

Abstract—In the present paper, a method for building a map of
an unknown environment (SLAM) derived from the ICP
algorithm using point-to-point metric is proposed. The polar-
scan matching technology is used for estimation of the robot
location change between two scans in sequence estimate the
correct position of the robot. Since map building is fairly time-
consuming, the algorithm of differential evolution (DE) is used in
the calculation. This efficient optimizer provides very good
results in different types of small office environment
(unstructured and structured). The new type of an algorithm for
map building is based purely on simple geometric primitives—
vectors and integrates the modern evolutionary algorithm—DE.
The presented algorithm falls into the wider group of geometric
map builders and is able to build a map of indoor, mostly office,
environment without moving objects.

Index Terms—SLAM, robot localization, evolutionary
robotics, differential evolution, L1-norm.

I. INTRODUCTION

IGNIFICANT effort of many different research groups in the
area of the map building has brought good results in the
last several decades. The integration of modern

evolutionary algorithms is not taken for granted that much in
this field. Disadvantage of nearly all EA (evolutionary
algorithms) methods is a necessity to find proper working
parameters. Many EA methods suffer from premature
convergence to local optimum, which they´re not able to
release from any more. Algorithms for the map building are
very sensitive about the failure of the estimator which
performs the estimation of position and turning
transformation. All these exact reasons lead to elect
differential evolution optimizer as an appropriate EA tool, as it
provides very good results for a given task.

There are many different approaches in an area of the robot
localization and map building which can be classified into
several main groups. The amount of publications in particular
groups is approximately the same. (A) Probabilistic algorithms
usually use different versions of an occupancy grid. A map is
represented by set of occupancy probability eventually
emptiness probability. The map is formed by a set of cells in
the shape of usual square area [23, 9, 3, 13]. (B) Map is

Manuscript received June 20, 2012. Manuscript accepted for publication

July 24, 2012.
J. Moravec is with the Czech Technical University in Prague, Prague,

Czech Republic (e-mail: j.moravec.email@seznam.cz; webpage and source
code: robomap.4fan.cz, www.openslam.org).

represented by geometric primitives such as lines, circles,
points or curves (b-spline curves) etc. The geometric model of
environment is created from these elements. The core of the
position estimator might be compiled by using various types
of algebraic criteria [18, 19, 20, 21]. (C) The third and these
days probably the widest group is the one using combinations
of algorithms from two previous groups (so called hybrid
algorithms) or it uses very specific patterns that represented
the model of the world and different methods for localization
and map building. It´s for example the case of events when a
map is represented by a cloud of points, alternatively by
different kinds of landmarks [17] like RFID, sound sources
etc. Relatively new and perspective way in the field of map
building and navigation is called cognitive maps [38, 39]. This
approach exploits and integrates more information sources. A
precise geometric map similar to [13] does not exist here.
 Conventional methods for creating a map of unknown
environment such as e.g. these publications [23, 1, 21] use
gradient optimizers. But this is an approach a few decades old.
The advantages of gradient optimizers are their simplicity and
implementation speed. They still interest many researchers
thanks to these qualities. They may be found e.g. in [40].
However, they have their insignificant limitations. Due to an
intensive research in the field of evolutionary computer
technology and fairly huge amount of publications analyzing
their possibilities on different types of problems, EA methods
have come to the foreground in the area of robotics as well.
Their application is broad – map building using 2D or 3D laser
scanner, global and local localization, semantic classification,
the area of machine learning. A relatively big disadvantage is
that they may also extend significantly the implementation of
a basic navigation algorithm. MoteCarlo algorithm is the most
common optimizer that is possible to come across and is used
in the connection with probabilistic algorithms [9, 3, 13].
 In 1998 an interesting article [42] based on Island Model
Genetic Algorithm (IGA) was published. The theme of
distributed GA can be found earlier for example [43, 44]. IGA
is a derivative of the genetic algorithms that works with
several populations which search functional space in parallel.
The authors were successful to prove that IGA provides better
results especially for linearly separable problems comparing to
SGA [48] that is used e.g. in [26]. Using IGA optimizer as a
computational accelerator also depends strongly on a type of
the basic method(s). These methods were used for the
purposes of localization and map creation (SLAM) in [45],
[46]. It is also possible to find a very interesting connection of
the SLAM algorithm and the fuzzy logic [47]. One of the first
papers using untreated SGA was published in [11]. Interesting

Map Building of Unknown Environment Using
L1-norm, Point-to-Point Metric and

Evolutionary Computation
Jaroslav Moravec

S

29pp. 29–38 Polibits (46) 2012

results like that may be found in the article [55] as well.
Practical use of the SLAM algorithm with the complete
analysis of the issue can be found e.g. in [25]. The base of the
presented method is formed by the probabilistic occupancy
grid [23, 13] again. Kwok et al. presented a small study in [16]
which compares the performance of three different
evolutionary algorithms SGA [48, 49], PSO [53] and
AntSystem [52]. The tested EA methods solve three-
dimensional problem – here the dimensions are represented by
X, Y coordinates in the Cartesian coordinate system and the
third dimension is then the angle α that includes the robot´s
view direction along with axis X. The disadvantage of this
approach is the necessity of using a fairly huge number of
individuals in the population and substantially higher
computation demands related to that. Similar results are to be
found in paper [24] as well.
 The differential evolution algorithm (DE) proposed by
Kenneth Price a Rainer Storn [36] is used in this paper as an
efficient and powerful computational accelerator (optimizer).
However, DE is only suitable for certain types of problems –
see [14]. SLAM under low noise levels falls to such suitable
groups of problems as well. Finding of the correct working
parameters of the optimizer is not so easy and usually takes a
fairly long time. Valuable results of a research in this area can
be found in [2, 12, 37, 14, 30, 22].

II. POSE ESTIMATION IN PARTIALLY KNOWN ENVIRONMENT

Consider a general evolutionary SLAM problem ����∈���	
�� or ����∈���	
�� (1)

Denote by �����, ����� the optimal values of this problem and
by �∗ and �∗ the maximum and minimum value of f over �. � ∈ �	represents optimal trajectory in state space (it is for
example: �, �, � is a robot pose; �, � in Cartesian coordinates
and � is heading with regard to the axis X, and of course all
working parameters of the presented methods have to be
included as well). 	
… � represents sensing model and a pose
estimator (in the case of the SLAM problem, presented here, it
is ℱ� or ℱ� strategy – see below), �
… � represents
evolutionary pseudo-random process – i.e. DE algorithm for
example.

