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Resumen—En el área de la Inteligencia Artificial, las Redes
Neuronales Artificiales (RNA) han sido aplicadas para la solución
de múltiples tareas. A pesar de su declive y del resurgimiento
de su desarrollo y aplicación, su diseño se ha caracterizado por
un mecanismo de prueba y error, el cual puede originar un
desempeño bajo. Por otro lado, los algoritmos de aprendizaje
que se utilizan como el algoritmo de retropropagación y otros
basados en el gradiente descenciente, presentan una desventaja:
no pueden resolver problemas no continuos ni problemas
multimodales. Por esta razón surge la idea de aplicar algoritmos
evolutivos para diseñar de manera automática una RNA. En
esta investigación, el algoritmo de Evolución Diferencial (ED)
encuentra los mejores elementos principales de una RNA: la
arquitectura, los pesos sinápticos y las funciones de transferencia.
Por otro lado, dos funciones de aptitud son propuestas: el error
cuadrático medio (MSE por sus siglas en inglés) y el error de
clasificación (CER) las cuales, involucran la etapa de validación
para garantizar un buen desempeño de la RNA. Primero se
realizó un estudio de las diferentes configuraciones del algoritmo
de ED, y al determinar cuál fue la mejor configuración se realizó
una experimentación exhaustiva para medir el desempeño de
la metodologı́a propuesta al resolver problemas de clasificación
de patrones. También, se presenta una comparativa contra dos
algoritmos clásicos de entrenamiento: Gradiente descendiente y
Levenberg-Marquardt.

Palabras clave—Evolución diferencial, evolución de redes
neuronales artificiales, clasificación de patrones.

Automatic Design of Artificial Neural
Networks by means of Differential Evolution
(DE) Algorithm

Abstract—Artificial Neural Networks (ANN) have been applied
in several tasks in the field of Artificial Intelligence. Despite
their decline and then resurgence, the ANN design is currently
a trial-and-error process, which can stay trapped in bad
solutions. In addition, the learning algorithms used, such as
back-propagation and other algorithms based in the gradient
descent, present a disadvantage: they cannot be used to solve
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non-continuous and multimodal problems. For this reason, the
application of evolutionary algorithms to automatically designing
ANNs is proposed. In this research, the Differential Evolution
(DE) algorithm finds the best design for the main elements
of ANN: the architecture, the set of synaptic weights, and
the set of transfer functions. Also two fitness functions are
used (the mean square error—MSE and the classification
error—CER) which involve the validation stage to guarantee a
good ANN performance. First, a study of the best parameter
configuration for DE algorithm is conducted. The experimental
results show the performance of the proposed methodology
to solve pattern classification problems. Next, a comparison
with two classic learning algorithms—gradiant descent and
Levenberg-Marquardt—are presented.

Index Terms—Differential evolution, evolutionary neural
networks, pattern classification.

I. INTRODUCCIÓN

LAS REDES neuronales artificiales han sido por muchos
años una herramienta indispensable en el área de la

Inteligencia Artificial debido a su aplicación satisfactoria en lo
concerniente a la clasificación de patrones y la predicción de
series de tiempo, entre otras problemáticas. Estos sistemas se
basan en el comportamiento que tiene la red neuronal biológica
del cerebro. Ramón y Cajal [1], fue el primer cientı́fico en
demostrar que el sistema nervioso se compone de células
individuales llamadas neuronas, las cuales se conectan entre
ellas, creando un sistema complejo de comunicación y cuyo
procesamiento de información es hasta el dı́a de hoy, un
misterio cientı́fico.

Una RNA emplea un mecanismo de aprendizaje en la
etapa de entrenamiento, donde se optimiza una función que
evalúa la salida de la red; con ello se determina la eficiencia
del aprendizaje. Después de ser entrenada, la RNA puede
ser utilizada para resolver algún problema con información
totalmente desconocida pero, que puede dar un veredicto
correcto conforme lo aprendido. Esta etapa recibe el nombre
de generalización.

Los pesos sinápticos, las funciones de transferencia,
el número de neuronas y el tipo de arquitectura o
topologı́a (determinado por las conexiones entre neuronas) son
escenciales y determinantes en el desempeño de una RNA.
Por este motivo, es importante seleccionar los parámetros
del diseño de manera adecuada para obtener la mejor
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eficiencia en la red neuronal. Sin embargo, expertos en el
área generan arquitecturas en un procedimiento de prueba
y error, seleccionando de entre ellas, aquella que otorga el
mejor desempeño. Esto puede provocar que no se explore
adecuadamente otras formas de diseñar que pueden otorgar
mejores resultados. Por otra parte, para entrenar la red
neuronal se selecciona un tipo de algoritmo que ajusta los
pesos sinápticos hasta otorgar el comportamiento deseado de
la red. El más utilizado es el algoritmo de retropropagación
(back-propagation BP) [2], el cuál se basa en la técnica del
gradiente descendiente. Las técnicas de ajuste que se basan
en el cálculo de derivadas como BP, presentan un problema:
no pueden ajustar información proveniente de problemas que
son no continuos. Por otro lado, sólo pueden trabajar con
problemas donde sólo existe un valor óptimo (o en el peor
caso, el mejor) esto quiere decir que al presentarse problemas
multimodales (donde se presentan varios valores óptimos) el
ajuste podrı́a no ser el mejor ya que podrı́a hacercarse a una
falsa solución.

Por tal motivo, el deseo de construir un diseño adecuado que
resuelva problemas del mundo real giró hacia otras técnicas
inspiradas en la naturaleza como los llamados algoritmos
evolutivos [3]. Estos algoritrmos heurı́sticos se utilizan para
resolver problemas no lineales que no pueden ser resueltos
por técnicas clásicas de optimización, donde el espacio de
búsqueda es muy grande, combinatorial y/o multimodal.
Estas técnicas se basan en conceptos biológicos como lo
es el Neo-Darwinismo, teorı́a formada por el pensamiento
de Charles Darwin sobre evolución de las especies [4], el
pensamiento de August Weismann sobre el plasma germinal
responsable de la herencia [5] y el pensamiento de Gregor
Mendel sobre la teorı́a de las leyes de la herencia [6].

Los algoritmos evolutivos son procesos que mezclan un
concepto de individuos distribuidos en un espacio de búsqueda
determinado. La población de individuos no es más que
un conjunto de posibles soluciones que, en un determinado
tiempo, deben converger a la solución óptima (si se conoce)
o simplemente converger a la mejor solución (se espera que
sea la más cercana a la óptima). Estos individuos cambian
(evolucionan) al realizar operaciones de cruza o mutación
para mejorar su desempeño mientras se incrementa el tiempo.
Para indicar cuál individuo representa la mejor solución se
deben evaluar cada una de las soluciones o individuos en una
función de aptitud o función objetivo. La función de aptitud
es diseñada de tal manera que se realice una optimización en
el desempeño de los individuos y se indique que tan bueno es
cada uno para resolver un determinado problema. El proceso
termina al guardar el mejor individuo que genera la mejor
evaluación en la función de aptitud.

