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Resumen—En el area de la Inteligencia Artificial, las Redes
Neuronales Artificiales (RNA) han sido aplicadas para la solucion
de muiltiples tareas. A pesar de su declive y del resurgimiento
de su desarrollo y aplicacion, su disefio se ha caracterizado por
un mecanismo de prueba y error, el cual puede originar un
desempeiio bajo. Por otro lado, los algoritmos de aprendizaje
que se utilizan como el algoritmo de retropropagacion y otros
basados en el gradiente descenciente, presentan una desventaja:
no pueden resolver problemas no continuos ni problemas
multimodales. Por esta razon surge la idea de aplicar algoritmos
evolutivos para disehar de manera automatica una RNA. En
esta investigacion, el algoritmo de Evolucion Diferencial (ED)
encuentra los mejores elementos principales de una RNA: la
arquitectura, los pesos sinipticos y las funciones de transferencia.
Por otro lado, dos funciones de aptitud son propuestas: el error
cuadratico medio (MSE por sus siglas en inglés) y el error de
clasificacion (CER) las cuales, involucran la etapa de validacion
para garantizar un buen desempeiio de la RNA. Primero se
realizo un estudio de las diferentes configuraciones del algoritmo
de ED, y al determinar cual fue la mejor configuracion se realizé
una experimentacion exhaustiva para medir el desempeiio de
la metodologia propuesta al resolver problemas de clasificacion
de patrones. También, se presenta una comparativa contra dos
algoritmos clasicos de entrenamiento: Gradiente descendiente y
Levenberg-Marquardt.

Palabras clave—Evolucion diferencial, evolucion de redes
neuronales artificiales, clasificacion de patrones.

Automatic Design of Artificial Neural
Networks by means of Differential Evolution
(DE) Algorithm

Abstract—Acrtificial Neural Networks (ANN) have been applied
in several tasks in the field of Artificial Intelligence. Despite
their decline and then resurgence, the ANN design is currently
a trial-and-error process, which can stay trapped in bad
solutions. In addition, the learning algorithms used, such as
back-propagation and other algorithms based in the gradient
descent, present a disadvantage: they cannot be used to solve
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non-continuous and multimodal problems. For this reason, the
application of evolutionary algorithms to automatically designing
ANNs is proposed. In this research, the Differential Evolution
(DE) algorithm finds the best design for the main elements
of ANN: the architecture, the set of synaptic weights, and
the set of transfer functions. Also two fitness functions are
used (the mean square error—MSE and the classification
error—CER) which involve the validation stage to guarantee a
good ANN performance. First, a study of the best parameter
configuration for DE algorithm is conducted. The experimental
results show the performance of the proposed methodology
to solve pattern classification problems. Next, a comparison
with two classic learning algorithms—gradiant descent and
Levenberg-Marquardt—are presented.

Index Terms—Differential
networks, pattern classification.

evolution, evolutionary neural

I. INTRODUCCION

AS REDES neuronales artificiales han sido por muchos

afios una herramienta indispensable en el drea de la
Inteligencia Artificial debido a su aplicacion satisfactoria en lo
concerniente a la clasificacion de patrones y la prediccion de
series de tiempo, entre otras problemadticas. Estos sistemas se
basan en el comportamiento que tiene la red neuronal bioldgica
del cerebro. Ramén y Cajal [1], fue el primer cientifico en
demostrar que el sistema nervioso se compone de células
individuales llamadas neuronas, las cuales se conectan entre
ellas, creando un sistema complejo de comunicacién y cuyo
procesamiento de informacién es hasta el dia de hoy, un
misterio cientifico.

Una RNA emplea un mecanismo de aprendizaje en la
etapa de entrenamiento, donde se optimiza una funcién que
evalda la salida de la red; con ello se determina la eficiencia
del aprendizaje. Después de ser entrenada, la RNA puede
ser utilizada para resolver algin problema con informacién
totalmente desconocida pero, que puede dar un veredicto
correcto conforme lo aprendido. Esta etapa recibe el nombre
de generalizacion.

Los pesos sindpticos, las funciones de transferencia,
el nimero de neuronas y el tipo de arquitectura o
topologia (determinado por las conexiones entre neuronas) son
escenciales y determinantes en el desempefio de una RNA.
Por este motivo, es importante seleccionar los pardmetros
del disefio de manera adecuada para obtener la mejor
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eficiencia en la red neuronal. Sin embargo, expertos en el
drea generan arquitecturas en un procedimiento de prueba
y error, seleccionando de entre ellas, aquella que otorga el
mejor desempefio. Esto puede provocar que no se explore
adecuadamente otras formas de disefiar que pueden otorgar
mejores resultados. Por otra parte, para entrenar la red
neuronal se selecciona un tipo de algoritmo que ajusta los
pesos sindpticos hasta otorgar el comportamiento deseado de
la red. El mds utilizado es el algoritmo de retropropagacion
(back-propagation BP) [2], el cudl se basa en la técnica del
gradiente descendiente. Las técnicas de ajuste que se basan
en el cilculo de derivadas como BP, presentan un problema:
no pueden ajustar informacién proveniente de problemas que
son no continuos. Por otro lado, s6lo pueden trabajar con
problemas donde sélo existe un valor 6ptimo (o en el peor
caso, el mejor) esto quiere decir que al presentarse problemas
multimodales (donde se presentan varios valores optimos) el
ajuste podria no ser el mejor ya que podria hacercarse a una
falsa solucion.

Por tal motivo, el deseo de construir un disefio adecuado que
resuelva problemas del mundo real giré hacia otras técnicas
inspiradas en la naturaleza como los llamados algoritmos
evolutivos [3]. Estos algoritrmos heuristicos se utilizan para
resolver problemas no lineales que no pueden ser resueltos
por técnicas cldsicas de optimizacién, donde el espacio de
blisqueda es muy grande, combinatorial y/o multimodal.
Estas técnicas se basan en conceptos bioldgicos como lo
es el Neo-Darwinismo, teoria formada por el pensamiento
de Charles Darwin sobre evolucién de las especies [4], el
pensamiento de August Weismann sobre el plasma germinal
responsable de la herencia [5] y el pensamiento de Gregor
Mendel sobre la teoria de las leyes de la herencia [6].

Los algoritmos evolutivos son procesos que mezclan un
concepto de individuos distribuidos en un espacio de busqueda
determinado. La poblacién de individuos no es mds que
un conjunto de posibles soluciones que, en un determinado
tiempo, deben converger a la solucién 6ptima (si se conoce)
o simplemente converger a la mejor solucién (se espera que
sea la mds cercana a la 6ptima). Estos individuos cambian
(evolucionan) al realizar operaciones de cruza o mutacién
para mejorar su desempefio mientras se incrementa el tiempo.
Para indicar cudl individuo representa la mejor solucién se
deben evaluar cada una de las soluciones o individuos en una
funcién de aptitud o funcién objetivo. La funcién de aptitud
es disefiada de tal manera que se realice una optimizacién en
el desempefio de los individuos y se indique que tan bueno es
cada uno para resolver un determinado problema. El proceso
termina al guardar el mejor individuo que genera la mejor
evaluacién en la funcién de aptitud.

Estas técnicas de optimizacién han sido empleadas para
ajustar los pesos sindpticos de una RNA debido a su eficiencia
para resolver problemas complejos. Algunas investigaciones
como [7], [8] proponen una modificacién de Evolucién
diferencial para ajustar los pesos sindpticos de una red
neuronal multicapa. En [9] tres arquitecturas con diferentes

Polibits (46) 2012

técnicas de entrenamiento, entre ellas ED, son aplicados a la
prediccion del clima. En [10], los autores utilizan ED para el
ajuste de los pesos sindpticos de una RNA, as{ mismo utilizan
la técnica llamada optimizacién por enjambre de particulas
(PSO por sus siglas en inglés), proporcionando como métrica
el error cuadritico medio (MSE por sus siglas en inglés).
La incursién del algoritmo de Evolucién diferencial no ha
sido muy explorado para el disefio de RNA. Sin embargo,
otros algoritmos evolutivos y algoritmos bioinspirados han
sido aplicados en el entrenamiento de las RNA y la seleccion
del nimero de neuronas en un nimero de capas especificado
por el disefiador [11]. En [12] los autores presentan el disefio
de una RNA generada por el algoritmo ED, el cudl evoluciona
al mismo tiempo la arquitectura (topologia), pesos sindpticos
y funciones de transferencia utilizando como métrica el error
cuadratico medio.

En esta investigacién se decribe la metodologia que permite
disefiar de manera automdtica la arquitectura, el conjunto de
pesos sindpticos y las funciones de transferencia por cada
neurona que componene a una RNA. El disefio serd generado
al aplicar el algoritmo evolutivo llamado Evolucién diferencial,
el cudl evaluard las soluciones mediante dos funciones de
aptitud. La primera funcién toma en cuenta el error cuadratico
medio (mean square error-MSE) y la etapa de validacién la
cudl impide generar redes neuronales con el problema de
sobreaprendizaje. La segunda utiliza el error de clasificacién
(CER) también considerando la validacion. Estas funciones
de aptitud, son muy adecuadas ya que los problemas que se
quieren resolver son problemas de clasificacién de patrones.