Definition: Given � ∈ 〈−∞, +∞〉, a functional �" ∈ � is said
to be an �-approximate solution of the problem (1) if possible
solution exists in the sense

 |�
�"� − �����| ≤ �|�∗ − �����| or |�
�"� − �����| ≤ �|�∗ − �����|

(2)

Unfortunately, �" ∈ � strongly depends on 	
… � and “system”
represented by robot, environment and all moving objects and
is non-separable and non-stationary (so called t-variant). In
this task robot always affects itself through other objects
moving in the given environment and that´s thanks to the used
control systems. The presented work transforms the general
optimization problem utilizing evolutionary computation to:
 ℱ�,�: ��	
�� 	→ �'(�	
�� ,)
�, �'(� ∈ ℝ,

 �'(∼ pseudo-random process

(3)

Evolutionary computations are used to accelerate the map
building process. The pose estimation process is based on
comparison of a set of simulated data from a virtual 2DLS
(two dimensional laser scanner) from positions obtained by
using the EA process and scan from the real 2DLS. We can
denote: ,-
.� =
�, �, ��, ,0
1� =
�, �, ��, �, 2 ∈ ℕ, ∃2|,567 ≡,0
1�~,-
.� is a real and simulated pose and from the text
above ,-
.�, ,0
1� ∈ �, :-
.� = ;<-
=�, <-
��, … , <-
>�?, � ∈ ℕ, ∀<-|<- ≤ 	A>B�	, 1 ≤ � ≤ ℂE-BF and :0
1� = ;<0
=�, <0
��, … , <0
G�?,	2 ∈ ℕ, ∀<0|<0 ≤ 	A>B�	, 1 ≤ � ≤ ℂ0.>, � < �, the real and simulated sensing. ℂ0.> ≥ ℂE-BF. � is heading with regard to axis X. For every ,-
.� it is necessary to create set of ,0
1�, 2 ∈ ℕ. JK-7 = L is a
detection angle of the real 2DLS, J076 = 0.5° is a resolution
of the real 2D LS - i.e. 361 beams can be used for example. QK-7 is a detection angle of the pose estimator 	
�� i.e. QK-7 is
the angle which the matching process works in. QK-7 is set to L 3S for all experiments. ,567|=T ∈ �", 	A>B�	 is a beam limitation
given by used sensor with ℂE-BF beams. ℂ0.> denotes the
number of simulated beams. Environment is represented by set
of short lines. EA methods use set of individuals ,0
1�. From
the theoretical point of view, only one point ,567 , ,567 ∈,0	defines the correct robot’s pose. In the real world and
thanks to the existence of noise (estimated by U6� or U6�
function), more than one point can provide well acceptable
result(s). Every individual of the EA represents one possible
solution which is evaluated in the sense:
 V = |W − X|, (4)

where

W =
YZ
ZZZ
ZZZ
Z[<0\
=� <0\
�� <0\
�� .<0\
�� <0\
�� . .<0\
��<0\
G�>�=� <0\
G�>���<0\
G��� . . .<0\
G��� <0\
G�=� . .<0\
G�=� <0\
G� <0\
G�=� .<0\
G� <0\
G�=� <0\
G��� .

 . . . <0\
>�=� <0\
>�. . <0\
>�=� <0\
>� <0\
>�=�. <0\
>�=� <0\
>� <0\
>�=� <0\
>���. <0\
G�=� <0\
G�. . <0\
G�=� <0\
G� <0\
G�=�. <0\
G�>���. . . <0\
G�>��� <0\
G�>���. . <0\
G�>��� <0\
G�>��� <0\
G�>�=�]̂
^̂̂
^̂̂
_̂

X = `<-
=� <-
�� . <-
>�.<-
=� <-
�� . <-
>�a , W,X are � ×�.

 <0c
=..G� = <0
=..G� , <0c�
G�=�..
G�>�=� = <0
=..
>�=�� ; � ≡ <0c 	, d ≡ <- ; �, �	is	ghi	, �, 2	is	jhkl�� ; mn = ;∑ j=,1>1p= , ∑ j�,1 ,… ,∑ jG�=,1 , ∑ jG,1>1p=>1p=>1p= ?

30Polibits (46) 2012

Jaroslav Moravec

Matrices W,X are expressed generally in (4) i.e. QK-7 = 2L. If QK-7 is smaller than 2L, number of rows of the used matrices
will be adequately smaller too. Presented map building
algorithm is based on two independent strategies. Both
strategies ℱ� and ℱ� enable correct �" ∈ � estimation. ℱ� and ℱ� are given by equations:
 ℱ�|,r��=1.p7 ≡ sUE� = �g	����t
�,u����v
w� |.p=G 	

xyz1, 	��	�{�
.,1� − 	d
.,1�{ ≤ U6�0, 	��	�{�
.,1� − 	d
.,1�{ > U6�
>
}p=

~�

∀�, �|�, � ∈ ℝ , UE� ⟷ ,567 ; U6� = =G + �7
d.,1 + �.,1� + 1, �7 = ������

(5)

 ℱ�|,r��=1.p7 ≡	 sUE� = �g	����t
�,u����v
w�|.p=G

�y z{�
.,1� − 	d
.,1�{, ��	�
.,1� < 	A>B�	0, ��	�
.,1� = 	A>B�		
>
1p= ��

∀�, �|�, � ∈ ℝ , UE� ⟷ ,567 , l
.�|.p=G ∈ �0,1� l
.�|.p=G = ∑ {�
.,1� − 	d
.,1�{	>1p= ; U6� = �=G +
�7�.,1� + 1�

(6)

where �7 is a slope of the accuracy curve of the used 2DLS

(for example
������� – it is classic linear dependency according

to the manufacturer recommendations. � is the number of all
collected scans from the real 2DLS.

Here, UE� and UE� represents the fitness value of the best
founded estimated pose. U6� and U6� represent equations of
the linearized model of the 2DLS sensor—simple noise model
for one(every) beam. Correct pose and heading estimation
according to the selected strategy is given by ,567 and heading � of the robot is given by:
 ��: ���	l�|�p=G ⇒
���r��� , ��: ���	l�|�p=G ⇒
���r��� ; ��,�: � = �J076
� − 1�� + �=� QK-7�

(6)

‘ ���r�’ means �-th element of the l�vector, for which the
fitness function takes the smallest
ℱ�� or the biggest
ℱ��
value.

Sensorial data from 2DLS are used only (no data from
odometry). The pose estimator described in here is based on
point-to-point metric. It is the core of the proposed SLAM
method. ℱ� or ℱ� strategy is used to dissimilarity
measurement—dissimilarity between simulated vector :0 and
the real sensing :-. ℱ� strategy has universal features and is
suitable for structured or unstructured environment, long or
small corridors (hallways) or environment with or without
moving objects.