Estas técnicas de optimización han sido empleadas para
ajustar los pesos sinápticos de una RNA debido a su eficiencia
para resolver problemas complejos. Algunas investigaciones
como [7], [8] proponen una modificación de Evolución
diferencial para ajustar los pesos sinápticos de una red
neuronal multicapa. En [9] tres arquitecturas con diferentes

técnicas de entrenamiento, entre ellas ED, son aplicados a la
predicción del clima. En [10], los autores utilizan ED para el
ajuste de los pesos sinápticos de una RNA, ası́ mismo utilizan
la técnica llamada optimización por enjambre de partı́culas
(PSO por sus siglas en inglés), proporcionando como métrica
el error cuadrático medio (MSE por sus siglas en inglés).
La incursión del algoritmo de Evolución diferencial no ha
sido muy explorado para el diseño de RNA. Sin embargo,
otros algoritmos evolutivos y algoritmos bioinspirados han
sido aplicados en el entrenamiento de las RNA y la selección
del número de neuronas en un número de capas especificado
por el diseñador [11]. En [12] los autores presentan el diseño
de una RNA generada por el algoritmo ED, el cuál evoluciona
al mismo tiempo la arquitectura (topologı́a), pesos sinápticos
y funciones de transferencia utilizando como métrica el error
cuadrático medio.

En esta investigación se decribe la metodologı́a que permite
diseñar de manera automática la arquitectura, el conjunto de
pesos sinápticos y las funciones de transferencia por cada
neurona que componene a una RNA. El diseño será generado
al aplicar el algoritmo evolutivo llamado Evolución diferencial,
el cuál evaluará las soluciones mediante dos funciones de
aptitud. La primera función toma en cuenta el error cuadrático
medio (mean square error-MSE) y la etapa de validación la
cuál impide generar redes neuronales con el problema de
sobreaprendizaje. La segunda utiliza el error de clasificación
(CER) también considerando la validación. Estas funciones
de aptitud, son muy adecuadas ya que los problemas que se
quieren resolver son problemas de clasificación de patrones.

La estructura del escrito está dividida en las siguientes
secciones: la sección 2 describe los conceptos básicos de
una RNA; en la sección 3 se introduce a la técnica de
Evolución diferencial; la descripción del diseño automático se
detalla en la sección 4; la sección 5 describe cómo se obtiene
la salida general de la RNA; los resultados experimentales
se encuentran en la sección 6 y finalmente en la sección
7 se pueden encontrar las conclusiones que cierran esta
investigación.

II. REDES NEURONALES ARTIFICIALES

La red neuronal artificial (RNA) basada en el sistema
neuronal biológico, es un sistema computacional que permite
realizar un mapeo de un conjunto de datos o patrones de
entrada a un conjunto de salida. En [13], Kohonen describe:
“Las redes neuronales artificiales son redes interconectadas
masivamente en paralelo de elementos simples (usualmente
adaptativos) y con organización jerárquica, las cuales intentan
interactuar con los objetos del mundo real del mismo modo
que lo hace el sistema nervioso biológico”. Las RNA se
componen por unidades básicas llamadas neuronas, las cuales
estan conectadas entre sı́ y dependiendo de la capa a la
que pertenezcan pueden modificar la información que reciben
o simplemente la envı́an tal y como la recibieron a otras
neuronas con las que tienen conexión sináptica.
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Las neuronas se encuentran organizadas por capas. Algunas
neuronas componen la capa de entrada, la cuál, se encarga
de recibir la información del entorno o problema a resolver.
Otras neuronas forman la capa de salida las cuales, entregan un
patrón asociado al patrón de la entrada. Las neuronas restantes
constituyen la llamada capa oculta donde la información es
procesada, enviada a otras neuronas y evaluada en funciones
de transferencia que entregarán una salida por cada neurona.
Cada conexión indica un peso sináptico y está representado
por un valor numérico determinado. Dependiendo del tipo de
conexión que se tenga, es el tipo de flujo de información.
Puede ser hacia adelante, cuando la información fluye desde
la capa de entrada hacia la de salida (flujo unidireccional)
[14] o puede ser recurrente [15] es decir, cuando la
información fluye en ambos sentidos con presencia de posibles
retroalimentaciones. La salida de la red neuronal está dada por
las neuronas de la capa de salida, las cuales conjuntan toda
la información procedente de capas anteriores. Dicha salida
permite evaluar el diseño de la red neuronal.

Para que una RNA resuelva un determinado problema,
su diseño necesita ser evaluado mediante una etapa de
entrenameinto en la cuál se lleva a cabo el aprendizaje. Esta
etapa consiste en alimentar la red con patrones que codifican
un problema especı́fico. Esta información pasa por cada capa
de la red en donde es procesada por los pesos sinápticos y
después se transforma por medio de funciones de transferencia.
Este hecho se da hasta alcanzar la capa de salida. Si la métrica
que se utiliza para medir la salida no es la deseada, los pesos
sinápticos cambian con ayuda de una regla de aprendizaje con
el fin de volver al paso anterior y ası́ generar una mejor salida
que la anterior.

Existen varios tipos de aprendizaje de una RNA [16]. El
aprendizaje supervisado será utilizado en esta investigación.
El aprendizaje supervisado consite en asociar un conjunto de
patrones de entrada con un correspondiente patrón deseado el
cuál, es conocido. De tal manera que se puede supervisar si
la salida de la RNA es la deseada o no.

Cuando la red neuronal ya ha aprendido, es de sumo cuidado
conocer si no aprendió de más, es decir que se haya convertido
en un sistema experto en la resolución del problema con el
que se entrenó. Al aprender de manera experta cada entrada,
el sistema neuronal será incapás de reconocer alguna entrada
contaminada con algún error y no podrá reconocer nueva
información que determina el mismo problema a resolver. Este
problema se resuelve utilizando una etapa de validación [17]
la cuál consite en tomar un conjunto de patrones diferentes al
conjunto de entrenamiento, y probarlos con la red entrenada.
Si el error que se genera es menor al error en el aprendizaje,
la RNA continúa ajustando sus pesos sinápticos, pero, si el
error que se genera con el conjunto de validación es mayor al
error generado por el entrenamiento, la etapa de aprendizaje
debe ser suspendida para evitar el sobreaprendizaje.

Después de ser entrenada y probada con el conjunto de
validación, la RNA estará lista para recibir patrones de datos
diferentes a los utilizados durante el entrenamiento y ası́

realizar una generalización eficiente, la cuál determina qué
tan bueno fue el aprendizaje de la red y que tan robusta para
resolver el problema, en este caso de clasificación de patrones.

Para entender más a detalle cómo opera una RNA a
continuacı́on se explica el funcionamiento de sus elementos
esenciales [18].

A. Entradas de la RNA

El conjunto de entradas xj(t) de la RNA es un conjunto de
patrones los cuales codifican la información de un problema
que se quiere resolver.

Las variables de entrada y de salida pueden ser binarias
(digitales) o continuas (analógicas), dependiendo del modelo
y la aplicación. Por ejemplo un perceptrón multicapa (MLP
Multilayer Perceptron, por sus siglas en inglés) puede trabajar
con ambos tipos de señales. En el caso de salidas digitales
las señales se pueden representar por 0, +1, en el caso de las
salidas analgógicas la señal se da en un cierto intervalo.

B. Pesos sinápticos

Los pesos sinápticos wij de la neurona i son variables
relacionadas a la sinapsis o conexión entre neuronas, los
cuales representan la intensidad de iteracción entre la neurona
presináptica j y la postsináptica i. Dada una entrada positiva
(puede ser del conjunto de datos de entrada o de la salida
de otra neurona), si el peso es positivo tenderá a exitar a
la neurona postsináptica, si el peso es negativo tenderá a
inhibirla.

