
 

   

Abstract—In the present paper, a method for building a map of 
an unknown environment (SLAM) derived from the ICP 
algorithm using point-to-point metric is proposed. The polar-
scan matching technology is used for estimation of the robot 
location change between two scans in sequence estimate the 
correct position of the robot. Since map building is fairly time-
consuming, the algorithm of differential evolution (DE) is used in 
the calculation. This efficient optimizer provides very good 
results in different types of small office environment 
(unstructured and structured). The new type of an algorithm for 
map building is based purely on simple geometric primitives—
vectors and integrates the modern evolutionary algorithm—DE. 
The presented algorithm falls into the wider group of geometric 
map builders and is able to build a map of indoor, mostly office, 
environment without moving objects. 
 

Index Terms—SLAM, robot localization, evolutionary 
robotics, differential evolution, L1-norm.  
 

I. INTRODUCTION 

IGNIFICANT effort of many different research groups in the 
area of the map building has brought good results in the 
last several decades. The integration of modern 

evolutionary algorithms is not taken for granted that much in 
this field. Disadvantage of nearly all EA (evolutionary 
algorithms) methods is a necessity to find proper working 
parameters. Many EA methods suffer from premature 
convergence to local optimum, which they´re not able to 
release from any more. Algorithms for the map building are 
very sensitive about the failure of the estimator which 
performs the estimation of position and turning 
transformation. All these exact reasons lead to elect 
differential evolution optimizer as an appropriate EA tool, as it 
provides very good results for a given task.  

There are many different approaches in an area of the robot 
localization and map building which can be classified into 
several main groups. The amount of publications in particular 
groups is approximately the same. (A) Probabilistic algorithms 
usually use different versions of an occupancy grid. A map is 
represented by set of occupancy probability eventually 
emptiness probability. The map is formed by a set of cells in 
the shape of usual square area [23, 9, 3, 13]. (B) Map is 
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represented by geometric primitives such as lines, circles, 
points or curves (b-spline curves) etc. The geometric model of 
environment is created from these elements. The core of the 
position estimator might be compiled by using various types 
of algebraic criteria [18, 19, 20, 21]. (C) The third and these 
days probably the widest group is the one using combinations 
of algorithms from two previous groups (so called hybrid 
algorithms) or it uses very specific patterns that represented 
the model of the world and different methods for localization 
and map building. It´s for example the case of events when a 
map is represented by a cloud of points, alternatively by 
different kinds of landmarks [17] like RFID, sound sources 
etc. Relatively new and perspective way in the field of map 
building and navigation is called cognitive maps [38, 39]. This 
approach exploits and integrates more information sources. A 
precise geometric map similar to [13] does not exist here. 
    Conventional methods for creating a map of unknown 
environment such as e.g. these publications [23, 1, 21] use 
gradient optimizers. But this is an approach a few decades old. 
The advantages of gradient optimizers are their simplicity and 
implementation speed. They still interest many researchers 
thanks to these qualities. They may be found e.g. in [40]. 
However, they have their insignificant limitations. Due to an 
intensive research in the field of evolutionary computer 
technology and fairly huge amount of publications analyzing 
their possibilities on different types of problems, EA methods 
have come to the foreground in the area of robotics as well. 
Their application is broad – map building using 2D or 3D laser 
scanner, global and local localization, semantic classification, 
the area of machine learning. A relatively big disadvantage is 
that they may also extend significantly the implementation of 
a basic navigation algorithm. MoteCarlo algorithm is the most 
common optimizer that is possible to come across and is used 
in the connection with probabilistic algorithms [9, 3, 13]. 
    In 1998 an interesting article [42] based on Island Model 
Genetic Algorithm (IGA) was published. The theme of 
distributed GA can be found earlier for example [43, 44]. IGA 
is a derivative of the genetic algorithms that works with 
several populations which search functional space in parallel. 
The authors were successful to prove that IGA provides better 
results especially for linearly separable problems comparing to 
SGA [48] that is used e.g. in [26]. Using IGA optimizer as a 
computational accelerator also depends strongly on a type of 
the basic method(s). These methods were used for the 
purposes of localization and map creation (SLAM) in [45], 
[46]. It is also possible to find a very interesting connection of 
the SLAM algorithm and the fuzzy logic [47]. One of the first 
papers using untreated SGA was published in [11].  Interesting 
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results like that may be found in the article [55] as well. 
Practical use of the SLAM algorithm with the complete 
analysis of the issue can be found e.g. in [25]. The base of the 
presented method is formed by the probabilistic occupancy 
grid [23, 13] again. Kwok et al. presented a small study in [16] 
which compares the performance of three different 
evolutionary algorithms SGA [48, 49], PSO [53] and 
AntSystem [52]. The tested EA methods solve three-
dimensional problem – here the dimensions are represented by 
X, Y coordinates in the Cartesian coordinate system and the 
third dimension is then the angle α that includes the robot´s 
view direction along with axis X. The disadvantage of this 
approach is the necessity of using a fairly huge number of 
individuals in the population and substantially higher 
computation demands related to that.  Similar results are to be 
found in paper [24] as well. 
       The differential evolution algorithm (DE) proposed by 
Kenneth Price a Rainer Storn [36] is used in this paper as an 
efficient and powerful computational accelerator (optimizer). 
However, DE is only suitable for certain types of problems – 
see [14]. SLAM under low noise levels falls to such suitable 
groups of problems as well. Finding of the correct working 
parameters of the optimizer is not so easy and usually takes a 
fairly long time. Valuable results of a research in this area can 
be found in [2, 12, 37, 14, 30, 22]. 