Generally, ℱ� provides somewhat worse results at heading
estimation—of about 5–7 percent in comparison to ℱ�. ℱ� has
identical features to ℱ�, but it is not suitable for work in long
hallways and has quarter noise resistance abilities only – see
[54]. ℱ� is suitable for small and very structured environment
with or without moving objects.

At correct pose estimation and if searching area is 60x60cm
for example, equation (4) must be evaluated 60 × 60=3600
times. It takes a long time. DE optimizer is able to estimate
correct solution approx. 25–35x faster. Fig. 1 depicts Fitness
function projection of the ℱ� and ℱ� strategy to 3D space—
identical environment and identical robot’s pose is used.

ℱ� ℱ�

Fig. 1. Projection of the Fitness function of the ℱ� and ℱ� strategy to 3D space
- example. ℱ� - robot is in the place with min. Fitness function. ℱ� - robot is in
the place with max. Fitness function.

DE optimizer in this case seeks for an optimum (minimum or
maximum) according to the l� (alias ℱ�: ���	l�|�p=G , ��: ���	l�|�p=G , see (3) – (6)) value for every individuum of the
population. Fig. 1 shows large area 600 × 800cm, for better
understanding.

III. GSLAM ALGORITHM

Proposed gSLAM algorithm uses raw 2DLS data to
estimate the correct pose in polygonal environment by
modified simulated-point-to-point matching technique in

TABLE I
PROPOSED GSLAM ALGORITHM

Input data: ,B�7vBF
�, �, �� – Start (alias actual) robot’s pose – corresponding
to the :-
=�, :-
.� – Set of sensorial data from 2DLS, �� - empty global map.

A1 1 Approximate scan)�
�� by set of lines ��, � ∈ℕ, � ≠ �
 2 Compute parameters of the ��, necessary for

SLAM.
A2 3 Insert the ��, � ∈ ℕ, � ≠ � into ��
 4 for all)�
��; 	� ∈ ℕ, � ∈ ��, . . , ¡�
A3 5 Create n� based on the ¢£¤¥m£¦
§, ¨, ©�

 _and ��.
A4 6 Find correct pose and heading ¢ª¡¥	for)�
��,

 _use the n� and selected strategy �� or
 _ �� accelerated by DE.

A1 7 Approx. actual)�
�� vector, by set of

 _lines ��, � ∈ ℕ, � ≠ �.
 8 Compute params. of the �� and insert

 _ �� into the «�.
A2 9 Use the «�, build a new set of lines �T�¬,

 _suitabe to be inserted into ��.
 _Clear «�. Insert the new set of
 _lines �T�¬ into «�.

 10 Insert all lines from «� to �� and
 _clear «�.

A5 11 Use heuristic rules, merge all possible
 _lines in ��, if it is possiblle.

 12 end for
A5 13 Final map ‘refinement’ – �� map

Output data: �� – Lines list – global map of environment, ,�
�, �, �� – Set
of positions. Robot’s pose and heading corresponding with :-
.� vectors.

Key: n� – Temporary Map of local environment. This map is used at pose
estimation utilizing EA computations. «� – Local Map contains all lines
found in :-
.�. A1.. A5 individual parts of the gSLAM algorithm. A1 consists
of a recursive line splitting marked as B1 and line pose improvements by LSQ
algorithm marked as B2. A3 use classic ray-tracing. In step A4, EA method is
used according to the equation (4). Line 13 can be optionally omitted.

31 Polibits (46) 2012

Map Building of Unknown Environment Using L1-norm, Point-to-Point Metric and Evolutionary Computation

temporary map n� which represents the temporary polygonal
model-view from the last estimated correct pose ,567 in �� –
global map. n� is obtained by using 2D ray-tracing. The
complete gSLAM algorithm is described in Table I. Once the
correct robot’s pose is found according to the ��, the actual
sensorial data :-
.� are approximated by set of lines and the
local model «� is created from them. The set of lines is
confronted with the global �� map of environment
(previously built) and some parts of lines in «� are marked as
suitable for inserting into ��. This process uses several
heuristic rules.

Fig. 2. Flowchart diagram of the gSLAM – sequential ordering of the A1 .. A5
algorithms.

The flowchart diagram of insertion process is depicted in
Fig. 3. The recursive line splitting algorithm (LR-LSQ) based
on L1-norm is used. ‘LocalMap
«��’ serves like a helper
only. Table I contains individual steps of the proposed
gSLAM algorithm. gSLAM consists of 5 main parts. Input
data are ,B�7vBF
�, �, �� – start (alias actual) robot’s pose –
corresponding to the :-
=�, :-
.� – set of sensorial data 2DLS.
Output data are �� – global map of environment, ,�
�, �, ��
– set of estimated positions resp. robot’s pose and heading
corresponding with :-
.� vectors.

* A small circular arrow means that a classification sentence can be repeated
according to the actual state of the «� map, until all abscissae are
successfully classified. Deadlock is handled.

Fig. 3. The flowchart diagram of the lines relationship classifier.

A. The Line Fitting Method

The line fitting algorithm (marked as A1 in Fig. 2) uses
approximation of a point set by multi-line. The presented line
fitting algorithm uses combination of several methods -
successive Edge Following – SEF [31] and Iterative End Point
Fit (IEPF) [10, 6, 27, 28, 29]:

1) Transform :- vector from polar to Cartesian coordinates.

2) Eliminate all points d. where: ∀d.
�, ��, ∄d1
�, �� so that d.
�, �� ∈ ®d1
�, ��: ¯d. , d1¯ ≤ °, 2 ≠ �± in ²�, ° is
constant; 10cm for example.

3) Use SEF algorithm to d. points and exclude all unsuitable
points from d.. New set of points will be d.∗. Use IEPF
algorithm to d.∗.

4) Use linear regression (LR-LSQ) [32], [15] algorithm to
merge two consecutive lines if it is possible + final
refinement of every line in the sense of (LR-LSQ)
algorithm.

Abscissae of the «� map cannot be inserted directly. Several
atomic rules were defined enabling to estimate correctly,
which part of the line is to be inserted into the �� – see Table
II. These rules are designed to be useful for line-to-line
algorithms. There are 17 atomic rules – see Fig. 4. Suitable
combinations of atomic rules form four classification
sentences. The classification sentences form a classification
strategy. The number of applied classification sentences is not
known a priori and is variable. The proposed classification
sentences (insertion process of the «� into ��):

1) If two abscissae AB and CD do not lie on an identical line
(consecutively), the distance of C and D points from the
line identical to abscissa AB is shorter than the limit, CD
abscissa does not overhang the boundary C and D points of
AB abscissa and the angle between AB and CD is smaller
than the limit, remove CD abscissa. (Atomic rules 1,11, 12,
5, 4)

2) If two abscissae AB a CD do not lie on an identical line
(consecutively), C point and D point overhang the end
points of AB abscissa, the distance of A and B points to CD
abscissa is shorter than the limit and the angle between AB
and CD is shorter than the limit, let in «� parts of CD
abscissa, which overhang AB abscissa. (Atomic rules 1, 3,
4, 7, 8, 9, 10, 13, 14, 16).