C. Regla de propagación

La regla de propagación permite obtener, a partir de
las entradas y los pesos sinápticos, el valor del potencial
postsináptico hi de la neurona i en función de sus pesos y
entradas.

hi(t) = σi(wij , xj(t)) (1)

La función más habitual es de tipo lineal, y se basa en la
suma ponderada de las entradas con los pesos sinápticos

hi(t) =
∑

j

wijxj (2)

que también puede interpretarse como el producto escalar
de los vectores de entrada y pesos

hi(t) =
∑

j

wijxj = wT
i x (3)
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D. Función de transferencia

La función de transferencia f de la neurona i proporciona
el estado de activación actual ai(t) a partir del potencial
postsináptico hi(t) y del propio estado de activación anterior
ai(t − 1)

ai(t) = fi(ai(t − 1), hi(t)) (4)

Sin embargo, en muchos modelos de RNA se considera que
el estado actual de la neurona no depende de su estado anterior,
si no únicamente del actual

ai(t) = fi(hi(t)) (5)

E. Función de salida

La función de salida proporciona la salida global de la
neurona yi(t) en función de su estado de activación actual
ai(t). Muy frecuentemente la función de salida es simplemente
la identidad F (x) = x de tal modo que el estado de activación
de la neurona se considera como la propia salida de la red
neuronal

yi(t) = Fi(ai(t)) = ai(t) (6)

III. EVOLUCIÓN DIFERENCIAL

En 1994 surgió un adaptativo y eficiente esquema: el
algoritmo de Evolución diferencial, propuesto por Kenneth
Price y Rainer Storn. Este algoritmo se utilizó para la
optimización global sobre espacios continuos [19]. Debido a
su capacidad de exploración sobre un espacio de búsqueda,
dado un problema, el algoritmo de Evolución diferencial (DE
por sus siglas en inglés) evita quedar atrapado en mı́nimos
locales. Este algoritmo tiene pocos parámetros y converge más
rápido al óptimo en comparación con otras técnicas evolutivas.
Todas estas caracterı́sticas convierten a este algoritmo en
una excelente técnica para la optimización de problemas no
diferenciables. La idea detrás de esta técnica de optimización
es generar vectores de prueba.

Dado una población de vectores �xi ∈ IRD, i = 1, ..., M en
un espacio multidimensional D, el algoritmo consiste, en eligir
de manera aleatoria un vector objetivo x i y un vector base xr3 ,
donde r es un número aleatorio entre [1, M ]. Por otro lado, se
deben elegir aleatoriamente dos miembros de la población x r1

y xr2 , y se realiza una diferencia entre ellos. A continuación, el
resultado es operado por un factor constante, denotado por F ,
ası́ se obtendrá un vector ponderado. Inmediatamente después,
el vector ponderado y el vector base son sumados. El nuevo
vector que surge, se le llamará vector mutante u i.

Finalmente se realiza la operación de cruza, la cuál
involucra una comparación (variable por variable) entre el
vector mutante y el vector objetivo. De la operación de
cruza se genera un nuevo vector llamado vector de prueba.
La comparación consiste en una simple regla: si un número
aleatorio es menor que el factor de cruza CR entonces, la

variable del vector que se elige es la del vector mutante; si
no, entonces se elige la variable del vector objetivo, ası́ el
vector prueba será una mezcla de variables del vector mutante
y el vector objetivo. Finalmente el último paso es la selección
del mejor vector (aquél con la mejor aptitud, según sea el tipo
de optimización). Esta selección involucra comparar la aptitud
del vector objetivo y la del vector prueba.

Existen varias estrategias de ED [20]. La estrategia
descrita en esta sección es la estrategia técnicamente
llamada “DE/rand/1/bin” cuyo pseudocódigo se muestra en
el Algoritmo 1 tomado de [21]. Esta nomenclatura cambia
dependiendo del tipo de estrategia que se esté implementando.
Las diferentes estrategias varı́an al cambiar la siguiente
nomenclatura, donde DE/x/y/z toma las siguientes variables:
x se refiere a cómo será elegido el vector objetivo, puede ser
aleatorio o el mejor de la población. y se refiere a cuántos
pares de vectores se tomarán para realizar la diferencia; puede
ser un par y sumarle un tercer vector (vector base) o puede
ser dos pares cuya respectiva diferencia se sume a un quinto
vector (vector base).

El tipo de cruza se representa por z. Ésta puede ser del
tipo bin (cruza binomial) en donde para cada variable dada
una probabilidad, se hereda la información de uno u del otro
vector o puede ser del tipo exp (cruza exponencial) en donde
dado un número aleatorio entre (0, 1), si dicho número es
mayor a CR entonces se suspende la cruza [22].

IV. DISEÑO AUTOMÁTICO DE UNA RNA MEDIANTE ED

Para aplicar el algoritmo de Evolución diferencial es
necesario codificar el individuo o la solución con la
información que se requiere. El algoritmo ED generará una
población de dichas soluciones que evolucionarán en un
número de generaciones (iteraciones) y se evaluará cada una
de ellas en una función de aptitud. Dicha función de aptitud
nos indicará que tan buena es la solución, guardando la mejor
al finalizar la ejecución del mismo.

La descripción de cada elemento en el algoritmo evolutivo
se explica a continuación.

A. Codificación del individuo

Un individuo representa una solución. La codificación
de ese individuo consiste en contar con la información
necesaria para el diseño de una red neuronal artificial. Como
se mencionó en las restricciones de esta investigación, la
metodologı́a será aplicada por el momento a problemas de
clasificación de patrones.

En general el problema a resolver se puede describir de la
siguiente manera.

Dado un conjunto X con p patrones que definen un
problema de clasificación definido por X =

{
x1, ...,xp

}
,x ∈

IRn, y dado un conjunto D con p patrones deseados que
definen la clase a la que pertenece cada patrón definido por
D =

{
d1, ...,dp

}
,d ∈ IRm; encontrar una RNA, cuyo diseño

está representado por una matriz W donde W ∈ IRq×(q+3) tal
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Algorithm 1 Pseodocódigo de Evolución diferencial al aplicar
la estrategia “DE/rand/1/bin”. CR es un número entre (0, 1),
MAXITER es el número máximo de iteraciones, G es una
iteración especı́fica, M es el número total de individuos en
la población , randint(1, D) es una función que regresa un
número entero entre 0 y D. randj [0, 1) es una función que
regresa un número real entre (0, 1). Ambas funciones basadas
en una probabilidad de distribución uniforme.

G = 0
Crear una población inicial aleatoria �xi,G∀i, i = 1, . . . , M
Evaluar f(�xi,G)∀i, i = 1, . . . , M
for G = 1 hasta MAXITER do

for i = 1 hasta M do
Seleccionar aleatoriamente r1 �= r2 �= r3

jrand = randint(1, D)
for i = 1 hasta M do

if randj [0, 1) < CR o j = jrand then
ui,j,G+1 = xr3,j,G + F · (xr1,j,G − xr2,j,G)

else
ui,j,G+1 = xi,j,G

end if
end for
if f(�ui,G+1) ≤ f(�xi,G) then

�xi,G+1 = �ui,G+1

else
�xi,G+1 = �xi,G

end if
end for
G = G + 1

end for

que una función f sea optimizada (min)f(D, X, W ), donde
q es el número de neuronas.