II. POSE ESTIMATION IN PARTIALLY KNOWN ENVIRONMENT 

Consider a general evolutionary SLAM problem ����∈���	
�� or ����∈���	
�� (1) 

Denote by �����, ����� the optimal values of this problem and 
by �∗ and �∗ the maximum and minimum value of f over �. � ∈ �	represents optimal trajectory in state space (it is for 
example: �, �, � is a robot pose; �, � in Cartesian coordinates 
and � is heading with regard to the axis X, and of course all 
working parameters of the presented methods have to be 
included as well). 	
… � represents sensing model and a pose 
estimator (in the case of the SLAM problem, presented here, it 
is ℱ� or ℱ� strategy – see below), �
… � represents 
evolutionary pseudo-random process – i.e. DE algorithm for 
example. 
 
Definition:  Given � ∈ 〈−∞, +∞〉, a functional �" ∈ � is said 
to be an �-approximate solution of the problem (1) if possible 
solution exists in the sense 

    |�
�"� − �����| ≤ �|�∗ − �����| or |�
�"� − �����| ≤ �|�∗ − �����| 
 

(2) 

Unfortunately, �" ∈ � strongly depends on 	
… � and “system” 
represented by robot, environment and all moving objects and 
is non-separable and non-stationary (so called t-variant). In 
this task  robot always affects itself through other objects 
moving in the given environment and that´s thanks to the used 
control systems. The presented work transforms the general 
optimization problem utilizing evolutionary computation to: 
 ℱ�,�: ��	
�� 	→ �'(�	
�� , )
�, �'(� ∈ ℝ, 

 �'( ∼ pseudo-random process 

(3) 

Evolutionary computations are used to accelerate the map 
building process. The pose estimation process is based on 
comparison of a set of simulated data from a virtual 2DLS 
(two dimensional laser scanner) from positions obtained by 
using the EA process and scan from the real 2DLS. We can 
denote: ,-
.� = 
�, �, ��, ,0
1� = 
�, �, ��, �, 2 ∈ ℕ,  ∃2|,567 ≡,0
1�~,-
.� is a real and simulated pose and from the text 
above ,-
.�, ,0
1� ∈ �, :-
.� = ;<-
=�, <-
��, … , <-
>�?, � ∈ ℕ, ∀<-|<- ≤ 	A>B�	, 1 ≤ � ≤ ℂE-BF and :0
1� = ;<0
=�, <0
��, … , <0
G�?,	2 ∈ ℕ, ∀<0|<0 ≤ 	A>B�	,  1 ≤ � ≤ ℂ0.>, � < �, the real and simulated sensing. ℂ0.> ≥ ℂE-BF. � is heading with regard to axis X. For every ,-
.� it is necessary to create set of ,0
1�, 2 ∈ ℕ. JK-7 = L is a 
detection angle of the real 2DLS, J076 = 0.5° is a resolution 
of the real 2D LS - i.e. 361 beams can be used for example. QK-7 is a detection angle of the pose estimator 	
�� i.e. QK-7 is 
the angle which the matching process works in. QK-7 is set to L 3S  for all experiments. ,567|=T ∈ �", 	A>B�	 is a beam limitation 
given by used sensor with ℂE-BF beams. ℂ0.> denotes the 
number of simulated beams. Environment is represented by set 
of short lines. EA methods use set of individuals ,0
1�. From 
the theoretical point of view, only one point ,567 , ,567 ∈,0	defines the correct robot’s pose. In the real world and 
thanks to the existence of noise (estimated by U6� or U6� 
function), more than one point can provide well acceptable 
result(s). Every individual of the EA represents one possible 
solution which is evaluated in the sense:  
 V = |W − X|,  (4) 
 
where 
 

W =
YZ
ZZZ
ZZZ
Z[ <0\
=� <0\
�� <0\
�� .<0\
�� <0\
�� . .<0\
�� . . .. . . .<0\
G�>�=� <0\
G�>��� . .. . . .<0\
G��� . . .<0\
G��� <0\
G�=� . .<0\
G�=� <0\
G� <0\
G�=� .<0\
G� <0\
G�=� <0\
G��� .

 

 . . . <0\
>�=� <0\
>�. . <0\
>�=� <0\
>� <0\
>�=�. <0\
>�=� <0\
>� <0\
>�=� <0\
>���. . . . .. . . <0\
G�=� <0\
G�. . <0\
G�=� <0\
G� <0\
G�=�. . . . .. . . . <0\
G�>���. . . <0\
G�>��� <0\
G�>���. . <0\
G�>��� <0\
G�>��� <0\
G�>�=�]̂
^̂̂
^̂̂
_̂
 

 

X = `<-
=� <-
�� . <-
>�. . . .. . . .<-
=� <-
�� . <-
>�a , W,X are � ×�. 