3) If two abscissae AB a CD do not lie on an identical line
(consecutively), C point overhangs AB abscissa and the
distance of the second point to AB abscissa is less than the
limit, let in «� part of CD abscissa, which overhangs AB
abscissa only. (Atomic rules 1, 2, 3, 7, 12, 13, 14, 15).

4) If two abscissae AB a CD do not lie on an identical line
(consecutively), D point overhangs AB abscissa and the
distance of the second point to AB abscissa is less than the
limit, let in «� part of CD abscissa which overhangs AB
abscissa only. (Atomic rules 1, 2, 4, 6, 12, 13, 16, 17).

The atomic rules are formularized by AND logic operator
and rules 16 and 17 are placed inside of the 4. condition
clause.

Four classification sentences represent a heuristic schema
that only enables to define such parts of the «� map which
are suitable for inserting into the �� map. If any “less
suitable” abscissae appear in «�, classifier inserts such
abscissae into �� without any change. Usually perpendicular
abscissae are considered – perpendicular to existing walls of
the environment model.

32Polibits (46) 2012

Jaroslav Moravec

TABLE II
ATOMIC RULE LIST – INSERTION PROCESS

Nr. Atomic rule Description

1 AB_wholeLeftOrRigt_CD Abscissa AB lies on the left or right side
of CD abscissa.

2 CD_wholeLeftOrRigt_AB Abscissa CD lies on the left or right side
of AB abscissa.

3 C_overhangL <= L1 Point C of CD abscissa does not overhang
any of A or B points

4 D_overhangL <= L1 Point D of CD abscissa does not overhang
any of A or B points

5 C_overhangL > L1 Point C of CD abscissa overhangs one of
the outer points of AB abscissa AB.

6 D_overhangL > L1 Point D of CD abscissa overhangs one of
the outer points of AB abscissa.

7 C_outside_AB = true
Intersect Cp of the line passing the point C
perpendicular to AB abscissa does not lie
between AB points.

8 D_outside_AB = true
Intersect Dp of the line passing the point D
perpendicular to AB abscissa does not lie
between AB points.

9 A_CD_dist < L2 Distance of the point A from the line
which the CD abscissa lies on.

10 B_CD_dist < L2 Distance of the point B from the line
which the CD abscissa lies on.

11 C_AB_dist < L2 Distance of the point C from the line
which AB abscissa lies on.

12 D_AB_dist < L2
Distance of the point D from the line
which the AB abscissa lies on.

13 angle_CD_AB < L3 Angle of AB and CD lines

14 C_closeTo_Ap = true

Distance of the C point and intersect Ap
line passing the point A perpendicular to
line on which the points C,D lie is shorter
than distance of the point C and intersect
Bp line passing the point B perpendicular
to CD.

15 C_closeTo_Bp = true

Distance of the point C and intersect Bp
line passing the point B perpendicular to
line on which the points C,D lie is shorter
than distance of the point C and intersect
Ap line passing the point A perpendicular
to CD.

16 D_closeTo_Ap = true

Distance of the D point and intersect Ap
line passing the point A perpendicular to
line on which the points C,D lie is shorter
than distance of the point D and intersect
Bp line passing the point B perpendicular
to CD.

17 D_closeTo_Bp = true

Distance of the D point and intersect Bp
line passing the point B perpendicular to
line on which the points C,D lie is shorter
than distance of the point D and intersect
Ap line passing the point A perpendicular
to CD.

If the rule has an operator (<,>,= et.c) it is only used in this form. If no
operator is present, any type of operator can be used in algorithm in the sense
of the particular rule. For example ‘C_overhangL’ is real a number at
computations and ‘L1’ is constant.

If any abscissa is transformed using any classification
sentence, only suitable parts of it are moved back to «� map.
Once classifier finishes its job, all abscissae are moved to ��
at once. Fig. 4 shows a graphical representation of the atomic
rule list in Table II. used at an insertion process. It is a classic
conceptional relation between two abscissae AB and CD.

C_closeTo_Ap, C_closeTo_Bp,
D_closeTo_Ap, D_closeTo_Bp

C_overhangL, D_overhangL

C_outside_AB, D_outside_AB
A_inside_CD, B_inside_CD,
C_inside_AB, D_inside_AB

A_CD_dist,B_CD_dist,
C_AB_dist, D_AB_dist

angle_CD_AB AB_wholeLeftOrRigt_CD,

CD_wholeLeftOrRigt_AB

Examples of the presented rules:
• C_closeTo_Ap = true, C_closeTo_Bp = false,
• D_closeTo_Ap = true, D_closeTo_Bp = false
• C_overhangL = L1, D_overhangL = -1*L1
• C_outside_AB = true, D_outside_AB = false,
• C_inside_AB = false, D_inside_AB = true
• A_CD_dist = L, D_AB_dist = L
• angle_CD_AB = �
• AB_wholeLeftOrRigt_CD = true, CD_wholeLeftOrRigt_AB = false

*L, L1, L2, � are elected constants at SLAM process.

Fig. 4. Atomic rule list, conceptional relation between two abscissae AB and
CD; graphic representation.

B. Merging – minimizing the number of abscissae in ��

Once the list of abscissae suitable for inserting into �� is
completed, it´s inserted into �� immediately. Merging
process ensures minimum and acceptable number of abscissae
in ��. Merging process is not a necessary step in order the
final map to be fully consistent. The method presented in here
is based on Skrzypczyňski [33], [34] and Crowley [6], [7], [8],
but the method is significantly modified. Similarly to the
insertion process, the merging process uses the same basic
scheme as the insertion process – see Fig. 3. The proposed
merging process consists of 3 classification sentences:

33 Polibits (46) 2012

Map Building of Unknown Environment Using L1-norm, Point-to-Point Metric and Evolutionary Computation

1) Abscissae AB and CD lie consecutivey in a line and the
distance of end-points is shorter than the limit. AB and CD
will be concatenaded. (Atomic rules 13, 11, 12, 1, 18, 19,
20, 21, 22, 23).

2) If abscissae AB and CD intersect and the distance of any
point A, point B, point C or point D from intersect AB and
CD is less than the limit, cut-off this small protrusion.
(Atomic rules 24, 25, 26, 27, 28).

