Agent Development Framework,”
in Multi-Agent Programming Languages, Platforms and Applications,
Springer, 2005, pp. 125-147.

1. de la Vega, “Tipologia de Observatorios de Ciencia y Tecnologia,”
Los casos de América Latina y Europa. Revista Espafiola De
Documentacion Cientifica, 2007, 30(4), pp. 545-552.

ISSN 1870-9044

http://eprints.rclis.org/17578
http://www
http://www
http://www.cs.technion.ac.il/~imaman/stuff/ip-