 <0c
=..G� = <0
=..G� ,  <0c�
G�=�..
G�>�=� = <0
=..
>�=�� ;  � ≡ <0c 	, d ≡ <- ; �, �	is	ghi	, �, 2	is	jhkl�� ;  mn = ;∑ j=,1>1p= , ∑ j�,1 ,… ,∑ jG�=,1 , ∑ jG,1>1p=>1p=>1p= ?  
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Matrices W,X are expressed generally in (4) i.e. QK-7 = 2L. If QK-7 is smaller than 2L, number of rows of the used matrices 
will be adequately smaller too. Presented map building 
algorithm is based on two independent strategies. Both 
strategies ℱ� and ℱ� enable correct �" ∈ � estimation. ℱ� and ℱ� are given by equations: 
 ℱ�|,r��=1.p7 ≡ sUE� = �g	����t
�,u����v
w� |.p=G 	 

xyz1, 	��	�{�
.,1� − 	d
.,1�{ ≤ U6�0, 	��	�{�
.,1� − 	d
.,1�{ > U6�
>
}p=

~� 

∀�, �|�, � ∈ ℝ , UE� ⟷ ,567 ; U6� = =G + �7
d.,1 + �.,1� + 1, �7 = ������ 

(5) 
 

 ℱ�|,r��=1.p7 ≡	 sUE� = �g	����t
�,u����v
w�|.p=G  

�y z{�
.,1� − 	d
.,1�{, ��	�
.,1� < 	A>B�	0, ��	�
.,1� = 	A>B�		
>
1p= �� 

∀�, �|�, � ∈ ℝ , UE� ⟷ ,567  , l
.�|.p=G ∈ �0,1� l
.�|.p=G = ∑ {�
.,1� − 	d
.,1�{	>1p= ; U6� = �=G + 
�7�.,1� + 1� 

(6) 
 
 

 
where �7 is a slope of the accuracy curve of the used 2DLS 

(for example 
������� – it is classic linear dependency according 

to the manufacturer recommendations. � is the number of all 
collected scans from the real 2DLS. 

Here, UE� and UE� represents  the fitness value of the best 
founded estimated pose.  U6� and U6� represent equations of 
the linearized model of the 2DLS sensor—simple noise model 
for one(every) beam. Correct pose and heading estimation 
according to the selected strategy is given by ,567 and heading � of the robot is given by: 
 ��:  ���	l�|�p=G ⇒ 
���r��� ,  ��:  ���	l�|�p=G ⇒ 
���r��� ;  ��,�: � = �J076
� − 1�� + �=� QK-7� 

(6) 

 
‘ ���r�’  means �-th element of the l�vector, for which the 
fitness function takes the smallest 
ℱ�� or the biggest 
ℱ�� 
value.  

Sensorial data from 2DLS are used only (no data from 
odometry). The pose estimator described in here is based on 
point-to-point metric. It is the core of the proposed SLAM 
method. ℱ� or ℱ� strategy is used to dissimilarity 
measurement—dissimilarity between simulated vector :0 and 
the real sensing :-. ℱ� strategy has universal features and is 
suitable for structured or unstructured environment, long or 
small corridors (hallways) or environment with or without 
moving objects. 

Generally, ℱ� provides somewhat worse results at heading 
estimation—of about 5–7 percent in comparison to ℱ�. ℱ� has 
identical features to ℱ�, but it is not suitable for work in long 
hallways and has quarter noise resistance abilities only – see 
[54]. ℱ� is suitable for small and very structured environment 
with or without moving objects.  

At correct pose estimation and if searching area is 60x60cm 
for example, equation (4) must be evaluated 60 × 60=3600 
times. It takes a long time. DE optimizer is able to estimate 
correct solution approx. 25–35x faster. Fig. 1 depicts Fitness 
function projection of the ℱ� and  ℱ� strategy to 3D space—
identical environment and identical robot’s pose is used. 

ℱ� ℱ� 

  
 
Fig. 1. Projection of the Fitness function of the ℱ� and ℱ� strategy to 3D space 
- example. ℱ� - robot is in the place with min. Fitness function. ℱ� - robot is in 
the place with max. Fitness function.   
 

 
 
DE optimizer in this case seeks for an optimum (minimum or 
maximum) according to the l� (alias ℱ�:  ���	l�|�p=G , ��:  ���	l�|�p=G , see (3) – (6) ) value for every individuum of the 
population. Fig. 1 shows large area 600 × 800cm, for better 
understanding. 

III.  GSLAM ALGORITHM 

Proposed gSLAM algorithm uses raw 2DLS data to 
estimate the correct pose in polygonal environment by 
modified simulated-point-to-point matching technique in 

TABLE I 
PROPOSED GSLAM ALGORITHM 

Input data: ,B�7vBF
�, �, ��  – Start (alias actual) robot’s pose – corresponding 
to the :-
=�, :-
.� – Set of sensorial data from 2DLS, �� - empty global map. 

A1 1 Approximate scan )�
�� by set of lines ��, � ∈ℕ, � ≠ � 
 2 Compute parameters of the ��, necessary for 

SLAM. 
A2 3 Insert the ��, � ∈ ℕ, � ≠ � into �� 
 4 for all )�
��; 	� ∈ ℕ, � ∈ ��, . . , ¡� 
A3 5     Create n� based on the ¢£¤¥m£¦
§, ¨, ©�  

    _and ��. 
A4 6     Find correct pose and heading ¢ª¡¥	for )�
��, 

    _use the n� and selected strategy �� or   
    _ �� accelerated by DE. 