La estructura del escrito estd dividida en las siguientes
secciones: la seccién 2 describe los conceptos bdsicos de
una RNA; en la seccién 3 se introduce a la técnica de
Evolucién diferencial; la descripcién del disefio automético se
detalla en la seccién 4; la seccion 5 describe cémo se obtiene
la salida general de la RNA; los resultados experimentales
se encuentran en la secciéon 6 y finalmente en la seccién
7 se pueden encontrar las conclusiones que cierran esta
investigacion.

II. REDES NEURONALES ARTIFICIALES

La red neuronal artificial (RNA) basada en el sistema
neuronal bioldgico, es un sistema computacional que permite
realizar un mapeo de un conjunto de datos o patrones de
entrada a un conjunto de salida. En [13], Kohonen describe:
“Las redes neuronales artificiales son redes interconectadas
masivamente en paralelo de elementos simples (usualmente
adaptativos) y con organizacion jerdrquica, las cuales intentan
interactuar con los objetos del mundo real del mismo modo
que lo hace el sistema nervioso bioldgico”. Las RNA se
componen por unidades bdsicas llamadas neuronas, las cuales
estan conectadas entre si y dependiendo de la capa a la
que pertenezcan pueden modificar la informacién que reciben
o simplemente la envian tal y como la recibieron a otras
neuronas con las que tienen conexién sindptica.
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Las neuronas se encuentran organizadas por capas. Algunas
neuronas componen la capa de entrada, la cudl, se encarga
de recibir la informacién del entorno o problema a resolver.
Otras neuronas forman la capa de salida las cuales, entregan un
patrén asociado al patrén de la entrada. Las neuronas restantes
constituyen la llamada capa oculta donde la informacién es
procesada, enviada a otras neuronas y evaluada en funciones
de transferencia que entregardn una salida por cada neurona.
Cada conexién indica un peso sindptico y estd representado
por un valor numérico determinado. Dependiendo del tipo de
conexién que se tenga, es el tipo de flujo de informacién.
Puede ser hacia adelante, cuando la informacién fluye desde
la capa de entrada hacia la de salida (flujo unidireccional)
[14] o puede ser recurrente [15] es decir, cuando la
informacién fluye en ambos sentidos con presencia de posibles
retroalimentaciones. La salida de la red neuronal estd dada por
las neuronas de la capa de salida, las cuales conjuntan toda
la informacién procedente de capas anteriores. Dicha salida
permite evaluar el disefio de la red neuronal.

Para que una RNA resuelva un determinado problema,
su disefio necesita ser evaluado mediante una etapa de
entrenameinto en la cudl se lleva a cabo el aprendizaje. Esta
etapa consiste en alimentar la red con patrones que codifican
un problema especifico. Esta informacion pasa por cada capa
de la red en donde es procesada por los pesos sindpticos y
después se transforma por medio de funciones de transferencia.
Este hecho se da hasta alcanzar la capa de salida. Si la métrica
que se utiliza para medir la salida no es la deseada, los pesos
sindpticos cambian con ayuda de una regla de aprendizaje con
el fin de volver al paso anterior y asi generar una mejor salida
que la anterior.

Existen varios tipos de aprendizaje de una RNA [16]. El
aprendizaje supervisado serd utilizado en esta investigacion.
El aprendizaje supervisado consite en asociar un conjunto de
patrones de entrada con un correspondiente patrén deseado el
cudl, es conocido. De tal manera que se puede supervisar si
la salida de la RNA es la deseada o no.

Cuando la red neuronal ya ha aprendido, es de sumo cuidado
conocer si no aprendié de mds, es decir que se haya convertido
en un sistema experto en la resolucién del problema con el
que se entrend. Al aprender de manera experta cada entrada,
el sistema neuronal serd incapds de reconocer alguna entrada
contaminada con algin error y no podrd reconocer nueva
informacién que determina el mismo problema a resolver. Este
problema se resuelve utilizando una etapa de validacién [17]
la cudl consite en tomar un conjunto de patrones diferentes al
conjunto de entrenamiento, y probarlos con la red entrenada.
Si el error que se genera es menor al error en el aprendizaje,
la RNA continda ajustando sus pesos sindpticos, pero, si el
error que se genera con el conjunto de validacién es mayor al
error generado por el entrenamiento, la etapa de aprendizaje
debe ser suspendida para evitar el sobreaprendizaje.

Después de ser entrenada y probada con el conjunto de
validacion, la RNA estard lista para recibir patrones de datos
diferentes a los utilizados durante el entrenamiento y asi

realizar una generalizacién eficiente, la cudl determina qué
tan bueno fue el aprendizaje de la red y que tan robusta para
resolver el problema, en este caso de clasificacién de patrones.

Para entender mds a detalle como opera una RNA a
continuacion se explica el funcionamiento de sus elementos
esenciales [18].

A. Entradas de la RNA

El conjunto de entradas x;(¢) de la RNA es un conjunto de
patrones los cuales codifican la informacién de un problema
que se quiere resolver.

Las variables de entrada y de salida pueden ser binarias
(digitales) o continuas (analdgicas), dependiendo del modelo
y la aplicacién. Por ejemplo un perceptrén multicapa (MLP
Multilayer Perceptron, por sus siglas en inglés) puede trabajar
con ambos tipos de sefiales. En el caso de salidas digitales
las sefiales se pueden representar por 0,41, en el caso de las
salidas analgégicas la sefial se da en un cierto intervalo.

B. Pesos sindpticos

Los pesos sindpticos w;; de la neurona % son variables
relacionadas a la sinapsis o conexién entre neuronas, los
cuales representan la intensidad de iteraccién entre la neurona
presindptica j y la postsindptica ¢. Dada una entrada positiva
(puede ser del conjunto de datos de entrada o de la salida
de otra neurona), si el peso es positivo tenderd a exitar a
la neurona postsindptica, si el peso es negativo tenderd a
inhibirla.

C. Regla de propagacion

La regla de propagacion permite obtener, a partir de
las entradas y los pesos sindpticos, el valor del potencial
postsindptico h; de la neurona ¢ en funcién de sus pesos y
entradas.

hi(t) = o3 (wiz, x;(t)) ey

La funcién mas habitual es de tipo lineal, y se basa en la
suma ponderada de las entradas con los pesos sindpticos

hi(t) = wijz; @
J

que también puede interpretarse como el producto escalar
de los vectores de entrada y pesos

hl(t) = Zwijxj = W;»TX (3)
J

Polibits (46) 2012



Beatriz A. Garro, Humberto Sossa, Roberto A. Vazquez

D. Funcion de transferencia

La funcién de transferencia f de la neurona ¢ proporciona
el estado de activacién actual a;(t) a partir del potencial
postsindptico h;(t) y del propio estado de activacién anterior
a; (t — 1)

ai(t) = fiai(t — 1), hi(t)) )

Sin embargo, en muchos modelos de RNA se considera que
el estado actual de la neurona no depende de su estado anterior,
si no tnicamente del actual

a;i(t) = fi(hi(t)) &)

E. Funcion de salida

La funcién de salida proporciona la salida global de la
neurona y;(t) en funcién de su estado de activacién actual
a;(t). Muy frecuentemente la funcién de salida es simplemente
la identidad F'(z) = x de tal modo que el estado de activacién
de la neurona se considera como la propia salida de la red
neuronal

yi(t) = Fi(ai(t)) = ai(t) (©)

III. EVOLUCION DIFERENCIAL

En 1994 surgié un adaptativo y eficiente esquema: el
algoritmo de Evolucién diferencial, propuesto por Kenneth
Price y Rainer Storn. Este algoritmo se utiliz6 para la
optimizacién global sobre espacios continuos [19]. Debido a
su capacidad de exploracién sobre un espacio de busqueda,
dado un problema, el algoritmo de Evolucién diferencial (DE
por sus siglas en inglés) evita quedar atrapado en minimos
locales. Este algoritmo tiene pocos pardmetros y converge mas
rapido al éptimo en comparacién con otras técnicas evolutivas.
Todas estas caracteristicas convierten a este algoritmo en
una excelente técnica para la optimizacién de problemas no
diferenciables. La idea detrds de esta técnica de optimizacion
es generar vectores de prueba.

Dado una poblacién de vectores X; € R, i=1,..,M en
un espacio multidimensional D, el algoritmo consiste, en eligir
de manera aleatoria un vector objetivo X; y un vector base x,.,,
donde r es un nimero aleatorio entre [1, M]. Por otro lado, se
deben elegir aleatoriamente dos miembros de la poblacién x .,
¥ Xr,, y se realiza una diferencia entre ellos. A continuacion, el
resultado es operado por un factor constante, denotado por F/,
asi se obtendra un vector ponderado. Inmediatamente después,
el vector ponderado y el vector base son sumados. El nuevo
vector que surge, se le llamard vector mutante u;.