3) The intersect of the AB and CD does not esist and any point
³= = �´, µ, ¶, :� is close to any other point ³� =
�´, µ, ¶, :�, ³= ≠ ³�, and point ³= or ³� lies between AB or
CD, merges with the nearest points. Only two points can be
merged. (Atomic rules 24, 31, 35, 32, 36, 29, 33, 30, 33,
34).

TABLE III

ATOMIC RULE LIST – MERGING PROCESS
Nr. Atomic rule Description

18 onePoint_CorD_n
earToPoint_AorB

One point C or D lie close to point A or B of AB
abscissa. Max. distance is defined by fix. threshold.

19 A_B_dist,
B_A_dist Length of AB abscissa.

20 A_Cp_dist Distance of the point A and intersect of AB and
perpendicular line passing the point C.

21 A_Dp_dist Distance of the point A and intersect of the AB and
perpendicular line passing the point D.

22 B_Cp_dist
Distance of the point B and intersect of the AB and
perpendicular line passing the point C.

23 B_Dp_dist Distance of the point B and intersect of the AB and
perpendicular line passing the point D.

24 AB_CD_intersect
ExistInsideABCD

This rule tells us that abscissae AB and CD have
one intersect between AB and CD points. ‘True’ if
yes, ‘False’ if intersect does not esist.

25 ABCD_Axyp_inter
sect_overhangL

Distance of the point A and intersect AB and CD
abscissae, if rule 24 is true.

26 ABCD_Bxyp_inter
sect_overhangL

Distance of the point B and intersect AB and CD
abscissae, if rule 24 is true.

27 ABCD_Cxyp_inter
sect_overhangL

Distance of the point C and intersect AB and CD
abscissae, if rule 24 is true.

28 ABCD_Dxyp_inter
sect_overhangL

Distance of the point D and intersect AB and CD
abscissae, if rule 24 is true.

29 A_inside_CD
Intersect Ap of the line passing the point A,
perpendicular to CD is or is not inside CD abscissa.
Rule can be true or false.

30 B_inside_CD
Intersect Bp of the line passing the point B
perpendicular to CD is or is not inside CD abscissa.
Rule can be true or false.

31 C_inside_AB
Intersect Cp of the line passing the point C
perpendicular to AB is or is not inside AB abscissa.
Rule can be true or false.

32 D_inside_AB
Intersect Dp of the line passing the point D
perpendicular to AB is or is not inside AB abscissa.
Rule can be true or false.

33 A_CD_dist
Distance of the point A from line which CD
abscissa lies on.

34 B_CD_dist
Distance of the point B from line which CD
abscissa lies on.

35 C_AB_dist
Distance of the point C from line which AB
abscissa lies on.

36 D_AB_dist
Distance of the point D from line which AB
abscissa lies on.

The merging process uses the atomic rule list mentioned in

Table III – rules 18-36. Graphical representation of the
presented atomic rules is depicted in Fig. 5.

The merging process occurs only in a limited range of
possible combinations of AB and CD positions, which is also
sufficient for the construction of a high-quality vector map. If
unclassifiable schema appears, it is inserted into �� without
any change. Such problems appear if random perpendicular
abscissae, perpendicular to walls in environment, have to be
processed for example.

ABCD_Axyp_intersect_overhangL,
ABCD_Bxyp_intersect_overhangL,
ABCD_Cxyp_intersect_overhangL,
ABCD_Dxyp_intersect_overhangL

A_Cp_dist,A_Dp_dist,
B_Cp_dist, B_Cp_dist

onePoint_CorD_nearToPoint_AorB AB_CD_intersectExistInsideABCD

A_B_dist (B_A_dist) *L, L6, L8, L10 are elected working

parameters - constants of the gSLAM
process.

Examples of the presented rules (from top to bottom, from left to right):
• (AB_CD_Axyp_intersect_overhangL > L8 &
AB_CD_Axyp_intersect_ overhangL < L10)
• A_Cp_dist < A_Dp_dist, B_Cp_dist < B_Dp_dist
• onePoint_CorD_nearToPoint_AorB < L6
• AB_CD_intersectExistInsideABCD = true,
AB_CD_intersectExistInsideABCD = false
• A_B_dist (B_A_dist) = L

Fig. 5. Atomic rule list, conceptional relation between two abscissae AB and
CD; graphic representation.

IV. EXPERIMENTAL RESULTS

A. DE efficiency and relevancy – short discussion

DE is a stochastic optimizer. The optimized task is
continual, separable, t-variant, unimodal (for small searching
area only). Several different evolutionary optimizers (EA)
were tested in a continual localization task – see Fig. 6. All
tested algorithms: SGA[48], [49], [55], aGA[54], PSO[53]
and DE applied to (3) and (4) equations (alias ℱ�, ℱ� strategy)
provide well usable results. Beside these optimizers classic
Cox’s [5] gradient method was tested as well. All methods
were tested under heavy-duty operation conditions at a
continual localization task in known environment (known
geometric map) to get their reliability and capabilities.
Unfortunately, the map building algorithm is not highly noise
resistant that much. Additive Gaussian noise with different

34Polibits (46) 2012

Jaroslav Moravec

noise bandwidth (independent, fixed noise bandwidth) from
zero to 800cm was tested. The sample of noise was obtained
according to the equation: :G5.0u_-
.� = :-
.� g��
�A, A�,
where 2A is equal to noise bandwidth and g�� represents a
random numbers generator – normal distribution, mean zero.
DE and PSO algorithms proved the best results without regard
to different types of environments – see [54]. In contrast to
other used EA, DE and PSO provide stable and almost
identical results, especially on lower noise levels. Occasional
malfunction (which SGA suffers from so much) was never
observed. Permanent malfunction of any EA method caused
by additive noise was observed only on highest noise levels
from the level of about 550cm.

A
xi

s
X

 [c
m

]

A
xi

s
Y

 [c
m

]

H
ea

di
ng

 [°
]

Key:
Vertical axis in ¦ª¸� scale. Bottom right - Localization in environment A,
noise bandwidth +/-225cm.

Fig. 6. Graphs of accuracy of estimating the position and heading - SGA,
aGA, PSO, DE and Cox’s optimizers.

For comparison classic, Cox gradient method is only able to
work at noise level no higher than about 50. On Table 1, line
8, block A1, DE algorithm is used. Input of this optimizer is
the area of width x height approx. 60 × 60cm (or bigger)
around the last known robot’s pose, n� (temporary map)
obtained from �� based on classic ray-tracing algorithm +
line fitting method – block A1; (n� is used for computation
acceleration purposes only) and actual :- vector.