A1 7     Approx. actual )�
�� vector, by set of  

    _lines ��, � ∈ ℕ, � ≠ �. 
 8     Compute params. of the �� and insert 

    _ �� into the «�. 
A2 9     Use the «�, build a new set of lines �T�¬,  

    _suitabe to be inserted into ��. 
    _Clear «�. Insert the new set of  
    _lines �T�¬ into «�. 

 10     Insert all lines from «� to �� and 
    _clear «�. 

A5 11     Use heuristic rules,  merge all possible  
    _lines in ��, if it is possiblle. 

 12 end for  
A5 13 Final map ‘refinement’ – �� map 

Output data: �� – Lines list – global map of environment, ,�
�, �, �� – Set 
of positions. Robot’s pose and heading corresponding with :-
.� vectors. 

Key: n� – Temporary Map of local environment. This map is used at pose 
estimation utilizing EA computations. «� – Local Map contains all lines 
found in :-
.�. A1.. A5 individual parts of the gSLAM algorithm. A1 consists 
of a recursive line splitting marked as B1 and line pose improvements by LSQ 
algorithm marked as B2. A3 use classic ray-tracing. In step A4, EA method is 
used according to the equation (4). Line 13 can be optionally omitted. 
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temporary map n� which represents the temporary polygonal 
model-view from the last estimated correct pose ,567 in �� – 
global map. n� is obtained by using 2D ray-tracing. The 
complete gSLAM algorithm is described in Table I. Once the 
correct robot’s pose is found according to the ��, the actual 
sensorial data :-
.� are approximated by set of lines and the 
local model «� is created from them. The set of lines is 
confronted with the global �� map of environment 
(previously built) and some parts of lines in «� are marked as 
suitable for inserting into ��. This process uses several 
heuristic rules.  
 

 
 

Fig. 2. Flowchart diagram of the gSLAM – sequential ordering of the A1 .. A5 
algorithms.  

 
The flowchart diagram of insertion process is depicted in 
Fig. 3. The recursive line splitting algorithm (LR-LSQ) based 
on L1-norm is used. ‘LocalMap
«��’ serves like a helper 
only. Table I contains individual steps of the proposed 
gSLAM algorithm. gSLAM consists of 5 main parts. Input 
data are ,B�7vBF
�, �, ��  – start (alias actual) robot’s pose – 
corresponding to the :-
=�, :-
.� – set of sensorial data 2DLS. 
Output data are �� – global map of environment, ,�
�, �, �� 
– set of estimated positions resp. robot’s pose and heading 
corresponding with :-
.� vectors. 
 

 
* A small circular arrow means that a classification sentence can be repeated 
according to the actual state of the «� map, until all abscissae are 
successfully classified. Deadlock is handled.  
 

Fig. 3.  The flowchart diagram of the lines relationship classifier. 

A. The Line Fitting Method 

The line fitting algorithm (marked as A1 in Fig. 2) uses 
approximation of a point set by multi-line. The presented line 
fitting algorithm uses combination of several methods - 
successive Edge Following – SEF [31] and Iterative End Point 
Fit (IEPF) [10, 6, 27, 28, 29]: 
 
1) Transform :- vector from polar to Cartesian coordinates.  

2) Eliminate all points d. where: ∀d.
�, ��, ∄d1
�, �� so that d.
�, �� ∈ ®d1
�, ��: ¯d. , d1¯ ≤ °, 2 ≠ �± in ²�, ° is 
constant; 10cm for example. 

3) Use SEF algorithm to d. points and exclude all unsuitable 
points from d.. New set of points will be d.∗.  Use IEPF 
algorithm to d.∗.   

4) Use linear regression (LR-LSQ) [32], [15] algorithm to 
merge two consecutive lines if it is possible + final 
refinement of every line in the sense of (LR-LSQ) 
algorithm.  

 
Abscissae of the «� map cannot be inserted directly. Several 
atomic rules were defined enabling to estimate correctly, 
which part of the line is to be inserted into the �� – see Table 
II. These rules are designed to be useful for line-to-line 
algorithms. There are 17 atomic rules – see Fig. 4. Suitable 
combinations of atomic rules form four classification 
sentences. The classification sentences form a classification 
strategy. The number of applied classification sentences is not 
known a priori and is variable. The proposed classification 
sentences (insertion process of the «� into ��): 

1) If two abscissae AB and CD do not lie on an identical line 
(consecutively), the distance of C and D points from the 
line identical to abscissa AB is shorter than the limit, CD 
abscissa does not overhang the boundary C and D points of 
AB abscissa and the angle between AB and CD is smaller 
than the limit, remove CD abscissa. (Atomic rules 1,11, 12, 
5, 4) 

2) If two abscissae AB a CD do not lie on an identical line 
(consecutively), C point and D point overhang the end 
points of AB abscissa, the distance of A and B points to CD 
abscissa is shorter than the limit and the angle between AB 
and CD is shorter than the limit, let in «� parts of CD 
abscissa, which overhang AB abscissa. (Atomic rules 1, 3, 
4, 7, 8, 9, 10, 13, 14, 16). 