Finalmente se realiza la operacion de cruza, la cudl
involucra una comparacién (variable por variable) entre el
vector mutante y el vector objetivo. De la operacion de
cruza se genera un nuevo vector llamado vector de prueba.
La comparacion consiste en una simple regla: si un nimero
aleatorio es menor que el factor de cruza C'R entonces, la
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variable del vector que se elige es la del vector mutante; si
no, entonces se elige la variable del vector objetivo, asi el
vector prueba serd una mezcla de variables del vector mutante
y el vector objetivo. Finalmente el dltimo paso es la seleccion
del mejor vector (aquél con la mejor aptitud, segtn sea el tipo
de optimizacién). Esta seleccion involucra comparar la aptitud
del vector objetivo y la del vector prueba.

Existen varias estrategias de ED [20]. La estrategia
descrita en esta seccion es la estrategia técnicamente
llamada “DE/rand/1/bin” cuyo pseudocédigo se muestra en
el Algoritmo 1 tomado de [21]. Esta nomenclatura cambia
dependiendo del tipo de estrategia que se esté implementando.
Las diferentes estrategias varian al cambiar la siguiente
nomenclatura, donde DE/x/y/z toma las siguientes variables:
x se refiere a como serd elegido el vector objetivo, puede ser
aleatorio o el mejor de la poblacién. y se refiere a cudntos
pares de vectores se tomardn para realizar la diferencia; puede
ser un par y sumarle un tercer vector (vector base) o puede
ser dos pares cuya respectiva diferencia se sume a un quinto
vector (vector base).

El tipo de cruza se representa por z. Esta puede ser del
tipo bin (cruza binomial) en donde para cada variable dada
una probabilidad, se hereda la informacién de uno u del otro
vector o puede ser del tipo exp (cruza exponencial) en donde
dado un ndmero aleatorio entre (0, 1), si dicho ndmero es
mayor a C'R entonces se suspende la cruza [22].

IV. DISENO AUTOMATICO DE UNA RNA MEDIANTE ED

Para aplicar el algoritmo de Evolucién diferencial es
necesario codificar el individuo o la solucién con la
informacién que se requiere. El algoritmo ED generard una
poblaciéon de dichas soluciones que evolucionarin en un
nimero de generaciones (iteraciones) y se evaluard cada una
de ellas en una funcién de aptitud. Dicha funcién de aptitud
nos indicard que tan buena es la solucién, guardando la mejor
al finalizar la ejecucién del mismo.

La descripcién de cada elemento en el algoritmo evolutivo
se explica a continuacion.

A. Codificacion del individuo

Un individuo representa una solucién. La codificacién
de ese individuo consiste en contar con la informacién
necesaria para el disefio de una red neuronal artificial. Como
se mencioné en las restricciones de esta investigacién, la
metodologia serd aplicada por el momento a problemas de
clasificaciéon de patrones.

En general el problema a resolver se puede describir de la
siguiente manera.

Dado un conjunto X con p patrones que definen un
problema de clasificacién definido por X = {xl, e xp} ,X €
R", y dado un conjunto D con p patrones deseados que
definen la clase a la que pertenece cada patrén definido por
D = {d',...,d?},d € R™; encontrar una RNA, cuyo disefio
estd representado por una matriz W donde W € R*(0F3) gq]
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Algorithm 1 Pseodocédigo de Evolucién diferencial al aplicar
la estrategia “DE/rand/1/bin”. C'R es un nimero entre (0, 1),
MAXITER es el nimero maximo de iteraciones, GG es una
iteracién especifica, M es el nimero total de individuos en
la poblacién , randint(1, D) es una funcién que regresa un
nimero entero entre 0 y D. rand;[0,1) es una funcién que
regresa un nimero real entre (0, 1). Ambas funciones basadas
en una probabilidad de distribucién uniforme.
G=0
Crear una poblacién inicial aleatoria X; Vi, i=1,..., M
Evaluar f(X; ¢)Vi,i=1,...,M
for G =1 hasta MAXITER do
for i = 1 hasta M do
Seleccionar aleatoriamente r1 # ro # 13
Jrand = randint(1, D)
for i =1 hasta M do
if rand;[0,1) < CR 0 j = jrana then
UijG1 = Xry 6+ F - (X, 6 — Xy 5.0)
else
W j6+1 = Xi5,G
end if
end for
if f(ﬁi’G+1) < f()ﬁ('l"g) then
XiG+1 = Ui,g+1
else
Xi g1 =X G
end if
end for
G=G+1
end for

que una funcién f sea optimizada (min)f(D, X, W), donde
q es el nimero de neuronas.

B. Individuo

El individuo que representa el disefio de una RNA, estd dado
por una matriz W. Esta matriz estd compuesta por tres partes:
la topologia (T'), los pesos sindpticos (SW) y las funciones de
transferencia (TF), tal como se muestra en la Figura 1.

El tamafio del individuo depende de un nimero maximo
de neuronas (M NN), el cudl estd definido por g. En esta
investigacién se desarrolld una ecuacién para obtener el
MNN, la cuil depende del problema a resolver. Esta se
encuentra definida a continuacién:

o=+ (P50 ™

donde n es la dimensién del vector de los patrones de
entrada y m es la dimensién del vector de los patrones
deseados.

Debido a que la matriz estd compuesta por tres diferentes
informaciones, se consider tres rangos diferentes para cada
una. En el caso de la topologia, el rango se encuentra

Wi Wi, Wimvv+ Wimwnn+2
Wit Wuww 2 Wiunn NN +1 WuNN MNN +2
T S TF

Fig. 1. Representacion del individuo que codifica la topologia (T), los pesos
sindpticos (SW) y las funciones de transferencia TF).

entre [1,2MNN — 1], los pesos sindpticos tienen un rango
de [—4,4] y para las funciones de transferencia el rango
es [1,nF], donde nF es el nimero total de funciones
de transferencia a utilizar. Al generar los individuos, todas
las matrices W estdn compuestas de valores reales en
sus respectivos rangos y al momento de decodificar la
informacién para ser evaluados en la funcién de aptitud, tanto
la arquitectura y la funcién de transferencia sufren un redondeo
del tipo |x].

C. Arquitectura y pesos sindpticos

Para poder evaluar los disefios de las RNA, es necesario
decodificar la informacién del individuo. La primera
informacion a decodificar es la topologia o arquitectura (7), la
cual se evalda con los pesos sindpticos (SW) y las funciones
de transferencia (TF) codificados en la misma matriz.

Para hacer vélida una topologia de RNA para la metodologia
propuesta, se deben de seguir ciertas reglas. Las RNA
generadas estdn compuestas de tres capas: la capa de entrada,
la capa oculta y la capa de salida y las reglas de conexi6n entre
las neuronas de cada capa siguen las siguientes condiciones.

Donde ILN es el conjunto de I neuronas que componen
la capa de entrada, HLN es el conjunto de J neuronas
pertenecientes a la capa oculta y OLN es el conjunto de K
neuronas, las cuales pertenecen a la capa de salida.

Primera regla (para las neuronas de la capa de
entrada-ILN): La neurona ILN;,i = 1,...,1 sélo puede enviar
informacién a las neuronas de la capa oculta HLN; y a las
neuronas de la capa de salida OLNg.

Segunda regla (para las neuronas de la capa oculta-HLN):
La neurona HLN;,j = 1,...,J s6lo puede enviar informacién
a las neuronas de la capa de salida OLNy y a las neuronas
de la capa oculta HLN; pero, para ésta tltima con una
restriccion. Para la neurona H LN ; sélo puede haber conexién
con las neuronas del tipo HLN;y1,..., HLN;.

Tercera regla (para las neuronas de la capa de salida-OLN):
La neurona OL Ny, k = 1,..., K s6lo puede enviar informacién
a otras neuronas de su misma capa pero, con una restriccion.
Para la neurona OLN} sélo puede existir conexién con
neuronas del tipo OLNy41,...,OLNk.

Para decodificar la arquitectura siguiendo las tres reglas
de conexién y recordando que la informacién en W ;; con
i = 1,.,MNN y 57 = 1 estd en base decimal, sufre
un redondeo como se explicé anteriormente y se codifica a
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binario en una matriz Z. Esta matriz representard un grafo
(arquitectura de la RNA), donde cada componente de la
matriz z;; indica las aristas o conexiones entre la neurona
(vértices del grafo) 7 y la neurona j cuando z;; = 1. Por
ejemplo: supongamos que W; ; tiene un nimero entero “57” el
cudl serd transformado en su correspondiente nimero binario
“0111001”. Este nimero binario indica las conexiones de la
neurona i-ésima con siete neuronas (nimero de bits en la
cadena binaria). En este caso, solo las neuronas en la posicién
de la cadena binaria de izquierda a derecha donde exista un 1
como la neurona dos, tres, cuatro y siete, tendrdn una conexién
a la neurona .