DE optimizer used in presented gSLAM method solves a
classic two-dimensional optimization problem. Heading of the
robot is calculated separately because of the accuracy and
higher speed. Step in heading is 0.5°. If a three dimensional
optimizer would be used similar to [16], the number of
generations and number of individuals in every population
must be minimally three times higher.

In Fig. 7, population convergence is depicted. Individuals in
the first generation cover equally the whole searching area
(100x100cm is elected in here). After 10 generations, all
individuals are almost at the correct pose. Normally 15
generations/10 individuals are efficient to ensure the correct
convergence. After 20 generations, DE optimizer found the
correct pose. In Fig. 7, robot is depicted by a small triangle;
heading is depicted by a short line. 10 classic basic
perturbation vectors were tested to get which vector is the

most suitable. DE/Rand1/Exp provides the best results. Beside
the DE, PSO optimizer provides good results too, but DE is
better of approx. 5% if the additive (Gaussian) noise is small
or zero. In structured environment PSO is significantly better
from noise level approx. 250cm. Presented gSLAM algorithm
is designed to build a map of unknown environment without
moving objects and under noise stress no more than ¹
8 �

10�cm. Noise level value was obtained based on practical
experiments. Ability to work under higher noise levels is
significantly reduced thanks to A1 and A5 algorithms - line
fitting and merging methods.

1. generation 5. generation 10. generation 20. generation

Key: 20 generations, 20 individuals, searching area 100x100cm.
DE/Rand1/Exp, F=0.6,Pcr=1.0.

Fig. 7. Population convergence - Differential evolution.

B. Experimental verification of the gSLAM algorithm

The experimental verification of the proposed gSLAM
algorithm was performed in two structured environments – A
and B. The first environment was build-up for test purposes by
cardboard boxes in laboratory. It is a common indoor office
environment of 10 × 10 meters with several obstacles inside.
The obstacles are cardboard boxes (approx. 40 × 60cm).
Trajectory length was approx. 3001.11cm. The robot obtained
350 :- vectors. The environment consists of 60 walls.
Differential evolution - working parameters: DE/rand/1/exp,
,», / 25, ¼²½ / 25, searching area 32 b 32cm, ¾ / 0.6,
,ÀÁ / 0.9. Such working parameters were obtained from
practical experiments. If ¾ value is smaller, time to correct
pose evaluation is significantly longer. There is a linear
dependence. Thanks to quantizing noise of used 2DLS Sick-
PLS100 theoretical accuracy is ¹5 cm. Practically, it is twice
as worse. The second environment B is a large cluster of
offices. Dimensions are 2560 × 1880cm. Trajectory length is
23629.60cm. The number of lines is 329; the number of :-
vectors is 1832. Robot passed the trajectory which many times
intersected itself. Environment B consists of 10 small offices
and one long hallway. The working parameters of DE
estimator were identical to the first experiment.

In the first experiment (see Fig. 8) robot passed the
trajectory which intersects itself in three points. Presented
estimator ��(or ��) does not use ‘closing loop’ mechanism
(global localization based pose corrector) capable of
improving the correct pose estimation globally. This makes
the estimator more sensitive to noise.

The robot was able to pass through the environment without
loss of orientation. Leonard-DurrantWhyte‘s algorithm [18,
19, 20] was tested for comparison of the efficiency of tested
methods ��(or ��). Fig. 8 shows that both methods were able
to build-up the map of unknown environment without any
problems.

1

4

16

64

256

2
0

5
0

1
0

0
1

5
0

2
0

0
2

5
0

3
0

0
3

5
0

4
0

0
4

5
0

5
0

0
5

5
0

6
0

0
7

0
0

8
0

0

Noise bandwidth

1

4

16

64

256

2
0

5
0

1
0

0
1

5
0

2
0

0
2

5
0

3
0

0
3

5
0

4
0

0
4

5
0

5
0

0
5

5
0

6
0

0
7

0
0

8
0

0

Noise bandwidth

0.5

2

8

32

2
0

5
0

1
0

0
1

5
0

2
0

0
2

5
0

3
0

0
3

5
0

4
0

0
4

5
0

5
0

0
5

5
0

6
0

0
7

0
0

8
0

0

Noise bandwidth

35 Polibits (46) 2012

Map Building of Unknown Environment Using L1-norm, Point-to-Point Metric and Evolutionary Computation

 �� evolutionary strategy Leonard-DurrantWhyte‘
algorithm

F
in

al
 m

ap

C
lo

ud
 o

f p
oi

nt
s

*Correct shape of the tested environment is plotted as well. ℱ� and ℱ�
strategies provide almost identical results – identical map.
Differences are unimportant.

Fig. 8. Environment A – SLAM.

Every method has its own specific characteristics. Leonard-

DurrantWhyte‘s algorithm provides slightly turned map of
about 3°. The correct shape of the tested environments was
bild by hands for comparison purposes only. In several places
there are minor but visible inaccuracies in comparison to the
map buit-up by ℱ� strategy. In both cases the final line map of
the built environment can be used for localization process.

Line map

Points map (cloud of points) + Estimated Robot trajectory + real positions of

all walls.

Fig. 9. Environment B - Computer Science Department, University of Bonn

The second experiment was conducted in a large office
environment. The trajectory was obtained by computer
simulation from the geometrical map of Computer Science

Department, University of Bonn. The sensorial data were
burdened by additive noise (Gaussian noise, mean zero) with
bandwidth 6cm (¹3cm) – it matches the new type of 2DLS
Sick LMS-200. Because dimensions of the environment were
set to approx. 30x20 meters only, beams were not trimmed by 	A>B�	 function. All beams reflect the walls at any time. It is a
big advantage. By this step 2DLS provides more useful
information. Fig. 9 shows the result of the experiment.

The robot was able to build the map of environment without
any problems. Several places are not well mapped (charted)
because of small inaccuracies at heading estimation. Mostly it
is small structured space. Thanks to existence of a long
corridor in map B, ℱ� strategy was only used. Thanks to EA
method use, the robot has to keep a minimal distance approx.
50cm from all obstacles – searching area may not overcome
the walls of the environment. Sometimes this distance was
slightly exceeded. Large and well structured environment is a
more suitable area for gSLAM algorithm, especially if there is
one central point and all offices are attainable from this.
Election of suitable trajectory has a big influence too. The
presented gSLAM algorithm only uses one data source –
sensorial data from 2DLS. Behavior of such a method is a
little different from behavior of a classic probabilistic method.
When the robot is moving in a long corridor, the trajectory
similar to ship cruising is the best choice. Turning should be
made along large circular trajectory, if it is possible. On the
other side, gSLAM shows that sensorial data as the only data
source can be practically usable for such purposes. Both
strategies ℱ� and ℱ� provide identical results. No malfunction
was observed at testing time. Differential evolution provides a
stable and very powerful tool.