3) If two abscissae AB a CD do not lie on an identical line 
(consecutively), C point overhangs AB abscissa and the 
distance of the second point to AB abscissa is less than the 
limit, let in «� part of CD abscissa, which overhangs AB 
abscissa only. (Atomic rules 1, 2, 3, 7, 12, 13, 14, 15). 

4) If two abscissae AB a CD do not lie on an identical line 
(consecutively), D point overhangs AB abscissa and the 
distance of the second point to AB abscissa is less than the 
limit, let in «� part of CD abscissa which overhangs AB 
abscissa only. (Atomic rules 1, 2, 4, 6, 12, 13, 16, 17). 

The atomic rules are formularized by AND logic operator 
and rules 16 and 17 are placed inside of the 4. condition 
clause. 

Four classification sentences represent a heuristic schema 
that only enables to define such parts of the «� map which 
are suitable for inserting into the �� map. If any “less 
suitable” abscissae appear in «�, classifier inserts such  
abscissae into �� without any change. Usually perpendicular 
abscissae are considered – perpendicular to existing walls of 
the environment model. 
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TABLE II 
ATOMIC RULE LIST – INSERTION PROCESS 

Nr. Atomic rule Description 

1 AB_wholeLeftOrRigt_CD  Abscissa AB lies on the left or right side 
of CD abscissa. 

2 CD_wholeLeftOrRigt_AB  Abscissa CD lies on the left or right side 
of AB abscissa. 

3 C_overhangL <= L1  Point C of CD abscissa does not overhang 
any of A or B  points  

4 D_overhangL <= L1  Point D of CD abscissa does not overhang 
any of A or B points  

5 C_overhangL > L1 Point C of CD abscissa overhangs one of 
the outer points of AB abscissa AB. 

6 D_overhangL > L1 Point D of CD abscissa overhangs one of 
the outer points of AB abscissa. 

7 C_outside_AB = true 
Intersect Cp of the line passing the point C 
perpendicular to AB abscissa does not lie 
between AB points. 

8 D_outside_AB = true 
Intersect Dp of the line passing the point D 
perpendicular to AB abscissa does not lie 
between AB points. 

9 A_CD_dist < L2  Distance of the point A from the line 
which the CD abscissa lies on.  

10 B_CD_dist < L2  Distance of the point B from the line 
which the CD abscissa lies on. 

11 C_AB_dist < L2  Distance of the point C from the line 
which AB abscissa lies on. 

12 D_AB_dist < L2 
Distance of the point D from the line 
which the AB abscissa lies on. 

13 angle_CD_AB < L3 Angle of AB and CD lines  

14 C_closeTo_Ap = true 

Distance of the C point and intersect Ap 
line passing the point A perpendicular to 
line on which the points C,D lie is shorter 
than distance of the point C and intersect 
Bp line passing the point B perpendicular 
to CD. 

15 C_closeTo_Bp = true  

Distance of the point C and intersect Bp 
line passing the point B perpendicular to 
line on which the points C,D lie is shorter 
than distance of the point C and intersect 
Ap line passing the point A perpendicular 
to CD. 

16 D_closeTo_Ap = true 

Distance of the D point and intersect Ap 
line passing the point A perpendicular to 
line on which the points C,D lie is shorter 
than distance of the point D and intersect 
Bp line passing the point B perpendicular 
to CD. 

17 D_closeTo_Bp = true  

Distance of the D point and intersect Bp 
line passing the point B perpendicular to 
line on which the points C,D lie is shorter 
than distance of the point D and intersect 
Ap line passing the point A perpendicular 
to CD. 

If the rule has an operator (<,>,= et.c) it is only used in this form. If no 
operator is present, any type of operator can be used in algorithm in the sense 
of the particular rule. For example ‘C_overhangL’ is real a number at 
computations and ‘L1’ is constant. 

 
If any abscissa is transformed using any classification 
sentence, only suitable parts of it are moved back to «� map. 
Once classifier finishes its job, all abscissae are moved to �� 
at once. Fig. 4 shows a graphical representation of the atomic 
rule list in Table II. used at an insertion process. It is a classic 
conceptional relation between two abscissae AB and CD.  

 
 

 
 
C_closeTo_Ap, C_closeTo_Bp, 
D_closeTo_Ap, D_closeTo_Bp 

C_overhangL, D_overhangL 
 

  
C_outside_AB, D_outside_AB 
A_inside_CD,  B_inside_CD, 
C_inside_AB, D_inside_AB 

A_CD_dist,B_CD_dist,  
C_AB_dist, D_AB_dist 

 
angle_CD_AB AB_wholeLeftOrRigt_CD, 

CD_wholeLeftOrRigt_AB 

 

Examples of the presented rules: 
• C_closeTo_Ap = true, C_closeTo_Bp = false,  
• D_closeTo_Ap = true, D_closeTo_Bp = false 
• C_overhangL = L1, D_overhangL = -1*L1 
• C_outside_AB = true, D_outside_AB = false,  
• C_inside_AB = false, D_inside_AB = true 
• A_CD_dist = L, D_AB_dist = L 
• angle_CD_AB = � 
• AB_wholeLeftOrRigt_CD = true, CD_wholeLeftOrRigt_AB = false  
 
*L, L1, L2, � are elected constants at SLAM process. 
 