B. Individuo

El individuo que representa el diseño de una RNA, está dado
por una matriz W. Esta matriz está compuesta por tres partes:
la topologı́a (T), los pesos sinápticos (SW) y las funciones de
transferencia (TF), tal como se muestra en la Figura 1.

El tamaño del individuo depende de un número máximo
de neuronas (MNN ), el cuál está definido por q. En esta
investigación se desarrolló una ecuación para obtener el
MNN , la cuál depende del problema a resolver. Ésta se
encuentra definida a continuación:

q = (m + n) +
(

m + n

2

)
(7)

donde n es la dimensión del vector de los patrones de
entrada y m es la dimensión del vector de los patrones
deseados.

Debido a que la matriz está compuesta por tres diferentes
informaciones, se consideró tres rangos diferentes para cada
una. En el caso de la topologı́a, el rango se encuentra

Fig. 1. Representación del individuo que codifica la topologı́a (T), los pesos
sinápticos (SW) y las funciones de transferencia TF).

entre
[
1, 2MNN − 1

]
, los pesos sinápticos tienen un rango

de [−4, 4] y para las funciones de transferencia el rango
es [1, nF ], donde nF es el número total de funciones
de transferencia a utilizar. Al generar los individuos, todas
las matrices W están compuestas de valores reales en
sus respectivos rangos y al momento de decodificar la
información para ser evaluados en la función de aptitud, tanto
la arquitectura y la función de transferencia sufren un redondeo
del tipo �x�.

C. Arquitectura y pesos sinápticos

Para poder evaluar los diseños de las RNA, es necesario
decodificar la información del individuo. La primera
información a decodificar es la topologı́a o arquitectura (T), la
cual se evalúa con los pesos sinápticos (SW) y las funciones
de transferencia (TF) codificados en la misma matriz.

Para hacer válida una topologı́a de RNA para la metodologı́a
propuesta, se deben de seguir ciertas reglas. Las RNA
generadas están compuestas de tres capas: la capa de entrada,
la capa oculta y la capa de salida y las reglas de conexión entre
las neuronas de cada capa siguen las siguientes condiciones.

Donde ILN es el conjunto de I neuronas que componen
la capa de entrada, HLN es el conjunto de J neuronas
pertenecientes a la capa oculta y OLN es el conjunto de K
neuronas, las cuales pertenecen a la capa de salida.

Primera regla (para las neuronas de la capa de
entrada-ILN): La neurona ILNi, i = 1,..., I sólo puede enviar
información a las neuronas de la capa oculta HLN j y a las
neuronas de la capa de salida OLNk.

Segunda regla (para las neuronas de la capa oculta-HLN):
La neurona HLNj, j = 1,..., J sólo puede enviar información
a las neuronas de la capa de salida OLNk y a las neuronas
de la capa oculta HLNj pero, para ésta última con una
restricción. Para la neurona HLNj sólo puede haber conexión
con las neuronas del tipo HLNj+1, ..., HLNJ .

Tercera regla (para las neuronas de la capa de salida-OLN):
La neurona OLNk, k = 1,..., K sólo puede enviar información
a otras neuronas de su misma capa pero, con una restricción.
Para la neurona OLNk sólo puede existir conexión con
neuronas del tipo OLNk+1, ..., OLNK .

Para decodificar la arquitectura siguiendo las tres reglas
de conexión y recordando que la información en W ij con
i = 1, ..., MNN y j = 1 está en base decimal, sufre
un redondeo como se explicó anteriormente y se codifica a
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binario en una matriz Z. Esta matriz representará un grafo
(arquitectura de la RNA), donde cada componente de la
matriz zij indica las aristas o conexiones entre la neurona
(vértices del grafo) i y la neurona j cuando z ij = 1. Por
ejemplo: supongamos que Wi,1 tiene un número entero “57” el
cuál será transformado en su correspondiente número binario
“0111001”. Este número binario indica las conexiones de la
neurona i-ésima con siete neuronas (número de bits en la
cadena binaria). En este caso, solo las neuronas en la posición
de la cadena binaria de izquierda a derecha donde exista un 1
como la neurona dos, tres, cuatro y siete, tendrán una conexión
a la neurona i.

Al extraer de la matriz W la arquitectura se evaluará con
los correspondientes pesos sinápticos de la componente W ij

con i = 1, ..., MNN y j = 2, ..., MNN + 1. Finalmente
cada neurona de la arquitectura calculará su salida con su
correspondiente función de transferencia indicada en la misma
matriz.

D. Funciones de transferencia

Las funciones de transferencia (TF) se encuentran
representadas en la componente Wij con i = 1, ..., MNN
y j = MNN + 3. Dependiendo del valor entero en la
componente, se eligirá una de las funciones propuestas en esta
investigación.

Aunque existen otras funciones de transferencia que pueden
ser implementadas en el contexto de las RNA, en esta
investigación se utilizarán sólo las más utilizadas en el área.
Estas TF con su respectiva nomenclatura son: la función
sigmoide (LS), la función hipertangencial (HT), la función
seno (SN), la función gausiana (GS), la función lineal (LN) y
la función lı́mite duro (HL).

Hasta este momento se ha explicado la codificación del
individuo y la forma de decodificar la información cuando
se hace la evaluación de la solución en la función de aptitud.
En la siguiente sección se explican las diferentes funciones de
aptitud desarrolladas en esta investigación.

E. Funciones de Aptitud

La función de aptitud permite saber que tan buena es la
solución dependiendo del problema de optimización que se
quiere resolver. En este caso, el problema de optimización es
del tipo minf(x)|x ∈ A ⊆ IRn donde x = (x1, ..., xn) y n es
la dimensiónalidad.

En esta investigación dos funciones de aptitud fueron
aplicadas. La primera consiste en evaluar a las diferentes
soluciones que se generen utilizando el error cuadrático medio
(MSE) sobre el conjunto de entrenamiento MSET y sobre
el conjunto de validación MSEV ver Ec. 8. La segunda
función consiste en considerar al mismo tiempo el error
de clasificación (CER) sobre el conjunto de entrenamiento
CERT y el de validación CERV , dándole más peso al error
de validación, ver Ec. 9.

F1 = 0.4 × (MSET ) + 0.6 × (MSEV ) (8)

F2 = 0.4 × (CERT ) + 0.6 × (CERV ) (9)

El desempeño de estas funciones de aptitud serán
presentadas más adelante.

V. SALIDA DE LA RED NEURONAL ARTIFICIAL

Una vez decodificada la información del individuo, se
calcula la salida de la RNA, de tal forma que, es posible
determinar la eficiencia de la red mediante la función de
aptitud. Dicha salida se calcula aplicando el Algoritmo V.

Algorithm 2 Pseudocódigo de la salida de la RNA. oi es
la salida de la neurona i, aj es el patrón de entrada a la
RNA, n es la dimensionalidad del patrón de entrada, m es
la dimensionalidad del patrón deseado y y i es la salida de la
RNA.

1: for i = 1 hasta n do
2: Calcular oi = ai

3: end for
4: for i = n + 1 hasta MNN do
5: Obtener el vector de conexiones z de la neurona i a

partir del individuo Wi.
6: Obtener los pesos sinápticos s de la neurona i a partir

del individuo Wi.
7: Obtener el bias b de la neurona i a partir del individuo

Wi.
8: Obtener el ı́ndice t de la función de transferencia de la

neurona i a partir del individuo Wi.
9: Calcular la salida de la de la neurona i como oi =

ft

(
i∑

j=1

sj · zj · aj + bj

)
.