Al extraer de la matriz W la arquitectura se evaluard con
los correspondientes pesos sindpticos de la componente W ;;
cont =1,... MNNyj = 2,.., MNN + 1. Finalmente
cada neurona de la arquitectura calculard su salida con su
correspondiente funcién de transferencia indicada en la misma
matriz.

D. Funciones de transferencia

Las funciones de transferencia (7F) se encuentran
representadas en la componente W;; con ¢ = 1,.... MNN
y j = MNN + 3. Dependiendo del valor entero en la
componente, se eligird una de las funciones propuestas en esta
investigacién.

Aunque existen otras funciones de transferencia que pueden
ser implementadas en el contexto de las RNA, en esta
investigacién se utilizardn sélo las mds utilizadas en el 4rea.
Estas TF con su respectiva nomenclatura son: la funcién
sigmoide (LS), la funcién hipertangencial (HT), la funcién
seno (SN), la funcién gausiana (GS), la funcién lineal (LN) y
la funcién limite duro (HL).

Hasta este momento se ha explicado la codificacion del
individuo y la forma de decodificar la informacién cuando
se hace la evaluacion de la solucién en la funcién de aptitud.
En la siguiente seccion se explican las diferentes funciones de
aptitud desarrolladas en esta investigacion.

E. Funciones de Aptitud

La funcién de aptitud permite saber que tan buena es la
solucién dependiendo del problema de optimizacién que se
quiere resolver. En este caso, el problema de optimizacién es
del tipo minf(z)|r € A CIR" donde x = (21, ...,25) y N €5
la dimensidnalidad.

En esta investigaciéon dos funciones de aptitud fueron
aplicadas. La primera consiste en evaluar a las diferentes
soluciones que se generen utilizando el error cuadritico medio
(MSE) sobre el conjunto de entrenamiento M SEp y sobre
el conjunto de validaciéon MSEy ver Ec. 8. La segunda
funcién consiste en considerar al mismo tiempo el error
de clasificacion (CER) sobre el conjunto de entrenamiento
CERry y el de validacion CERy, ddndole mds peso al error
de validacion, ver Ec. 9.
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F, =04 x (MSET)+0.6 x (MSEy) ®)
F, =04 x (CER7)+0.6 x (CERy) )

El desempefio de estas funciones seran

presentadas mds adelante.

de aptitud

V. SALIDA DE LA RED NEURONAL ARTIFICIAL

Una vez decodificada la informacién del individuo, se
calcula la salida de la RNA, de tal forma que, es posible
determinar la eficiencia de la red mediante la funcion de
aptitud. Dicha salida se calcula aplicando el Algoritmo V.

Algorithm 2 Pseudocédigo de la salida de la RNA. o; es
la salida de la neurona i, a; es el patrén de entrada a la
RNA, n es la dimensionalidad del patrén de entrada, m es
la dimensionalidad del patrén deseado y y; es la salida de la
RNA.
1: for i =1 hasta n do
2:  Calcular o; = a;
3: end for
4: for i =n+ 1 hasta MNN do
5. Obtener el vector de conexiones z de la neurona ¢ a
partir del individuo W;.
6:  Obtener los pesos sindpticos s de la neurona ¢ a partir
del individuo W;.
7:  Obtener el bias b de la neurona ¢ a partir del individuo
W;.
8:  Obtener el indice t de la funcion de transferencia de la
neurona ¢ a partir del individuo W,.
9:  Calcular la salida de la de la neurona ¢ como 0; =
ft .Zjlsj'zj'aj—i_bj
j=
10: end for
11: for i = MNN — m hasta M NN do
12:  Calcular la salida de la RNA con, ¥;— \yNN—m+1 = 0;.
13: end for

Para el caso de la funcién de aptitud Fo, la salida de la red
serd modificada mediante la técnica del ganador toma todo,
es decir la neurona que genere el valor mas alto en su salida
se le asignard el valor binario de uno y a las restantes se
les asignara el valor de cero. Esta nueva salida binaria serd
comparada con el conjunto de patrones deseados asignados
para cada problema de clasificacién.

VI. RESULTADOS EXPERIMENTALES

La metodologd propuesta se evalué al resolver problemas de
clasificaciéon de patrones. Como se menciond anteriormente,
se utilizard un aprendizaje supervisado, lo que indica que serd
utilizado un conjunto de patrones deseados.

Debido que el algoritmo de Evolucién diferencial presenta
algunos pardmetros, la configuracién de los mismos puede
repercutir en el desempefio de los resultados. Por tal motivo,
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se realiz6 un estudio de sensibilidad para encontrar la mejor
configuraciéon de los pardmetros de ED y asi obtener los
mejores resultados en la experimentacién. Para encontrar
dicha configuracién se propusieron diferentes valores para
cada pardmetro y se evaluaron los disefios de RNA con las
funciones de aptitud F y F5.

Al obtener la mejor configuracion del algoritmo se
procedid a realizar la experimentacion que proporcionard datos
estadisticamente vdlidos sobre el reconocimiento, los mejores
resultados y la evaluacién de los errores que se generaron al
aplicar la metodologia propuesta.

A. Descripcion de la experimentacion

Para evaluar el desempeiio de la metodologia, se
seleccionaron diez problemas de clasificacién de patrones de
diferente complejidad. El problema de la planta del Iris, el
del vino, el cdncer de mama, el problema de diabetes, el de
desérdenes del higado y el problema del vidrio son problemas
que se encuentran en el repositorio de UCI machine learning
[23]. El problema de reconocimiento de objetos se obtubo de
[24], y los problemas como la espiral y las dos sintéticas se
desarrollaron en nuestro laboratorio. La Figura 2 muestra los
patrones dispersos de éstos ultimos problemas.
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Fig. 2. Dispersion de datos para los problemas sintéticos. (a) Datos del
problema de espiral. (b) Datos del problema sintético 1. (c) Datos del problema
sintético 2.

En la Tabla I se encuentra la descripcién de los patrones de
cada problema de clasificacion.

Para obtener los tres conjuntos de datos para entrenar y
validar la RNA, se dividié el nimero de patrones totales de
cada base de datos en tres conjuntos: el de entrenamiento, el de
validacién y el de generalizacién. La seleccién de los patrones
que componene cada conjunto se realizé de manera aleatoria
con el fin de validar estadisticamente los resultados obtenidos.
Esta seleccion tiene una distribucién del 33% de los patrones
totales para el entrenamiento, 33% para la validacién y 34%
para la generalizacién para cada problema de clasificacion.
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TABLA 1
DESCRIPCION DE LOS PROBLEMAS DE CLASIFICACION DE PATRONES.

Problemas de Descripcién Patrones

clasificacion de los patrones totales
Rec. objetos. 7 caractéristicas que describen 5 clases 100
Planta Iris 4 caractéristicas que describen 3 clases 150
Vino 13 caractéristicas que describen 3 clases 178
Céncer de mama 7 caractéristicas que describen 2 clases 683
Diabetes 8 caractéristicas que describen 2 clases 768
Desordenes del higado 6 caractéristicas que describen 2 clases 345
Vidrio 9 caractéristicas que describen 6 clases 214
Espiral 2 caractéristicas que describen 2 clases 194
Sintética 1 2 caractéristicas que describen 2 clases 300
Sintética 2 2 caractéristicas que describen 2 clases 450

B. Andlisis de sensibilidad

El andlisis de sensibilidad consiste en evaluar los resultados
obtenidos con diferentes valores asignados a los pardmetros del
algoritmo de Evolucién deferencial. De este modo, se puede
determinar cémo las diferentes configuraciones proporcionan
desempefios variados, de los cuales podemos seleccionar la
mejor configuracién con el que el algoritmo se desempeiia
mejor.