Fig. 4. Atomic rule list, conceptional relation between two  abscissae AB and 
CD; graphic representation. 

B. Merging – minimizing the number of abscissae in �� 

Once the list of abscissae suitable for inserting into �� is 
completed, it´s inserted into �� immediately. Merging 
process ensures minimum and acceptable number of abscissae 
in ��. Merging process is not a necessary step in order the 
final map to be fully consistent. The method presented in here 
is based on Skrzypczyňski [33], [34] and Crowley [6], [7], [8], 
but the method is significantly modified. Similarly to the 
insertion process, the merging process uses the same basic 
scheme as the insertion process – see Fig. 3. The proposed 
merging process consists of 3 classification sentences:  
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1) Abscissae AB and CD lie consecutivey in a line and the 
distance of end-points is shorter than the limit. AB and CD 
will be concatenaded. (Atomic rules 13, 11, 12, 1, 18, 19, 
20, 21, 22, 23).    

2) If abscissae AB and CD intersect and the distance of any 
point A, point B, point C or point D from intersect AB and 
CD is less than the limit, cut-off this small protrusion. 
(Atomic rules 24, 25, 26, 27, 28). 

3) The intersect of the AB and CD does not esist and any point 
³= = �´, µ, ¶, :� is close to any other point ³� =
�´, µ, ¶, :�, ³= ≠ ³�, and point ³= or ³� lies between AB or 
CD, merges with the nearest points. Only two points can be 
merged. (Atomic rules 24, 31, 35, 32, 36, 29, 33, 30, 33, 
34).   

 
TABLE III 

ATOMIC RULE LIST – MERGING PROCESS 
Nr. Atomic rule Description 

18 onePoint_CorD_n
earToPoint_AorB 

One point C or D lie close to point A or B of AB 
abscissa. Max. distance is defined by fix. threshold. 

19 A_B_dist, 
B_A_dist  Length of AB abscissa.  

20 A_Cp_dist  Distance of the point A and intersect of AB and 
perpendicular line passing the point C. 

21 A_Dp_dist  Distance of the point A and intersect of the AB and 
perpendicular line passing the point D. 

22 B_Cp_dist 
Distance of the point B and intersect of the AB and 
perpendicular line passing the point C. 

23 B_Dp_dist  Distance of the point B and intersect of the AB and 
perpendicular line passing the point D. 

24 AB_CD_intersect
ExistInsideABCD  

This rule tells us that abscissae AB and CD have 
one intersect between AB and CD points. ‘True’ if 
yes, ‘False’ if intersect does not esist. 

25 ABCD_Axyp_inter
sect_overhangL  

Distance of the point A and intersect AB and CD 
abscissae, if rule 24 is true.  

26 ABCD_Bxyp_inter
sect_overhangL  

Distance of the point B and intersect AB and CD 
abscissae, if rule 24 is true. 

27 ABCD_Cxyp_inter
sect_overhangL  

Distance of the point C and intersect AB and CD 
abscissae, if rule 24 is true. 

28 ABCD_Dxyp_inter
sect_overhangL  

Distance of the point D and intersect AB and CD 
abscissae, if rule 24 is true. 

29 A_inside_CD 
Intersect Ap of the line passing the point A, 
perpendicular to CD is or is not inside CD abscissa. 
Rule can be true or false.  

30 B_inside_CD 
Intersect Bp of the line passing the point B 
perpendicular to CD is or is not inside CD abscissa. 
Rule can be true or false. 

31 C_inside_AB 
Intersect Cp of the line passing the point C 
perpendicular to AB is or is not inside AB abscissa. 
Rule can be true or false. 

32 D_inside_AB 
Intersect Dp of the line passing the point D 
perpendicular to AB is or is not inside AB abscissa. 
Rule can be true or false. 

33 A_CD_dist 
Distance of the point A from line which CD 
abscissa lies on.  

34 B_CD_dist 
Distance of the point B from line which CD 
abscissa lies on. 

35 C_AB_dist 
Distance of the point C from line which AB 
abscissa lies on. 

36 D_AB_dist 
Distance of the point D from line which AB 
abscissa lies on. 

 
The merging process uses the atomic rule list mentioned in 

Table III – rules 18-36. Graphical representation of the 
presented atomic rules is depicted in Fig. 5.  

The merging process occurs only in a limited range of 
possible combinations of AB and CD positions, which is also 
sufficient for the construction of a high-quality vector map. If 
unclassifiable schema appears, it is inserted into �� without 
any change. Such problems appear if random perpendicular 
abscissae, perpendicular to walls in environment, have to be 
processed for example. 

 
ABCD_Axyp_intersect_overhangL, 
ABCD_Bxyp_intersect_overhangL, 
ABCD_Cxyp_intersect_overhangL, 
ABCD_Dxyp_intersect_overhangL 

A_Cp_dist,A_Dp_dist, 
B_Cp_dist, B_Cp_dist 

 
 

onePoint_CorD_nearToPoint_AorB AB_CD_intersectExistInsideABCD 

 

 
A_B_dist (B_A_dist) *L, L6, L8, L10 are elected working 

parameters - constants of the gSLAM 
process. 
 