10: end for
11: for i = MNN − m hasta MNN do
12: Calcular la salida de la RNA con, yi−MNN−m+1 = oi.
13: end for

Para el caso de la función de aptitud F2, la salida de la red
será modificada mediante la técnica del ganador toma todo,
es decir la neurona que genere el valor mas alto en su salida
se le asignará el valor binario de uno y a las restantes se
les asignara el valor de cero. Esta nueva salida binaria será
comparada con el conjunto de patrones deseados asignados
para cada problema de clasificación.

VI. RESULTADOS EXPERIMENTALES

La metodologá propuesta se evaluó al resolver problemas de
clasificación de patrones. Como se mencionó anteriormente,
se utilizará un aprendizaje supervisado, lo que indica que será
utilizado un conjunto de patrones deseados.

Debido que el algoritmo de Evolución diferencial presenta
algunos parámetros, la configuración de los mismos puede
repercutir en el desempeño de los resultados. Por tal motivo,
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se realizó un estudio de sensibilidad para encontrar la mejor
configuración de los parámetros de ED y ası́ obtener los
mejores resultados en la experimentación. Para encontrar
dicha configuración se propusieron diferentes valores para
cada parámetro y se evaluaron los diseños de RNA con las
funciones de aptitud F1 y F2.

Al obtener la mejor configuración del algoritmo se
procedió a realizar la experimentación que proporcionará datos
estadı́sticamente válidos sobre el reconocimiento, los mejores
resultados y la evaluación de los errores que se generaron al
aplicar la metodologı́a propuesta.

A. Descripción de la experimentación

Para evaluar el desempeño de la metodologı́a, se
seleccionaron diez problemas de clasificación de patrones de
diferente complejidad. El problema de la planta del Iris, el
del vino, el cáncer de mama, el problema de diabetes, el de
desórdenes del hı́gado y el problema del vidrio son problemas
que se encuentran en el repositorio de UCI machine learning
[23]. El problema de reconocimiento de objetos se obtubo de
[24], y los problemas como la espiral y las dos sintéticas se
desarrollaron en nuestro laboratorio. La Figura 2 muestra los
patrones dispersos de éstos últimos problemas.

(a) (b)

(c)

Fig. 2. Dispersión de datos para los problemas sintéticos. (a) Datos del
problema de espiral. (b) Datos del problema sintético 1. (c) Datos del problema
sintético 2.

En la Tabla I se encuentra la descripción de los patrones de
cada problema de clasificación.

Para obtener los tres conjuntos de datos para entrenar y
validar la RNA, se dividió el número de patrones totales de
cada base de datos en tres conjuntos: el de entrenamiento, el de
validación y el de generalización. La selección de los patrones
que componene cada conjunto se realizó de manera aleatoria
con el fin de validar estadı́sticamente los resultados obtenidos.
Esta selección tiene una distribución del 33% de los patrones
totales para el entrenamiento, 33% para la validación y 34%
para la generalización para cada problema de clasificación.

TABLA I
DESCRIPCIÓN DE LOS PROBLEMAS DE CLASIFICACIÓN DE PATRONES.

Problemas de Descripción Patrones
clasificación de los patrones totales

Rec. objetos. 7 caractéristicas que describen 5 clases 100
Planta Iris 4 caractéristicas que describen 3 clases 150
Vino 13 caractéristicas que describen 3 clases 178
Cáncer de mama 7 caractéristicas que describen 2 clases 683
Diabetes 8 caractéristicas que describen 2 clases 768
Desórdenes del hı́gado 6 caractéristicas que describen 2 clases 345
Vidrio 9 caractéristicas que describen 6 clases 214
Espiral 2 caractéristicas que describen 2 clases 194
Sintética 1 2 caractéristicas que describen 2 clases 300
Sintética 2 2 caractéristicas que describen 2 clases 450

B. Análisis de sensibilidad

El análisis de sensibilidad consiste en evaluar los resultados
obtenidos con diferentes valores asignados a los parámetros del
algoritmo de Evolución deferencial. De este modo, se puede
determinar cómo las diferentes configuraciones proporcionan
desempeños variados, de los cuales podemos seleccionar la
mejor configuración con el que el algoritmo se desempeña
mejor.

La configuración para detrerminar cuál es el valor para
cada parámetro está determinada por la siguiente secuencia:
v−w−x−y−z donde cada variable representa un parámetro.
Para el caso del número de individuos en la población la
variable v = {50, 100} donde el elemento 1 corresponde
a 50 individuos y el elemento 2 corresponde a 100. En el
caso de el tamaño del espacio de búsqueda w = {2, 4} el
primer elemento indica que el rango se establece en [−2, 2]
y el caso del segundo elemento indica que el rango está
determinado entre [−4, 4]. Para determinar el tipo de función
de aptitud, la variable x = {3, 4} indica con el primer
elemento, que será seleccionada la función F1 y el segundo
elemento define la selección de la función F2. El algoritmo
ED, tiene dos parámetros propios: el factor de cruza CR y
una constante F , las cuales se representan por las variables y
y z respectivamente. Ambas variables toman los valores y =
z = {1, 2, 3} donde dichos elementos estan asociados a los
siguientes valores {0.1, 0.5, 0.9}. El número de generaciones
o iteraciones del algoritmo se fijó en 2000 y el número de
experimentos para cada combinación de los parametros, para
cada problema de clasificación y cada función de aptitud se fijó
en cinco corridas del algoritmo. De tal manera que la secuencia
2-1-3-2-3 significa que la configuración correspondiente es:
100 − [−2, 2]− F1 − 0.5 − 0.9

Se debe considerar que para cada experimento se obtienen
dos valores: el error de entrenamiento y el error de
generalización. Por ese motivo, se obtuvo una ponderación de
estos dos valores y ası́ se determinó quien presenta mejores
resultados. Con ayuda de la evaluación ponderada de la suma
del entrenameinto y la generalización se decidió asignar mayor
peso a la etapa de generalización al ser multiplicada por un
factor de 0.6 y en el caso del entrenamiento el factor es 0.4. La
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ecuación que determina la ponderación es la que se describe
en Ec. 10.

rp = 0.4 × (Training) + 0.6 × (Test) (10)

donde Training representa el porcentaje de reconocimiento
durante la etapa de entrenamiento y Test representa el
porcentaje de reconocimineto obtenido durante la etapa de
generalización.

Para cada configuración de los parámetros y cada problema
se realizaron 5 experimentos, de los cuales se obtubo un
promedio ponderado rp. La Tabla II muestra el mejor
promedio ponderado para las dos funciones de aptitud y
cada problema de clasificación de patrones, ası́ como también
muestra las configuraciones de los parámetros que generaron
dichos valores.

TABLA II
PROMEDIO PONDERADO PARA CADA PROBLEMA DE CLASIFICACIÓN Y

CADA FUNCIÓN DE APTITUD.

Problemas de Función Función
clasificación aptitud F1 aptitud F2

Promedio P. Config. Promedio P. Config.