La configuracién para detrerminar cudl es el valor para
cada pardmetro estd determinada por la siguiente secuencia:
v—w—x—y— 2 donde cada variable representa un pardmetro.
Para el caso del nimero de individuos en la poblacién la
variable v = {50,100} donde el elemento 1 corresponde
a 50 individuos y el elemento 2 corresponde a 100. En el
caso de el tamafio del espacio de bisqueda w = {2,4} el
primer elemento indica que el rango se establece en [—2, 2]
y el caso del segundo elemento indica que el rango estd
determinado entre [—4, 4]. Para determinar el tipo de funcién
de aptitud, la variable x {3,4} indica con el primer
elemento, que serd seleccionada la funcién F; y el segundo
elemento define la seleccién de la funcién Fa. El algoritmo
ED, tiene dos pardmetros propios: el factor de cruza CR y
una constante F’, las cuales se representan por las variables y
y z respectivamente. Ambas variables toman los valores y =
z = {1,2,3} donde dichos elementos estan asociados a los
siguientes valores {0.1,0.5,0.9}. El nimero de generaciones
o iteraciones del algoritmo se fij6 en 2000 y el nimero de
experimentos para cada combinacién de los parametros, para
cada problema de clasificacién y cada funcidn de aptitud se fijo
en cinco corridas del algoritmo. De tal manera que la secuencia
2-1-3-2-3 significa que la configuracién correspondiente es:
100 — [-2,2] — F; — 0.5-0.9

Se debe considerar que para cada experimento se obtienen
dos valores: el error de entrenamiento y el error de
generalizacion. Por ese motivo, se obtuvo una ponderacién de
estos dos valores y asi se determind quien presenta mejores
resultados. Con ayuda de la evaluacién ponderada de la suma
del entrenameinto y la generalizacion se decidié asignar mayor
peso a la etapa de generalizacién al ser multiplicada por un
factor de 0.6 y en el caso del entrenamiento el factor es 0.4. La
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ecuaciéon que determina la ponderacién es la que se describe
en Ec. 10.

rp = 0.4 x (Training) + 0.6 x (Test) (10)

donde Training representa el porcentaje de reconocimiento
durante la etapa de entrenamiento y 7Test representa el
porcentaje de reconocimineto obtenido durante la etapa de
generalizacion.

Para cada configuracién de los pardmetros y cada problema
se realizaron 5 experimentos, de los cuales se obtubo un
promedio ponderado rp. La Tabla II muestra el mejor
promedio ponderado para las dos funciones de aptitud y
cada problema de clasificacién de patrones, asi como también
muestra las configuraciones de los pardmetros que generaron
dichos valores.

TABLA 1T
PROMEDIO PONDERADO PARA CADA PROBLEMA DE CLASIFICACION Y
CADA FUNCION DE APTITUD.

Problemas de Funcién Funcién

clasificacion aptitud F1 aptitud F»
Promedio P. Config. Promedio P. Config.
Espiral 0.3753 22,322 03062 224,1,1
Sintética 1 0.0128 1,2,3,1,2 0.0060 2,1,4,2,1
Sintética 2 0.1400 2,2,3,22  0.0997 22472,
Planta de Iris 0.0256 223,33 00216 224,13
Céncer de mama 0.0209 2,1,3,3,3 0.0204 2,1,422
Diabetes 0.2181 1,1,3,3,3 0.2170 2,1,4,3,1
Desoérdenes del higado  0.2845 1,1,3,2,1 02793 224,32
Rec. Objetos 0.0 2,2,332 0.0 1,1.4,1,1
Vino 0.0183 2,1,3,3,2 0.0237 2,14,13
Vidrio 0.3346  1,1,3,3,3 0.3425 2,14,1,1

En la Tabla II se puede observar que los mejores valores
fueron obtenidos con la funcién CER, mostrando valores
minimos para ocho de diez problemas; la funcién de aptitud
F) presenté mejores resultados aislados para el caso de los
problemas del Vino y del Vidrio.

Los resultados anteriores muestran para cada problema de
clasificacién y cada funcién de aptitud, una configuracién
especifica que genera el mejor desempefio del algoritmo
evolutivo para el disefio de RNA. Sin embargo, debido a
que se desea crear una metodologd no especifica para cada
problema a resolver, se buscd aquella configuaciéon que en
promedio resolviera mejor todas los bases de datos (una
solucién general), por lo que se obtubo por cada funcién de
aptitud, el promedio que involucra el promedio ponderado
rp de todos los problemas de clasificacion. De lo anterior,
se obtubo que para el caso de la funcién de aptitud F'; el
porcentaje de error ponderado fue de 15.37% y en el caso de
la funcién de aptitud F» el porcentaje del error ponderado fue
de 14.83%.

Como se menciond anteriormente, el analisis de sensibilidad
permite conocer como los valores de los diferentes parametros
afectan el desempefio del algoritmo ED y por consiguiente
el disefio de las RNA. Por este motivo, se requiere de la
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minimizacién del error que se genere con las diferentes
configuraciones. En este caso, el error minimo se generd
con la funcién de aptitud F2 con la configuracion 2-2-4-3-2.
Esta configuracién representa la mejor de entre todas las
que se generaron al realizar la experimentacién con todas
las posibles configuraciones. Esta mejor configuracion, serd
utilizada para realizar el andlisis experimental que involucra
todos los problemas de clasificacién de patrones.

C. Andlisis experimental

Para realizar una experimentacién estadisticamente valida,
se generaron 30 experimentos para cada problema de
clasificacién utilizando la mejor configuracién para el
algoritmo de ED, la cudl fue encontrada previamente en el
andlisis de sensibilidad. Los resultados para cada problema
al utilizar la mejor configuracién: una poblacién de 100
individuos, en un espacio de busqueda de [—4,4] con la
funciéon de aptitud Fy y los valores para CR = 0.9 y
para F' = 0.5 se describen a continuacién. Estos resultados
se evaluaron durante un nimero de generaciones de 5000.
Los resultados presentan la evolucion del error, el porcentaje
de reconocimiento ponderado que conjunta la etapa de
entrenamiento y generalizacion asi como las arquitecturas con
las que se generd el mejor y el peor error.

A continuacién se describen los resultados obtenidos con la
mejor configuracién para cada uno de los diez problemas de
clasificacién.

1) Espiral: La evolucién del error obtenida de la funcion
de aptitud F> se muestra en la Figura 3, en la cual el error
de clasificacién y la validacién se conjuntan para obtener una
red neuronal con el mejor desempeiio, es decir con el minimo
valor encontrado por la funcién de aptitud. Como se puede
observar, para la mayoria de las experimentaciones el error
desciende casi en su totalidad antes de las 1000 generaciones,
después el error se mantiene constante.

Evolucién de la funcion de aptitud (Espiral) Desempefio de la RNA (Espiral)
0.

% de reconocimiento ponderado

0 1000 2000 3000 4000 5000
generaciones

(a) (b)

# de experimento

Fig. 3. Resultados experimentales en los 30 experimentos para el problema de
Espiral. (a) Evolucion del error. (b) Porcentaje de reconocimiento ponderado.

En la Figura 4 se muestran dos de las 30 arquitecturas que
se generaron para el problema de la Espiral. La Figura 4(a)
es el disefio con el cudl se gener6 el mejor error, en donde se
puede apreciar que, para las neuronas de la capa intermedia
se utilizaron las funciones lineal y seno como funciones de
transferencia y en la capa de salida las funciones seno y
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sigmiode. En la Figura 4(b) se muestra la arquitectura que
generd el peor error durante la experimentacién. A diferencia
de la mejor, esta arquitectura presenta menos conexiones. Cabe
seflalar que las funciones de transferencia son las mismas
utilizadas por la mejor configuracién.
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Fig. 4. Disefio de arquitecturas de RNA generadas para el problema de
Espiral en los 30 experimentos. (a) Arquitectura con el mejor desempefio.
(b) Arquitectura con el peor desempefio.

2) Sintética 1: Como se puede ver en la Figura 5(a), la
evolucion del error converge rdpidamente a un error minimo.
La Figura 5(b) muestra el porcentaje de reconocimiento para
la base de datos Sintética 1. En ella podemos observar que
para los 30 experimentos, el desempefio de las RNA disefiadas
presentan un entrenamiento y generalizacién muy altos, por
arriba del 95% y en algunos casos alcanza el reconocimiento
maximo (100%) para ambas etapas.

Evolucion de la funcién de aptitud (Sintético 1) Desempefio de la RNA (Sintético 1)
0.

% de reconocimiento ponderado
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()

(b)

Fig. 5. Resultados experimentales en los 30 experimentos para el problema
Sintético 1. (a) Evolucién del error. (b) Porcentaje de reconocimiento
ponderado.

En la Figura 6 se presentan la mejor y la peor arquitectura
encontradas para el problema Sintético 1. En ella podemos
apreciar que la mejor arquitectura o topologia presenta
conexiones directas desde la capa de entrada hasta la capa
de salida. Esto se debe a las reglas de conexiones propuestas
anteriormente. Las funciones de transferencia utilizadas para
dicha arquitectura fue la funcién seno, la sigmoide y la limite
duro.
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Fig. 6. Disefio de arquitecturas de RNA generadas para el problema Sintético
1 en los 30 experimentos. (a) Arquitectura con el mejor desempefio. (b)
Arquitectura con el peor desempefio.
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3) Sintética 2: La evolucion del error para este problema
de clasificacién se muestra en la Figura 7(a), en donde se
puede observar que el minimo error generado por la funcién
de aptitud no mejora después de las 1000 iteraciones. Por otro
lado, la Figura 7(b) presenta el porcentaje de reconocimiento
ponderado, en ella podemos ver que en mds de la mitad de
los experimentos totales, se obtubo un porcentaje por arriba
del 85%.

Evolucion de la funcién de aptitud (Sintético 2) Desempefio de la RNA (Sintético 2)
0.