 
Examples of the presented rules (from top to bottom, from left to right): 
• (AB_CD_Axyp_intersect_overhangL > L8 &  
AB_CD_Axyp_intersect_ overhangL <  L10 ) 
• A_Cp_dist < A_Dp_dist, B_Cp_dist < B_Dp_dist  
• onePoint_CorD_nearToPoint_AorB < L6 
• AB_CD_intersectExistInsideABCD = true,  
AB_CD_intersectExistInsideABCD = false 
• A_B_dist (B_A_dist) = L 
 
Fig. 5. Atomic rule list, conceptional relation between two  abscissae AB and 
CD; graphic representation.  

IV.  EXPERIMENTAL RESULTS  

A. DE efficiency and relevancy – short discussion 

DE is a stochastic optimizer. The optimized task is 
continual, separable, t-variant, unimodal (for small searching 
area only). Several different evolutionary optimizers (EA) 
were tested in a continual localization task – see Fig. 6. All 
tested algorithms: SGA[48], [49], [55],  aGA[54], PSO[53] 
and DE applied to (3) and (4) equations (alias ℱ�, ℱ� strategy) 
provide well usable results. Beside these optimizers classic 
Cox’s [5] gradient method was tested as well. All methods 
were tested under heavy-duty operation conditions at a 
continual localization task in known environment (known 
geometric map) to get their reliability and capabilities. 
Unfortunately, the map building algorithm is not highly noise 
resistant that much. Additive Gaussian noise with different 
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noise bandwidth (independent, fixed noise bandwidth) from 
zero to 800cm was tested.  The sample of noise was obtained 
according to the equation: :G5.0u_-
.� = :-
.�  g��
�A,  A�, 
where 2A is equal to noise bandwidth and g�� represents a 
random numbers generator – normal distribution, mean zero. 
DE and PSO algorithms proved the best results without regard 
to different types of environments – see [54]. In contrast to 
other used EA, DE and PSO provide stable and almost 
identical results, especially on lower noise levels. Occasional 
malfunction (which SGA suffers from so much) was never 
observed. Permanent malfunction of any EA method caused 
by additive noise was observed only on highest noise levels 
from the level of about 550cm.  
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Key:   
Vertical axis in ¦ª¸� scale. Bottom right - Localization in environment A, 
noise bandwidth +/-225cm. 

 
Fig. 6. Graphs of accuracy of estimating the position and heading -  SGA, 
aGA, PSO, DE and Cox’s optimizers. 
 

For comparison classic, Cox gradient method is only able to 
work at noise level no higher than about 50. On Table 1, line 
8, block A1, DE algorithm is used. Input of this optimizer is 
the area of width x height approx. 60 × 60cm (or bigger) 
around the last known robot’s pose, n� (temporary map) 
obtained from �� based on classic ray-tracing algorithm + 
line fitting method – block A1; (n� is used for computation 
acceleration purposes only) and actual :- vector. 

DE optimizer used in presented gSLAM method solves a 
classic two-dimensional optimization problem. Heading of the 
robot is calculated separately because of the accuracy and 
higher speed. Step in heading is 0.5°. If a three dimensional 
optimizer would be used similar to [16], the number of 
generations and number of individuals in every population 
must be minimally three times higher. 

In Fig. 7, population convergence is depicted. Individuals in 
the first generation cover equally the whole searching area 
(100x100cm is elected in here). After 10 generations, all 
individuals are almost at the correct pose. Normally 15 
generations/10 individuals are efficient to ensure the correct 
convergence. After 20 generations, DE optimizer found the 
correct pose. In Fig. 7, robot is depicted by a small triangle; 
heading is depicted by a short line. 10 classic basic 
perturbation vectors were tested to get which vector is the 

most suitable. DE/Rand1/Exp provides the best results. Beside 
the DE, PSO optimizer provides good results too, but DE is 
better of approx. 5% if the additive (Gaussian) noise is small 
or zero. In structured environment PSO is significantly better 
from noise level approx. 250cm. Presented gSLAM algorithm 
is designed to build a map of unknown environment without 
moving objects and under noise stress no more than ¹
8 �

10�cm. Noise level value was obtained based on practical 
experiments. Ability to work under higher noise levels is 
significantly reduced thanks to A1 and A5 algorithms - line 
fitting and merging methods. 
  

1. generation 5. generation 10. generation 20. generation 

    
Key: 20 generations, 20 individuals, searching area 100x100cm. 
DE/Rand1/Exp, F=0.6,Pcr=1.0. 

 
Fig. 7. Population convergence - Differential evolution. 