Espiral 0.3753 2,2,3,2,2 0.3062 2,2,4,1,1
Sintética 1 0.0128 1,2,3,1,2 0.0060 2,1,4,2,1
Sintética 2 0.1400 2,2,3,2,2 0.0997 2,2,4,2,1
Planta de Iris 0.0256 2,2,3,3,3 0.0216 2,2,4,1,3
Cáncer de mama 0.0209 2,1,3,3,3 0.0204 2,1,4,2,2
Diabetes 0.2181 1,1,3,3,3 0.2170 2,1,4,3,1
Desórdenes del hı́gado 0.2845 1,1,3,2,1 0.2793 2,2,4,3,2
Rec. Objetos 0.0 2,2,3,3,2 0.0 1,1,4,1,1
Vino 0.0183 2,1,3,3,2 0.0237 2,1,4,1,3
Vidrio 0.3346 1,1,3,3,3 0.3425 2,1,4,1,1

En la Tabla II se puede observar que los mejores valores
fueron obtenidos con la función CER, mostrando valores
mı́nimos para ocho de diez problemas; la función de aptitud
F1 presentó mejores resultados aislados para el caso de los
problemas del Vino y del Vidrio.

Los resultados anteriores muestran para cada problema de
clasificación y cada función de aptitud, una configuración
especı́fica que genera el mejor desempeño del algoritmo
evolutivo para el diseño de RNA. Sin embargo, debido a
que se desea crear una metodologá no especı́fica para cada
problema a resolver, se buscó aquella configuación que en
promedio resolviera mejor todas los bases de datos (una
solución general), por lo que se obtubo por cada función de
aptitud, el promedio que involucra el promedio ponderado
rp de todos los problemas de clasificación. De lo anterior,
se obtubo que para el caso de la función de aptitud F 1 el
porcentaje de error ponderado fue de 15.37% y en el caso de
la función de aptitud F2 el porcentaje del error ponderado fue
de 14.83%.

Como se mencionó anteriormente, el análisis de sensibilidad
permite conocer cómo los valores de los diferentes parámetros
afectan el desempeño del algoritmo ED y por consiguiente
el diseño de las RNA. Por este motivo, se requiere de la

minimización del error que se genere con las diferentes
configuraciones. En este caso, el error mı́nimo se generó
con la función de aptitud F2 con la configuración 2-2-4-3-2.
Esta configuración representa la mejor de entre todas las
que se generaron al realizar la experimentación con todas
las posibles configuraciones. Esta mejor configuración, será
utilizada para realizar el análisis experimental que involucra
todos los problemas de clasificación de patrones.

C. Análisis experimental

Para realizar una experimentación estadı́sticamente válida,
se generaron 30 experimentos para cada problema de
clasificación utilizando la mejor configuración para el
algoritmo de ED, la cuál fue encontrada previamente en el
análisis de sensibilidad. Los resultados para cada problema
al utilizar la mejor configuración: una población de 100
individuos, en un espacio de búsqueda de [−4, 4] con la
función de aptitud F2 y los valores para CR = 0.9 y
para F = 0.5 se describen a continuación. Estos resultados
se evaluaron durante un número de generaciones de 5000.
Los resultados presentan la evolución del error, el porcentaje
de reconocimiento ponderado que conjunta la etapa de
entrenamiento y generalización ası́ como las arquitecturas con
las que se generó el mejor y el peor error.

A continuación se describen los resultados obtenidos con la
mejor configuración para cada uno de los diez problemas de
clasificación.

1) Espiral: La evolución del error obtenida de la función
de aptitud F2 se muestra en la Figura 3, en la cual el error
de clasificación y la validación se conjuntan para obtener una
red neuronal con el mejor desempeño, es decir con el mı́nimo
valor encontrado por la función de aptitud. Como se puede
observar, para la mayorı́a de las experimentaciones el error
desciende casi en su totalidad antes de las 1000 generaciones,
después el error se mantiene constante.
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Fig. 3. Resultados experimentales en los 30 experimentos para el problema de
Espiral. (a) Evolución del error. (b) Porcentaje de reconocimiento ponderado.

En la Figura 4 se muestran dos de las 30 arquitecturas que
se generaron para el problema de la Espiral. La Figura 4(a)
es el diseño con el cuál se generó el mejor error, en donde se
puede apreciar que, para las neuronas de la capa intermedia
se utilizaron las funciones lineal y seno como funciones de
transferencia y en la capa de salida las funciones seno y
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sigmiode. En la Figura 4(b) se muestra la arquitectura que
generó el peor error durante la experimentación. A diferencia
de la mejor, esta arquitectura presenta menos conexiones. Cabe
señalar que las funciones de transferencia son las mismas
utilizadas por la mejor configuración.
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Fig. 4. Diseño de arquitecturas de RNA generadas para el problema de
Espiral en los 30 experimentos. (a) Arquitectura con el mejor desempeño.
(b) Arquitectura con el peor desempeño.

2) Sintética 1: Como se puede ver en la Figura 5(a), la
evolución del error converge rápidamente a un error mı́nimo.
La Figura 5(b) muestra el porcentaje de reconocimiento para
la base de datos Sintética 1. En ella podemos observar que
para los 30 experimentos, el desempeño de las RNA diseñadas
presentan un entrenamiento y generalización muy altos, por
arriba del 95% y en algunos casos alcanza el reconocimiento
máximo (100%) para ambas etapas.
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Fig. 5. Resultados experimentales en los 30 experimentos para el problema
Sintético 1. (a) Evolución del error. (b) Porcentaje de reconocimiento
ponderado.

En la Figura 6 se presentan la mejor y la peor arquitectura
encontradas para el problema Sintético 1. En ella podemos
apreciar que la mejor arquitectura o topologı́a presenta
conexiones directas desde la capa de entrada hasta la capa
de salida. Esto se debe a las reglas de conexiones propuestas
anteriormente. Las funciones de transferencia utilizadas para
dicha arquitectura fue la función seno, la sigmoide y la lı́mite
duro.
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Fig. 6. Diseño de arquitecturas de RNA generadas para el problema Sintético
1 en los 30 experimentos. (a) Arquitectura con el mejor desempeño. (b)
Arquitectura con el peor desempeño.

3) Sintética 2: La evolución del error para este problema
de clasificación se muestra en la Figura 7(a), en donde se
puede observar que el mı́nimo error generado por la función
de aptitud no mejora después de las 1000 iteraciones. Por otro
lado, la Figura 7(b) presenta el porcentaje de reconocimiento
ponderado, en ella podemos ver que en más de la mitad de
los experimentos totales, se obtubo un porcentaje por arriba
del 85%.
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Fig. 7. Resultados experimentales en los 30 experimentos para el problema
de Sintético 2. (a) Evolución del error. (b) Porcentaje de reconocimiento
ponderado.

La Figura 8(a) muestra la arquitectura que alcanza el
mı́nimo error (el mejor desempeño). Su arquitectura describe
algunas conexiones directas desde la capa de entrada hasta
la de salida. El conjunto de funciones de transferencia que
utiliza cada neurona son: las funciones seno, lı́mite duro y
sigmoide. Para el caso de la peor arquitectura encontrada
durante la experimentación, la Figura 8(b) muestra dicha
topologı́a diseñada con las funciones de transferencia seno,
hipertangencial y la lı́mite duro.
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Fig. 8. Diseño de arquitecturas de RNA generadas para el problema de
Sintético 2 en los 30 experimentos. (a) Arquitectura con el mejor desempeño.
(b) Arquitectura con el peor desempeño.

4) Planta de Iris: La Figura 9(a), muestra para las 5000
generaciones la evolución del error encontrado por la función
de aptitud F2. En ella podemos observar que al incrementar
el número de generaciones el error disminuye drásticamente
en algunos experimentos. Sin embargo, la mayorı́a de los
experimentos alcanza su mejor valor antes de las 1000
generaciones.