% de reconocimiento ponderado
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Fig. 7. Resultados experimentales en los 30 experimentos para el problema
de Sintético 2. (a) Evolucién del error. (b) Porcentaje de reconocimiento
ponderado.

La Figura 8(a) muestra la arquitectura que alcanza el
minimo error (el mejor desempefio). Su arquitectura describe
algunas conexiones directas desde la capa de entrada hasta
la de salida. El conjunto de funciones de transferencia que
utiliza cada neurona son: las funciones seno, limite duro y
sigmoide. Para el caso de la peor arquitectura encontrada
durante la experimentacién, la Figura 8(b) muestra dicha
topologia disefiada con las funciones de transferencia seno,
hipertangencial y la limite duro.

- Q/@“e ) O— ‘@.—"\_
1O O) ©) | & O ©
() (b)

Fig. 8. Disefio de arquitecturas de RNA generadas para el problema de
Sintético 2 en los 30 experimentos. (a) Arquitectura con el mejor desempefio.
(b) Arquitectura con el peor desempeiio.

4) Planta de Iris: La Figura 9(a), muestra para las 5000
generaciones la evolucién del error encontrado por la funcién
de aptitud F>. En ella podemos observar que al incrementar
el nimero de generaciones el error disminuye drdsticamente
en algunos experimentos. Sin embargo, la mayoria de los
experimentos alcanza su mejor valor antes de las 1000
generaciones.

En la Figura 9(b) se muestra el porcentaje de recono-
cimiento ponderado para cada experimento. Como se puede
apreciar el desempefio de las RNA generadas alcanza un
reconocimiento mayor al 90%.

En la Figura 10(a) se muestra la mejor arquitectura
encontrada durante la experimentacion. Este interesante y
peculiar disefio, tiene una neurona que carece de conexion
con otras en la capa de salida. Esta neurona trabaja s6lo con
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Evolucién de la funcién de aptitud (Iris) Desempefio de la RNA (Iris)
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Fig. 9. Resultados experimentales en los 30 experimentos para el problema
de la Planta de Iris. (a) Evolucién del error. (b) Porcentaje de reconocimiento
ponderado.

el bias correspondiente, que al ser evaluado en la respectiva
funcién de transferencia sigmoide, se transforma a un valor
que serd exitosamente utilizado al momento de evaluar la
salida de la RNA con la técnica el ganador toma todo. Al
generarse las correspondientes salidas para cada patrén de
entrada las neuronas restantes en la capa de salida son las que
detallan la clase a la que pertenece cada patrén, mientras que
la neurona que no tiene conexién funciona como un umbral
fijo. Por ejemplo, suponga que la segunda neurona de salida
genera en su salida un valor de 0.45, sin importar el patrén
de entrada; por otro lado la primera y tercera neurona generan
en su salida los valores de 0.65 y 0.55 respectivamente, al
ser estimuladas con un patrén de entrada que pertenece a la
clase 1. Al ser evaluada la salida de la RNA por la técnica
del ganador toma todo, se obtendria la salida 1,0,0 la cudl
indica que el patrén de entrada pertenece a la clase 1. Ahora
suponga que la salida de la primera y tercera neurona generan
en su salida los valores de 0.35 y 0.25 respectivamente, al ser
estimuladas con un patrén de entrada que pertenece a la clase
2. En este caso, al ser evaluada la salida de la RNA por la
técnica del ganador toma todo, se obtendria la salida 0,1,0
la cudl indica que el patrén de entrada pertenece a la clase
2, recuerde que la salida de la segunda neurona no cambia,
es decir, permanece en 0.45 porque no estd conectada con
otras neuronas. Finalmente, en un tercer caso suponga que la
salida de la primera y tercera neurona generan en su salida
los valores de 0.35 y 0.65 respectivamente, al ser estimuladas
con un patrén de entrada que pertenece a la clase 3. En este
caso, al ser evaluada la salida de la RNA por la técnica del
ganador toma todo, se obtendria la salida 0,0,1 la cudl indica
que el patrén de entrada pertenece a la clase 3.

Las funciones de transferencia que este disefio necesita son
las funciones lineal y sigmoide.

La arquitectura que genera el peor error durante las 30
experimentaciones se muestra en la Figura 10(b), la cual utiliza
las funciones sigmide, lineal, sigmoide e hipertangencial como
funciones de trasnferencia para cada neurona.

5) Cdncer de mama: Para el caso del problema de cancer
de mama, la evolucién del error generado mediante la funcién
de aptitud F es presentado en la Figura 11(a), donde se puede
observar que el error se mantiene casi constante para las 30

Polibits (46) 2012

(@) (b)

Fig. 10. Disefio de arquitecturas de RNA generadas para el problema de
la Planta de Iris en los 30 experimentos. (a) Arquitectura con el mejor
desempefio. (b) Arquitectura con el peor desempefio.

experimentaciones durante el tiempo limite especificado en
5000 generaciones.

Por otro lado, el porcentaje de reconocimento ponderado
para las etapas de entrenamiento y generalizacion se presentan
en la Figura 11(b). El porcentaje se mantiene exitosamente,
para todas las experimentaciones, por arriba del 95%, lo que
indica que se encontraron los mejores disefios de las redes
para resolver este problema de clasificacion.

Evolucién de la funcién de aptitud (Cancer)
0.

Desempefio de la RNA (Céancer)

% de reconocimiento ponderado

0 1000 4000 5000

2 3000
generaciones

(a)

Fig. 11. Resultados experimentales en los 30 experimentos para el problema
de Cancer de mama. (a) Evolucién del error. (b) Porcentaje de reconocimiento
ponderado.

El mejor y el peor error de entrenamiento fue alcanzado con
las arquitecturas mostradas en la Figura 12, donde también
se presentan las funciones de transferencia utilizadas para
cada neurona. Para el caso del mejor disefio, las funciones
de transferencia seleccionadas por la metodologia fueron el
limite duro, sigmoide y lineal. Para el caso del peor disefio
se obtubo el conjunto de funciones compuesto por la funcién
sigmoide, la lineal y el limite duro.

6) Diabetes: Para el problema de la diabetes, la evolucion
del error a diferencia de las Figuras anteriores, muestra que el
proceso de convergencia tarda mds generaciones, ver Figura
13(a).

En el caso del reconocimento ponderado, el porcentaje
alcanzado para toda la experimentacién no fue mayor del 80%,
ver Figura 13(b).

La arquitectura que genera el mejor desempefio es la que
se muestra en la Figura 14(a), donde hay cuatro neuronas que
componenen la capa intermedia con las siguientes funciones
de transferencia: sigmoide, gaussiana y lineal. El peor caso se
muestra en la Figura 14(b) donde se gener6 una arquitectura
con una sola neurona. Esta arquitectura tiene en la capa de
entrada, una neurona que no presenta conexion.
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(@) (b)
Fig. 12. Diseflo de arquitecturas de RNA generadas para el problema de

Cancer de mama en los 30 experimentos. (a) Arquitectura con el mejor
desempefio. (b) Arquitectura con el peor desempefio.

Desempefio de la RNA (Diabetes)

Evolucién de la funcion de aptitud (Diabetes)
0.

% de reconocimiento ponderado

0 1000 2000 3000 4000 5000 °

generaciones

(a) (b)

12345678 91010121314151617 18192021 222326 25 2627 20 20 0

# de experimento

Fig. 13. Resultados experimentales en los 30 experimentos para el problema de
Diabetes. (a) Evolucién del error. (b) Porcentaje de reconocimiento ponderado.

Este hecho se puede presentar al disefiar las RNA y no
significa que el desempefio se reduzca; al contrario significa
que la dimensionalidad del patrén de entrada se puede reducir
evitando tener informacién redundante.

(a) (b)

Fig. 14. Disefio de arquitecturas de RNA generadas para el problema de
Diabetes en los 30 experimentos. (a) Arquitectura con el mejor desempefio.
(b) Arquitectura con el peor desempeiio.

7) Desordenes del higado: La Figura 15 muestra la
evolucién del error para los 30 experimentos. Antes de las
2000 generaciones el algoritmo de ED encuentra el mejor error
para cada experimento, después se mantiene constante.

Para el caso del porcentaje de reconocimiento, éste se
encuentra arriba del 60% para algunos casos y para otros arriba
del 70%.

La mejor y la peor arquitectura para el problema de
desérdenes del higado se muestran en la Figura 16. El

Evolucion de la funcién de aptitud (Higado) Desempefio de la RNA (Higado)

% de reconocimiento ponderado

0 1000 2000 3000 4000 5000
generaciones

() (b)

# de experimento

Fig. 15. Resultados experimentales en los 30 experimentos para el problema
de Desérdenes del higado. (a) Evolucién del error. (b) Porcentaje de
reconocimiento ponderado.

disefio con el mejor desempefio utiliza las funciones de
transferencia lineal, hipertangencial y sigmoide. En el caso
del peor desempeiio, el conjunto de funciones de transferencia
estd compuesto por: la sigmoide, gausiana y la lineal.