B. Experimental verification of the gSLAM algorithm 

The experimental verification of the proposed gSLAM 
algorithm was performed in two structured environments – A 
and B. The first environment was build-up for test purposes by 
cardboard boxes in laboratory. It is a common indoor office 
environment of 10 × 10 meters with several obstacles inside. 
The obstacles are cardboard boxes (approx. 40 × 60cm). 
Trajectory length was approx. 3001.11cm. The robot obtained 
350 :- vectors. The environment consists of 60 walls. 
Differential evolution - working parameters: DE/rand/1/exp, 
,», / 25,  ¼²½ / 25, searching area 32 b 32cm, ¾ / 0.6, 
,ÀÁ / 0.9. Such working parameters were obtained from 
practical experiments. If ¾ value is smaller, time to correct 
pose evaluation is significantly longer. There is a linear 
dependence. Thanks to quantizing noise of used 2DLS Sick-
PLS100 theoretical accuracy is ¹5 cm. Practically, it is twice 
as worse. The second environment B is a large cluster of 
offices. Dimensions are 2560 × 1880cm. Trajectory length is 
23629.60cm. The number of lines is 329; the number of  :- 
vectors is 1832. Robot passed the trajectory which many times 
intersected itself. Environment B consists of 10 small offices 
and one long hallway. The working parameters of DE 
estimator were identical to the first experiment.  

In the first experiment (see Fig. 8) robot passed the 
trajectory which intersects itself in three points. Presented 
estimator ��(or ��) does not use ‘closing loop’ mechanism 
(global localization based pose corrector) capable of 
improving the correct pose estimation globally. This makes 
the estimator more sensitive to noise.    

The robot was able to pass through the environment without 
loss of orientation. Leonard-DurrantWhyte‘s algorithm [18, 
19, 20] was tested for comparison of the efficiency of tested 
methods ��(or ��). Fig. 8 shows that both methods were able 
to build-up the map of unknown environment without any 
problems. 
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*Correct shape of the tested environment is plotted as well. ℱ� and ℱ� 
strategies provide almost identical results – identical map. 
Differences are unimportant. 

 
Fig. 8. Environment A – SLAM. 

 
Every method has its own specific characteristics. Leonard-

DurrantWhyte‘s algorithm provides slightly turned map of 
about 3°. The correct shape of the tested environments was 
bild by hands for comparison purposes only. In several places 
there are minor but visible inaccuracies in comparison to the 
map buit-up by ℱ� strategy. In both cases the final line map of 
the built environment can be used for localization process. 

 
Line map 

 
Points map (cloud of points) + Estimated Robot trajectory + real positions of 

all walls. 

 
 

Fig. 9. Environment B - Computer Science Department, University of Bonn 

The second experiment was conducted in a large office 
environment. The trajectory was obtained by computer 
simulation from the geometrical map of Computer Science 

Department, University of Bonn. The sensorial data were 
burdened by additive noise (Gaussian noise, mean zero) with 
bandwidth 6cm (¹3cm) – it matches the new type of 2DLS 
Sick LMS-200. Because dimensions of the environment were 
set to approx. 30x20 meters only, beams were not trimmed by 	A>B�	 function. All beams reflect the walls at any time. It is a 
big advantage. By this step 2DLS provides more useful 
information. Fig. 9 shows the result of the experiment. 

The robot was able to build the map of environment without 
any problems. Several places are not well mapped (charted) 
because of small inaccuracies at heading estimation. Mostly it 
is small structured space. Thanks to existence of a long 
corridor in map B, ℱ� strategy was only used. Thanks to EA 
method use, the robot has to keep a minimal distance approx. 
50cm from all obstacles – searching area may not overcome 
the walls of the environment. Sometimes this distance was 
slightly exceeded. Large and well structured environment is a 
more suitable area for gSLAM algorithm, especially if there is 
one central point and all offices are attainable from this. 
Election of suitable trajectory has a big influence too. The 
presented gSLAM algorithm only uses one data source – 
sensorial data from 2DLS. Behavior of such a method is a 
little different from behavior of a classic probabilistic method. 
When the robot is moving in a long corridor, the trajectory 
similar to ship cruising is the best choice. Turning should be 
made along large circular trajectory, if it is possible. On the 
other side, gSLAM shows that sensorial data as the only data 
source can be practically usable for such purposes. Both 
strategies ℱ� and ℱ� provide identical results. No malfunction 
was observed at testing time. Differential evolution provides a 
stable and very powerful tool.  

V. CONCLUSION 

The simultaneous localization and the mapping algorithm 
were developed and presented in this paper. The core of the 
presented algorithm is based on geometric primitives and 
evolutionary computations. Such approach provides an 
efficient and stable tool. The differential evolution forms a 
substantial part of this project. Based on practical experiments 
DE was elected as one of the most suitable algorithms for map 
building purposes especially on zero or lower noise levels. 
Results presented in here were obtained from two 
experiments—in a small indoor office environment and a 
cluster of small offices and provide us with a wider view on 
possibilities of the evolutionary robotics and map building 
process in general. 

The proposed algorithm and basic methodology were tested 
in different types of environments with stable results. 
Navigation algorithms enabling both, global or local pose 
estimation and map building (SLAM process) still belong to 
highly interesting areas of mobile robotics. Constantly 
increasing computer power provides immense possibilities to 
create more complicated and more sophisticated algorithms 
for regular available computers. Thanks to the possibilities of 
joining the groups of different strategies, great results can be 
reached regarding to the type of working conditions. The 
presented map building method only uses one data source and 
thanks to the natural addition of additive errors at the pose 
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estimation process, the size of mapped areas will be always 
limited to some extent. 
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