En la Figura 9(b) se muestra el porcentaje de recono-
cimiento ponderado para cada experimento. Como se puede
apreciar el desempeño de las RNA generadas alcanza un
reconocimiento mayor al 90%.

En la Figura 10(a) se muestra la mejor arquitectura
encontrada durante la experimentación. Este interesante y
peculiar diseño, tiene una neurona que carece de conexión
con otras en la capa de salida. Esta neurona trabaja sólo con
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Fig. 9. Resultados experimentales en los 30 experimentos para el problema
de la Planta de Iris. (a) Evolución del error. (b) Porcentaje de reconocimiento
ponderado.

el bias correspondiente, que al ser evaluado en la respectiva
función de transferencia sigmoide, se transforma a un valor
que será exitosamente utilizado al momento de evaluar la
salida de la RNA con la técnica el ganador toma todo. Al
generarse las correspondientes salidas para cada patrón de
entrada las neuronas restantes en la capa de salida son las que
detallan la clase a la que pertenece cada patrón, mientras que
la neurona que no tiene conexión funciona como un umbral
fijo. Por ejemplo, suponga que la segunda neurona de salida
genera en su salida un valor de 0.45, sin importar el patrón
de entrada; por otro lado la primera y tercera neurona generan
en su salida los valores de 0.65 y 0.55 respectivamente, al
ser estimuladas con un patrón de entrada que pertenece a la
clase 1. Al ser evaluada la salida de la RNA por la técnica
del ganador toma todo, se obtendrı́a la salida 1,0,0 la cuál
indica que el patrón de entrada pertenece a la clase 1. Ahora
suponga que la salida de la primera y tercera neurona generan
en su salida los valores de 0.35 y 0.25 respectivamente, al ser
estimuladas con un patrón de entrada que pertenece a la clase
2. En este caso, al ser evaluada la salida de la RNA por la
técnica del ganador toma todo, se obtendrı́a la salida 0,1,0
la cuál indica que el patrón de entrada pertenece a la clase
2, recuerde que la salida de la segunda neurona no cambia,
es decir, permanece en 0.45 porque no está conectada con
otras neuronas. Finalmente, en un tercer caso suponga que la
salida de la primera y tercera neurona generan en su salida
los valores de 0.35 y 0.65 respectivamente, al ser estimuladas
con un patrón de entrada que pertenece a la clase 3. En este
caso, al ser evaluada la salida de la RNA por la técnica del
ganador toma todo, se obtendrı́a la salida 0,0,1 la cuál indica
que el patrón de entrada pertenece a la clase 3.

Las funciones de transferencia que este diseño necesita son
las funciones lineal y sigmoide.

La arquitectura que genera el peor error durante las 30
experimentaciones se muestra en la Figura 10(b), la cual utiliza
las funciones sigmide, lineal, sigmoide e hipertangencial como
funciones de trasnferencia para cada neurona.

5) Cáncer de mama: Para el caso del problema de cáncer
de mama, la evolución del error generado mediante la función
de aptitud F2 es presentado en la Figura 11(a), donde se puede
observar que el error se mantiene casi constante para las 30
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Fig. 10. Diseño de arquitecturas de RNA generadas para el problema de
la Planta de Iris en los 30 experimentos. (a) Arquitectura con el mejor
desempeño. (b) Arquitectura con el peor desempeño.

experimentaciones durante el tiempo lı́mite especificado en
5000 generaciones.

Por otro lado, el porcentaje de reconocimento ponderado
para las etapas de entrenamiento y generalización se presentan
en la Figura 11(b). El porcentaje se mantiene exitosamente,
para todas las experimentaciones, por arriba del 95%, lo que
indica que se encontraron los mejores diseños de las redes
para resolver este problema de clasificación.
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Fig. 11. Resultados experimentales en los 30 experimentos para el problema
de Cáncer de mama. (a) Evolución del error. (b) Porcentaje de reconocimiento
ponderado.

El mejor y el peor error de entrenamiento fue alcanzado con
las arquitecturas mostradas en la Figura 12, donde también
se presentan las funciones de transferencia utilizadas para
cada neurona. Para el caso del mejor diseño, las funciones
de transferencia seleccionadas por la metodologı́a fueron el
lı́mite duro, sigmoide y lineal. Para el caso del peor diseño
se obtubo el conjunto de funciones compuesto por la función
sigmoide, la lineal y el lı́mite duro.

6) Diabetes: Para el problema de la diabetes, la evolución
del error a diferencia de las Figuras anteriores, muestra que el
proceso de convergencia tarda más generaciones, ver Figura
13(a).

En el caso del reconocimento ponderado, el porcentaje
alcanzado para toda la experimentación no fue mayor del 80%,
ver Figura 13(b).

La arquitectura que genera el mejor desempeño es la que
se muestra en la Figura 14(a), donde hay cuatro neuronas que
componenen la capa intermedia con las siguientes funciones
de transferencia: sigmoide, gaussiana y lineal. El peor caso se
muestra en la Figura 14(b) donde se generó una arquitectura
con una sola neurona. Esta arquitectura tiene en la capa de
entrada, una neurona que no presenta conexión.
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Fig. 12. Diseño de arquitecturas de RNA generadas para el problema de
Cáncer de mama en los 30 experimentos. (a) Arquitectura con el mejor
desempeño. (b) Arquitectura con el peor desempeño.
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Fig. 13. Resultados experimentales en los 30 experimentos para el problema de
Diabetes. (a) Evolución del error. (b) Porcentaje de reconocimiento ponderado.

Este hecho se puede presentar al diseñar las RNA y no
significa que el desempeño se reduzca; al contrario significa
que la dimensionalidad del patrón de entrada se puede reducir
evitando tener información redundante.
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Fig. 14. Diseño de arquitecturas de RNA generadas para el problema de
Diabetes en los 30 experimentos. (a) Arquitectura con el mejor desempeño.
(b) Arquitectura con el peor desempeño.

7) Desórdenes del hı́gado: La Figura 15 muestra la
evolución del error para los 30 experimentos. Antes de las
2000 generaciones el algoritmo de ED encuentra el mejor error
para cada experimento, después se mantiene constante.

Para el caso del porcentaje de reconocimiento, éste se
encuentra arriba del 60% para algunos casos y para otros arriba
del 70%.

La mejor y la peor arquitectura para el problema de
desórdenes del hı́gado se muestran en la Figura 16. El
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Fig. 15. Resultados experimentales en los 30 experimentos para el problema
de Desórdenes del hı́gado. (a) Evolución del error. (b) Porcentaje de
reconocimiento ponderado.

diseño con el mejor desempeño utiliza las funciones de
transferencia lineal, hipertangencial y sigmoide. En el caso
del peor desempeño, el conjunto de funciones de transferencia
está compuesto por: la sigmoide, gausiana y la lineal.
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Fig. 16. Diseño de arquitecturas de RNA generadas para el problema de
Desórdenes del hı́gado en los 30 experimentos. (a) Arquitectura con el mejor
desempeño. (b) Arquitectura con el peor desempeño.

8) Reconocimiento de objetos: La evolución del error para
el problema de reconocimiento de objetos se muestra en la
Figura 17(a). En ella se observa que la evaluación de la
función de aptitud alcanza el error mı́nimo en menos de 1000
generaciones.