(a) (b)

Fig. 16. Diseflo de arquitecturas de RNA generadas para el problema de
Desordenes del higado en los 30 experimentos. (a) Arquitectura con el mejor
desempeifio. (b) Arquitectura con el peor desempefio.

8) Reconocimiento de objetos: La evolucion del error para
el problema de reconocimiento de objetos se muestra en la
Figura 17(a). En ella se observa que la evaluacién de la
funcién de aptitud alcanza el error minimo en menos de 1000
generaciones.

El resultado de esa evoluciéon se ve reflejada en el
reconocimiento ponderado para cada experimentacién. De las
30 arquitecturas disefladas, 16 alcanzaron un reconocimiento
del 100%, ver Figura 17(b). El desempefio de la mayoria de
las arquitecturas restantes se encuentran por arriba del 90%.

Evolucién de la funcion de aptitud (Objetos) Desempefio de la RNA (Objetos)
0.7,

E
% de reconocimiento ponderado

0 1000 2000 3000 4000 5000
generaciones

(a) (b)

Fig. 17. Resultados experimentales en los 30 experimentos para el problema
de Reconocimiento de objetos. (a) Evolucién del error. (b) Porcentaje de
reconocimiento ponderado.
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La Figura 18(a) muestra la arquitectura con el mejor
desempefio y en Figura 18(b) aquella con el peor.

(a) (b)

Fig. 18. Diseflo de arquitecturas de RNA generadas para el problema de
Reconocimiento de objetos en los 30 experimentos. (a) Arquitectura con el
mejor desempeiio. (b) Arquitectura con el peor desempefio.

9) Vino: La Figura 19(a) muestra que la evolucién del error
tiende a un valor minimo antes de las 1000 generaciones. En
este caso se puede observar que el error de la mayoria de las
experimentaciones convergen a valores cercanos.

En el caso del porcentaje de reconocimento ponderado para
el problema del vino, el cudl presenta los patrones con mayor
nimero de caracteristicas, se generé un porcentaje por arriba
del 90% y en un experimento se logré generar el disefio con
el mejor desempefio, es decir con el 100% de reconocimiento,
ver Figura figl9(b).

Evolucién de la funcién de aptitud (Vino) Desempefio de la RNA (Vino)
0.

Cl
o
s
R
% de reconocimiento ponderado

0 1000 2000 3000 4000 5000 23456789 1011 121314151017 18 192021 222024252027 20 29 3
generaciones # de experimento

() (b)

Fig. 19. Resultados experimentales en los 30 experimentos para el problema
del Vino. (a) Evolucién del error. (b) Porcentaje de reconocimiento ponderado.

Dos disefios generados por la metodologia propuesta se
presentan en la Figura 20, estos disefios son aquellos que
generaron el mejor y el peor desempefio para el problema
del vino.

10) Vidrio: El problema del vidrio es aquél problema de
clasificaciéon que presenta el mayor nimero de caracteristicas
por cada patrén en la salida. La evoluciéon del error
generado continda descendiendo durante las primeras 3500
generaciones, ver Figura 21(a).

En el caso del porcentaje de reconocimiento para el
problema del vidrio, se tiene que la mayoria de la
experimentacién se encuentra por arriba del 60% con algunos
ejemplos por debajo del mismo, ver Figura 21(b).

La Figura 22 muestra las arquitecturas con el mejor y el
peor desempefio durante la experimentacion.
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(a) (b)

Fig. 20. Disefio de arquitecturas de RNA generadas para el problema del
Vino en los 30 experimentos. (a) Arquitectura con el mejor desempefio. (b)
Arquitectura con el peor desempefio.

Evolucion de la funcién de aptitud (Vidrio) Desempefio de la RNA (Vidrio)
0.7

% de reconocimiento ponderado
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(@) (b)

1234567 891011121314151617 18192021 22232425 2627 28 2920
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Fig. 21. Resultados experimentales en los 30 experimentos para el problema
del Vidrio. (a) Evolucién del error. (b) Porcentaje de reconocimiento
ponderado.

D. Discusion general

A continuacién se muestran los desempefios promedio de
los 30 experimentos para cada uno de los problemas de
clasificacién.

La Figura 23(a) muestra el error promedio para cada
problema de clasificacion. En dicha Figura se muestra
que la funcién de aptitud con la que se realizaron las
experiementaciones presentd en general un error bajo. Sin
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(a) (b)

Fig. 22. Disefio de arquitecturas de RNA generadas para el problema del
Vidrio en los 30 experimentos. (a) Arquitectura con el mejor desempeiio. (b)
Arquitectura con el peor desempefio.
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embargo, las bases de datos que presentan un minimo en el
error durante las 5000 generaciones fueron: reconocimiento de
objetos, vino, planta de Iris, cdncer de mama y el problema
sintético 1.

En la Figura 23(b) muestra el porcentaje de reconocimiento
ponderado promedio. Las bases de datos alcanzaron el
siguiente porcentaje: espiral de 66.62%, sintética 1 de 98.12%,
sintética 2 de 86.49%, planta de Iris 96.41%, cancer de
mama un 97.47%, diabetes 77.17%, desérdenes del higado
un 69.45%, reconocimieno de objetos 97.09%, para el caso
del Vino 95.95% y por tltimo para el caso del problema del
vidrio, éste alcanz6 un reconocimiento del 61.79%.

Desempefio de la RNA (Promedio)
1

Evolucién de la funcién de aptitud (Promedio)
0.7,

—— Espiral o

— Sintético 1 g 0.9

0.6} ——Sintético 2 o

——Iris o 08

0.5] ——Cancer s

\ Diabetes
o 0.4

— Higado 2o
u
o
> 03

— Objetos
01 5

0 1000 2000 3000 4000 5000
generaciones

(a) (b)

2 8 4 5 6 7 8 9 10 11
# identificador del problema

Fig. 23. Disefio de arquitecturas de RNA generadas para el problema del
Vidrio en los 30 experimentos. (a) Arquitectura con el mejor desempeiio. (b)
Arquitectura con el peor desempefio.

La Figura 24 que a continuacién se muestra, presenta los
porcentajes de reconocimiento ponderado maximo y minimo,
con el fin de sintetizar cudl fue el mejor desempefio alcanzado
para cada problema de clasificacion al utilizar la metodologia
propuesta.

En la Figura 24(a) se muestra que para el caso del
problema Sintético 1, del reconocimieto de objetos y el
vino, se alcanzd el 100% de reconocimento. Para el caso de
los problemas restantes de (izquierda a derecha) el mdximo
porcentaje obtenido fue: Espiral 73.41%, problema sintético
2 con 93.33%, para la planta de Iris de 99.20%, cancer de
mama %98.77, para el problema de diabetes se alcanzé un
79.45%, para el problema de desérdenes del higado el maximo
porcentaje de reconocimiento fue 75.30% y para el problema
del vidrio de 72.11%.

Al contrario, la Figura 24(b) muestra el desempefio
promedio de las RNA en términos del porcentaje de
reconocimiento ponderado minimo para cada problema. Para
el caso de espiral, el minimo porcentaje fue 57.66%, para
sintético 1 fue de 94.40%, para problema sintético 2 de
81.33%, para la planta de Iris de 91.60%, cancer de mama
95.87%, para el problema de diabetes se alcanz6 un 74.45%,
para el problema de desérdenes del higado el minimo
porcentaje de reconocimiento fue 62.43%, para el problema de
reconocimiento de objetos de 75.76%, para el vino de 91.19%
y por ultimo para el vidrio fue de 47.04%.

Por otro lado, el nimero de veces que fueron seleccionadas
las diferentes funciones de transferencia para cada problema
estd descrita en la Tabla III. En ella, se puede apreciar que para
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Fig. 24. Disefio de arquitecturas de RNA generadas para el problema del

Vidrio en los 30 experimentos. (a) Arquitectura con el mejor desempeiio. (b)
Arquitectura con el peor desempefio.

el caso del problema de la espiral la funcién de transferencia
que fue seleccionada con mayor frecuencia es la funcién
sigmoide, para el caso del problema sintético 1 fue también
la funcién sigmoide, para el caso del problema sintético 2
fue la funcién seno, para el problema de la planta de Iris
fue la funcién sigmoide, para el problema del cancer de
mama la funcién con una mayor selecciéon fue la sigmoide,
para el problema de diabetes también la funcién sigmoide
fue seleccionada con mayor frecuencia, para el problema
de desérdenes del higado las funciones sigmoide y lineal
tuvieron el mismo mimero de frecuencia con la que fueron
seleccionadas; el problema de reconocimiento de objetos, el
vino y el vidrio utilizaron también con mayor frecuencia la
funcién sigmoide.