V. CONCLUSION

The simultaneous localization and the mapping algorithm
were developed and presented in this paper. The core of the
presented algorithm is based on geometric primitives and
evolutionary computations. Such approach provides an
efficient and stable tool. The differential evolution forms a
substantial part of this project. Based on practical experiments
DE was elected as one of the most suitable algorithms for map
building purposes especially on zero or lower noise levels.
Results presented in here were obtained from two
experiments—in a small indoor office environment and a
cluster of small offices and provide us with a wider view on
possibilities of the evolutionary robotics and map building
process in general.

The proposed algorithm and basic methodology were tested
in different types of environments with stable results.
Navigation algorithms enabling both, global or local pose
estimation and map building (SLAM process) still belong to
highly interesting areas of mobile robotics. Constantly
increasing computer power provides immense possibilities to
create more complicated and more sophisticated algorithms
for regular available computers. Thanks to the possibilities of
joining the groups of different strategies, great results can be
reached regarding to the type of working conditions. The
presented map building method only uses one data source and
thanks to the natural addition of additive errors at the pose

36Polibits (46) 2012

Jaroslav Moravec

estimation process, the size of mapped areas will be always
limited to some extent.

ACKNOWLEDGMENT

This research was supported by Tanja Agency, to which we
would like to express our cordial thanks.

REFERENCES

[1] P.J. Besl, and H.D. McKay, “A method for registration of 3-D
shapes,” IEEE Trans. on Pattern Analysis and Machine
Intelligence, vol. 14, no. 2, pp. 239-256, 1992.

[2] J. Brest, S. Greiner, B. Boškovič, M. Mernik, and V. Žumer,
“Self-adapting control parameters in differential evolution: A
comparative study on numerical benchmark problems,” IEEE
Trans. on Evolutionary Computation, vol. 10, no. 6, pp. 646–
657, 2006.

[3] W. Burgard, D. Fox, D. Hennig, and T. Schmidt, “Estimating
the absolute position of a mobile robot using position probability
grids,” in Proc. of the National Conference on Artificial
Intelligence, pp. 896-901, 1996.

[4] A. Censi, “An ICP variant using a point-to-line metric,” IEEE
International Conference on Robotics and Automation ICRA
2008, pp. 19-25, 2008.

[5] I.J. Cox, “Blanche – An experiment in Guidance and Navigation
of an Autonomous Robot Vehicle,” IEEE Trans. on Robotics
and Automation, vol. 7, no. 2, pp. 193-204, 1991.

[6] J.L. Crowley, “World Modeling and Position Estimation for a
Mobile Robot Using Ultrasonic Ranging,” International
Conference on Robotics and Automation, pp. 674-680, 1989.

[7] J.L. Crowley, “Dynamic World Modeling for an Intelligent
Mobile Robot Using a Rotating Ultra-Sonic Ranging Device,”
tech. report CMU-RI-TR-84-27, Robotics Institute, Carnegie
Mellon University, 1984.

[8] J.L. Crowley, “Navigation for an intelligent mobile robot,” IEEE
Journal of robotics and automation, vol. 1, no. 1, 1985.

[9] F. Dellaert, D. Fox, W. Burgard, S. Thrun, “MonteCarlo
localization for mobile robots,” Journal of Artificial
Intelligence, vol. 128, no. 1-2, pp. 99-141, 1999.

[10] R.O. Duda, P.E. Hart, Pattern Classification and Scene
Analysis, Wiley-Interscience, 1976.

[11] M. Ebner, “Evolving environment model for robot localization,”
Euro GP 1999, Ebenhard-Karls-Universitat Tubingen, Germany,
Springer Verlag, pp. 184-192, 1999

[12] A.E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter
control in evolutionary algorithms,” IEEE Transaction on
evolutionary computation, vol. 3, no. 2, pp. 124–141, 1999.

[13] D. Fox, W. Burgard, and S. Thrun, “Markov localization for
mobile robots in dynamic environments,” Journal of Artificial
Intelligence Research, pp. 391–427, 1999.

[14] R. Gamperle, S.D. Muller, and P. Koumoutsakos, “A parameter
study for differential evolution”, WSEAS Int. Conference on
advances in intelligent systems, pp. 293–298, 2002.

[15] Q. Ke, and T. Kanade, “Robust L1 Norm Factorization in the
Presence of Outliers and Missing Data by Alternative Convex
Programming,” IEEE Conference on Computer Vision and
Pattern Recognition (CVPR 2005), 2005.

[16] N.M. Kwok, D.K. Liu, and G. Dissanayake, “Evolutionary
computing based mobile robot localization,” Engineering
Applications of Artificial Intelligence, vol. 19, pp. 857–868,
2006.

[17] J.C. Latombe, and A. Lazanas, “Landmark-Based Robot
Navigation,” Algoritmica, vol. 13, no. 5, pp. 472-501, 1997.

[18] J.J. Leonard, and H.F. Durrant-Whyte, “Simultaneous map
building and localization for an autonomous mobile robot,”
Conference IROS-91, Osaka, Japan, pp. 1442-1447, 1991.

[19] J.J. Leonard, and H. F. Durrant-Whyte, “Mobile robot
localization by tracking geometric beacons,” IEEE Trans. on
Robotics and Automation, vol. 7, no. 3, pp. 376-382, 1991.

[20] J.J. Leonard, I.J. Cox, and H.F. Durrant-Whyte, “Dynamic map
building for an autonomous mobile robot,” Int. journal on
Robotics Research, vol. 11, no./4, pp. 286-298, 1992.

[21] F. Lu, and E. Milios, “Robot pose estimation in unknown
environments by matching 2D range scans,” Journal of
Intelligent Robotics Systems, vol. 18, no. 3, pp. 249–275, 1997.

[22] E.M. Montes, and A.G.P. Ortiz, “Self-adaptive and
Deterministic Parameter Control in Differential Evolution for
Constrained Optimization,” IEEE Congress on Evolutionary
Computation, pp. 1375 - 1382, 2009.

[23] H.P. Moravec, and A. Elfes, “High resolution maps from wide
angle sonar,” in Proc. IEEE Int. Conf. Robotics and Automation,
pp. 116–121, 1985.

[24] M.R. Mohammadi, and S.S. Ghidary, “Integrated PSO and line
based representation approach for SLAM,” in Proceedings of
the 2011 ACM Symposium on Applied Computing, pp.1382-
1388, 2011.

[25] L. Moreno, S. Garrido, D. Blanco, and M.L. Muñoz,
“Differential evolution solution to the SLAM problem,” Journal
of Robotics and Autonomous Systems, vol. 57, no. 4, 2009.