TABLA III
NUMERO DE VECES EN QUE CADA FUNCION DE TRANSFERENCIA FUE
SELECCIONADA PARA CADA PROBLEMA DE CLASIFICACION.
FUNCIONES: LS: SIGMOIDE, HT: HIPERTANG, SN: SENO, GS: GAUSIANA,
LN: LINEAL, HL: LiM. DURO.

Problemas de

clasificacion LS HT SN GS LN HL
Espiral 14 11 41 8 35 5
Sintética 1 39 3 31 7 11 23
Sintética 2 37 7 40 13 9 6
Planta de Iris 78 12 5 18 39 24
Cancer de mama 99 19 11 10 26 40
Diabetes 75 19 13 23 32 24
Desoérdenes del higado 37 27 17 23 37 23
Rec. Objetos 75 49 56 60 52 36
Vino 141 44 4 28 54 50
Vidrio 133 50 26 43 71 65
Total 728 241 244 233 366 296

Finalmente, se realiz6 una comparacién con resultados
generados por el método del gradiente descendiente (algoritmo
de retropropagacion) y el algoritmo de Levenberg-Marquardt;
algoritmos cldsicos de entrenamiento para las RNA. El
porcentaje promedio ponderado de cada algoritmo es mostrado
en la Tabla IV. Se realizaron dos configuraciones diferentes
para las arquitecturas de las RNA entrenadas con cada
algoritmo clésico. Estas arquitecturas consiste en generar una
capa oculta y otra con dos capas ocultas.
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El nimero maximo de neuronas totales M NN de las RNA
entrenadas con los algoritmos cldsicos, se generaron mediante
la misma ecuacién en nuestra metodologia propuesta para el
caso de una capa oculta, ver Ec. 7 pero, para RNA con dos
capas, la distribucién se hace a traves de la Ec. 11.

DN = 0.6 x (MNN) +0.4x (MNN) (11)

en donde la primera capa tiene el 60% de las neuronas ocultas
y el 40% de las neuronas de la capa oculta estd en la segunda
capa, es decir una arquitectura piramidal.

Los pardmetros para el algoritmo del gradiente descendiente
y Levenberg-Marquardt tuvieron dos criterios de paro: al
alcanzar las 5000 generaciones o alcanzar un error de
0.000001. Los problemas de clasificacién fueron divididos en
tres partes: el 40% de los patrones totales fue utilizado para
el entrenamiento, el 50% fue utilizado para la generalizacién
y el 10% fue utilizado para la validacién. Se utiliz6 un tasa
de aprendizaje del 0.1.

Estas redes neuronales, generadas para la aplicacién de los
algoritmos clasicos, fueron disefiadas con el fin de obtener los
mejores desempefios y asi poder compararlas contra las RNA
generadas por la metodologia propuesta.

En la Tabla IV, podemos observar que el porcentaje
promedio ponderado generado por la metodologia propuesta
es mejor en seis problemas de clasificacién: en la espiral,
sintético 1, sintético 2, cancer de mama, diabetes y desérdenes
del higado. En el caso de la planta de Iris y del problema
de reconocimiento de objetos, el mejor promedio ponderado
se alcanzé con el algoritmo de Lebenberg-Marquardt de una
capa. Para los problemas del vino y del vidrio, el algoritmo de
Levenberg-Marquardt de dos capas obtubo el mejor porcentaje
de reconocimiento ponderado.

A pesar de que el algoritmo cldsico Levenberg-Marquardt,
obtuvo en algunos casos mejores resultados que la
metodologia propuesta, el promedio general de todos los
problemas de clasificacién fue mayor con la metodologia
propuesta.

VII. CONCLUSIONES

Aunque la metodologia propuesta ya fue presentada en
[25] y [26], los autores no habian contemplado el incluir
el conjunto de validacién durante la etapa de entrenamiento,
ni se habia realizado un estudio de sensibilidad previa a la
experimentacion, aunado a ésto, se agragaron mds problemas
de clasificacién.

En esta investigacién, se presenté la metodologia que
permite disefiar de manera automadtica una red neuronal. Este
disefio incluye, la arquitectura (cémo se conectan las neuronas
y cudntas neuronas son suficientes), el valor del conjunto de
pesos sindpticos y el tipo de funciones de transferencia dado un
conjunto. El algoritmo evolutivo que se aplic fue el llamado
Evolucién diferencial.

En una primera etapa de la experimentacion, se realizé
un estudio de sensibilidad de los pardmetros de dicho
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algoritmo evolutivo. En esta experimentacién se probaron
diferentes valores de los pardmetros y se selecciond la
mejor configuracién. Esta configuracién (que gener6 el mejor
desempefio en las RNA generadas para cada problema) se di6
al utilizar un ndimero de individuos de 100, en un espacio de
busqueda entre [—4, 4].

De dos funciones de aptitud seleccionadas para el andlis
de sensibilidad (las funciones de MSE y CER), las cuales
incluyeron la etapa de validacién, se encontré que, la mejor
fue Fy = 0.4 x (CERy) + 0.6 x (CERy). Para el caso del
factor de cruza C'R el mejor valor fue 0.9 y para la constante
F un valor de 0.5.

Como es bien sabido, la etapa de validacion juega un papel
indispensable en la etapa de entrenamiento de una red neuronal
artificial, ya que impide el sobreaprendizaje. Por ese motivo,
se decidié implementar la etapa de validacién en la funcién
de aptitud, con el fin de encontrar una solucién con error
minimo de clasificacién y al mismo tiempo que no generara
un sobreaprendizaje.

Para validar estadisticamente los resultados, dicha configu-
racién se aplicé a 30 corridas del algoritmo en cada problema
de clasificacién. Se encontré que el desempefio de las RNA
disefiadas por la metodologia bajo las condiciones dadas en
el parrafo anterior, presentan un porcentaje de reconocimiento
alto: en el 50% de los problemas el reconocimeinto es mayor
al 95% siendo el mds bajo de 61.79%.

En el caso especifico para cada problema, durante
las 30 experimentaciones se alcanzaron porcentajes de
reconocimiento del 100% tanto en la etapa de entrenameitno
como en la generalizacién.

Con esto, podemos decir que la etapa de validacién y la
mejor configuraciéon del algoritmo de Evolucién diferenial
generaron resultados exitosos. Recordemos que los tres
conjuntos, a saber, los conjuntos de entrenamiento, validacién
y generalizacion en los que se dividi6 cada problema se
eligieron de manera aleatoria para cada experimento, lo
que hace ain mds valiosos los resultados obtenidos, pues
esto indica que los resultados se validan estadisticamente y
experimental.

La metodologia propuesta presenta un desempefio general
(en todos los problemas de clasificacién) mejor que el
generado con los algoritmos cldsicos de entrenamiento. A
pesar que hubo algunos casos donde el mejor promedio
de reconocimiento ponderado se alcanzé con Levenberg-
Marquardt, la metodologia propuesta presenta varias ventajas:
la primera es que el disefio se realiza de manera automatica.
En segundo lugar, la metodologia no depende de un algoritmo
basado en el célculo de derivadas, lo que la hace robusto ante
problemas mas complejos.

Con esto podemos concluir que es posible generar disefios
de redes neuronales artificiales con desempefios hasta con
el 100% de reconocimineto en la etapa de entrenamiento y
generalizacién, que se puede encontrar varios disefios que
resuelven el mismo problema con diferente configuracion
y mismos resultados y que algunos disefios presentan
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TABLA IV
PROMEDIOS DEL PORCENTAJE DE RECONOCIMIENTO PONDERADO PARA LOS ALGORITMOS CIASICOS Y LA METODOLOGIA PROPUESTA.

Problemas de Gradiente Gradiente Levenberg Levenberg Metodologia
clasificacion Descendiente  Descendiente Marquardt Marquardt propuesta
(1 capa ) (2 capas) (1 capa) (2 capas) (ED)
Espiral 0.500824742 0.50137457 0.509209622  0.50137457  0.666185897
Sintética 1 0.749911111  0.770444444  0.790088889  0.777288889 0.9812
Sintética 2 0.544859259 0.51442963 0.69997037  0.562488889  0.864888889
Planta de Iris 0.932266667  0.652266667  0.979111111  0.756266667  0.964133333
Ciancer de mama 0.967696547  0.944751762  0.969269149  0.957415353  0.974685447
Diabetes 0.757864583  0.727604167  0.765260417  0.760902778  0.771692708
Desérdenes del higado  0.604435184  0.576515437  0.675610073  0.662586369  0.694492754
Rec. Objetos 0.744533333  0.694133333  0.982133333  0.727466667  0.970909091
Vino 0.982921348  0.933782772  0.968614232  0.979101124  0.959548023
Vidrio 0.707040498  0.685358255  0.789034268  0.798380062  0.617934272
Total 0.749235327  0.700066104  0.812830146  0.748327137  0.846567041

caracteristicas como la reduccién de la dimensionalidad de
las caracteristicas de los patrones de entada.
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