[26] L. Moreno, J.M. Armingol, S. Garrido, A. Escalera, and M.A.
Salichs, “A Genetic Algorithm for Mobile Robot Localization
Using Ultrasonic Sensors,” Journal of Intelligent and Robotic
Systems, vol. 34, no. 2, 2002.

[27] T. Pavlidis, and S.L. Horowitz, “Segmentation of Plane Curves,”
IEEE Trans. on Computers, vol. 23, no. 8, pp. 860–870, 1974.

[28] S.T. Pfister, S.I. Roumeliotis, and J.W. Burdick, “Weighted Line
Fitting Algorithms for Mobile Robot Map Building and Efficient
Data Representation,” ICRA 2003, pp. 14-19, 2003.

[29] S.T. Pfister, “Weighted line fitting and merging,” Tech. Rep.,
California Institute of Technology (2002), Available:
http://robotics.caltech.edu/~sam/TechReports/LineFit /linefit.pdf

[30] A.K. Qin, and P.N. Suganthan, “Self-adaptive differential
evolution algorithm for numerical optimization,” The 2005 IEEE
Congress on In Evolutionary Computation, vol. 2, pp. 1785-
1791, 2005.

[31] A. Siadat, A. Kaske, S. Klausmann, M. Dufaut, and R Husson,
“An Optimized Segmentation Method for a 2D Laser-Scanner
Applied to Mobile Robot Navigation,” in Proceedings of the 3rd
IFAC Symposium on Intelligent Components and Instruments
for Control Applications, 1997.

[32] M. Schmidt, “Least Squares Optimization with L1-Norm
Regularization,” CS542B Project Report, 2005.

[33] P. Skrzypcynsky, “Simultaneous Localization and mapping: a
feature based probabilistic approach,” Int. Journal of Applied
Mathemahics and Computer Science, vol. 19, pp. 575-588,
2009.

[34] P. Skrzypczyňski, “Building Geometrical map of environment
using IR range finder data,” Intelligent Autonomous Systems,
U.Rembold et. al. IOS Press, 1995.

[35] R. Storn, “On the Usage of Differential Evolution for Function
Optimization,” NAFIPS’96, pp. 519–523, 1996.

37 Polibits (46) 2012

Map Building of Unknown Environment Using L1-norm, Point-to-Point Metric and Evolutionary Computation

[36] R. Storn, and K. Price, “Differential Evolution – a Simple and
Efficient Heuristic for Global Optimization,” Journal of Global
Optimization, vol. 11, pp. 341–359, 1997.

[37] J. Teo, “Exploring dynamic self-adaptive populations in
differential evolution,” Journal of Soft Computing, vol. 10, pp.
673–686, 2006.

[38] C.K. Wong, J. Schmidt, and W.K. Yeap, “Using a Mobile Robot
for Cognitive Mapping,” International Joint Conference on
Artificial Intelligence (IJCAI), Hyderabad, India, 2007.

[39] W.K. Yeap, “Towards a computational theory of cognitive
maps,” Artificial Intelligence, vol. 34, pp. 297-360, 1988.

[40] R. Kummerle, G. Grisetti, H. Strasdat, K.Konolige, and W.
Burgard, „g2o: A General Framework for Graph Optimization,“,
in Proceedings of the IEEE International Conference on
Robotics and Automation, pp. 3607-3613, 2011.

[41] N. Metropolis, and S. Ulam, “The Monte Carlo method,”
Journal of the American Statistical Aassociation, vol. 44, 335-
341, 1949.

[42] D. Whitley, S. Rana, and R.B. Heckendorn, „The Island Model
Genetic Algorithm: On Separability, Population Size and
Convergence,“ Journal of Computing and Information
Technology, vol. 7, pp. 33-47, 1998.

[43] R. Tanese, „Distributed Genetic Algorithms,” Proc. of the Third
International Conference on Genetic Algorithms,
MorganKaufmann, J.D.Schaffer editor, pp. 434-439, 1989.

[44] M. Gorges-Schleuter, “Explicit parallelism of Genetic
Algorithms through Population Structures,” Paraller Problem
Solving from nature, Springer Verlag, H.P. Schwefel and
Reinhard Manner, editors, pp. 150-159, 1991.

[45] M. Begum, G.K.I. Mann, and R.G. Gosine, “An Evolutionary
Algorithm for Simultaneous Localization and Mapping of
Mobile Robots,“ Proc. of The IEEE/RSJ Int. Conference on
Intelligent Robots and Systems, pp. 4066-4071, 2006.

[46] M. Begum, G.K.I. Mann, and R.G. Gosine, „A Fuzzy-
Evolutionary Algorithm for Simultaneous Localization and
Mapping of Mobile Robots,” Proc. of IEEE Congress on
Evolutionary Computation, pp. 1975-1982, 2006.

[47] M. Begum, G.K.I. Mann, and R.G. Gosine, „Intergrated fuzzy
logic and genetic algorithmic approach for simultaneous
localization and mapping of mobile robots,” Journal of Applied
Soft Computing, vol. 8, no. 1, January, 2008.

[48] D.E. Goldberg, “Simple genetic algorithms and the minimal
deceptive problem,” Genetic Algorithms and Simulated
Annealing, London, Pitman, pp. 74-88, 1987.

[49] D.E. Goldberg, “Genetic algorithms in search, optimization, and
machine learning,” Addison-Wesley New York, 1989.

[50] K. Price, D. Corne, M. Dorigo, and F. Glover, “An Introduction
to Differential Evolution,” Eds. London, McGraw-Hill, pp. 79–
108, 1989.

[51] K. Price, and R. Storn, “Minimizing the Real Functions of the
ICEC’96 contest by Differential Evolution,” IEEE Int.
Conference on Evolutionary Computation (ICEC’96), pp. 842–
844, 1996.

[52] M. Dorigo, “Optimization, Learning and Natural Algorithms”,
Ph.D. dissertation, Politecnico di Milano, Italy, 1992.

[53] J. Kennedy, and R.C. Eberhart, “Particle swarm optimization,”
Proc. of the 1995 IEEE International Conference on Neural
Networks, 1995.

[54] J. Moravec, “Cascaded Evolutionary Estimator for Robot
Localization,” International Journal of Applied Evolutionary
Computation (IJAEC), vol. 3, no. 3, pp. 33-61, 2012.

[55] J. Moravec, “Continuous Robot Localization in Known
Environment Using Genetic Algorithms,” The 10th IEEE Int.
Conference on Fuzzy Systems FUZZ IEEE 2001, Melbourne,
Australia, p.6, 2001

38Polibits (46) 2012

Jaroslav Moravec