El resultado de esa evolución se ve reflejada en el
reconocimiento ponderado para cada experimentación. De las
30 arquitecturas diseñadas, 16 alcanzaron un reconocimiento
del 100%, ver Figura 17(b). El desempeño de la mayorı́a de
las arquitecturas restantes se encuentran por arriba del 90%.
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Fig. 17. Resultados experimentales en los 30 experimentos para el problema
de Reconocimiento de objetos. (a) Evolución del error. (b) Porcentaje de
reconocimiento ponderado.
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La Figura 18(a) muestra la arquitectura con el mejor
desempeño y en Figura 18(b) aquella con el peor.
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Fig. 18. Diseño de arquitecturas de RNA generadas para el problema de
Reconocimiento de objetos en los 30 experimentos. (a) Arquitectura con el
mejor desempeño. (b) Arquitectura con el peor desempeño.

9) Vino: La Figura 19(a) muestra que la evolución del error
tiende a un valor mı́nimo antes de las 1000 generaciones. En
este caso se puede observar que el error de la mayorı́a de las
experimentaciones convergen a valores cercanos.

En el caso del porcentaje de reconocimento ponderado para
el problema del vino, el cuál presenta los patrones con mayor
número de caracterı́sticas, se generó un porcentaje por arriba
del 90% y en un experimento se logró generar el diseño con
el mejor desempeño, es decir con el 100% de reconocimiento,
ver Figura fig19(b).
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Fig. 19. Resultados experimentales en los 30 experimentos para el problema
del Vino. (a) Evolución del error. (b) Porcentaje de reconocimiento ponderado.

Dos diseños generados por la metodologı́a propuesta se
presentan en la Figura 20, estos diseños son aquellos que
generaron el mejor y el peor desempeño para el problema
del vino.

10) Vidrio: El problema del vidrio es aquél problema de
clasificación que presenta el mayor número de caracterı́sticas
por cada patrón en la salida. La evolución del error
generado continúa descendiendo durante las primeras 3500
generaciones, ver Figura 21(a).

En el caso del porcentaje de reconocimiento para el
problema del vidrio, se tiene que la mayorı́a de la
experimentación se encuentra por arriba del 60% con algunos
ejemplos por debajo del mismo, ver Figura 21(b).

La Figura 22 muestra las arquitecturas con el mejor y el
peor desempeño durante la experimentación.
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Fig. 20. Diseño de arquitecturas de RNA generadas para el problema del
Vino en los 30 experimentos. (a) Arquitectura con el mejor desempeño. (b)
Arquitectura con el peor desempeño.
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Fig. 21. Resultados experimentales en los 30 experimentos para el problema
del Vidrio. (a) Evolución del error. (b) Porcentaje de reconocimiento
ponderado.

D. Discusión general

A continuación se muestran los desempeños promedio de
los 30 experimentos para cada uno de los problemas de
clasificación.

La Figura 23(a) muestra el error promedio para cada
problema de clasificación. En dicha Figura se muestra
que la función de aptitud con la que se realizaron las
experiementaciones presentó en general un error bajo. Sin
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Fig. 22. Diseño de arquitecturas de RNA generadas para el problema del
Vidrio en los 30 experimentos. (a) Arquitectura con el mejor desempeño. (b)
Arquitectura con el peor desempeño.
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embargo, las bases de datos que presentan un mı́nimo en el
error durante las 5000 generaciones fueron: reconocimiento de
objetos, vino, planta de Iris, cáncer de mama y el problema
sintético 1.

En la Figura 23(b) muestra el porcentaje de reconocimiento
ponderado promedio. Las bases de datos alcanzaron el
siguiente porcentaje: espiral de 66.62%, sintética 1 de 98.12%,
sintética 2 de 86.49%, planta de Iris 96.41%, cáncer de
mama un 97.47%, diabetes 77.17%, desórdenes del hı́gado
un 69.45%, reconocimieno de objetos 97.09%, para el caso
del Vino 95.95% y por último para el caso del problema del
vidrio, éste alcanzó un reconocimiento del 61.79%.
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Fig. 23. Diseño de arquitecturas de RNA generadas para el problema del
Vidrio en los 30 experimentos. (a) Arquitectura con el mejor desempeño. (b)
Arquitectura con el peor desempeño.

La Figura 24 que a continuación se muestra, presenta los
porcentajes de reconocimiento ponderado máximo y mı́nimo,
con el fin de sintetizar cuál fue el mejor desempeño alcanzado
para cada problema de clasificación al utilizar la metodologı́a
propuesta.

En la Figura 24(a) se muestra que para el caso del
problema Sintético 1, del reconocimieto de objetos y el
vino, se alcanzó el 100% de reconocimento. Para el caso de
los problemas restantes de (izquierda a derecha) el máximo
porcentaje obtenido fue: Espiral 73.41%, problema sintético
2 con 93.33%, para la planta de Iris de 99.20%, cáncer de
mama %98.77, para el problema de diabetes se alcanzó un
79.45%, para el problema de desórdenes del hı́gado el máximo
porcentaje de reconocimiento fue 75.30% y para el problema
del vidrio de 72.11%.

Al contrario, la Figura 24(b) muestra el desempeño
promedio de las RNA en términos del porcentaje de
reconocimiento ponderado mı́nimo para cada problema. Para
el caso de espiral, el mı́nimo porcentaje fue 57.66%, para
sintético 1 fue de 94.40%, para problema sintético 2 de
81.33%, para la planta de Iris de 91.60%, cáncer de mama
95.87%, para el problema de diabetes se alcanzó un 74.45%,
para el problema de desórdenes del hı́gado el mı́nimo
porcentaje de reconocimiento fue 62.43%, para el problema de
reconocimiento de objetos de 75.76%, para el vino de 91.19%
y por último para el vidrio fue de 47.04%.

Por otro lado, el número de veces que fueron seleccionadas
las diferentes funciones de transferencia para cada problema
está descrita en la Tabla III. En ella, se puede apreciar que para
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Fig. 24. Diseño de arquitecturas de RNA generadas para el problema del
Vidrio en los 30 experimentos. (a) Arquitectura con el mejor desempeño. (b)
Arquitectura con el peor desempeño.

el caso del problema de la espiral la función de transferencia
que fue seleccionada con mayor frecuencia es la función
sigmoide, para el caso del problema sintético 1 fue también
la función sigmoide, para el caso del problema sintético 2
fue la función seno, para el problema de la planta de Iris
fue la función sigmoide, para el problema del cáncer de
mama la función con una mayor selección fue la sigmoide,
para el problema de diabetes también la función sigmoide
fue seleccionada con mayor frecuencia, para el problema
de desórdenes del hı́gado las funciones sigmoide y lineal
tuvieron el mismo número de frecuencia con la que fueron
seleccionadas; el problema de reconocimiento de objetos, el
vino y el vidrio utilizaron también con mayor frecuencia la
función sigmoide.

TABLA III
NÚMERO DE VECES EN QUE CADA FUNCIÓN DE TRANSFERENCIA FUE

SELECCIONADA PARA CADA PROBLEMA DE CLASIFICACIÓN.
FUNCIONES: LS: SIGMOIDE, HT: HIPERTANG, SN: SENO, GS: GAUSIANA,

LN: LINEAL, HL: LÍM. DURO.

Problemas de
clasificación LS HT SN GS LN HL

Espiral 14 11 41 8 35 5
Sintética 1 39 3 31 7 11 23
Sintética 2 37 7 40 13 9 6
Planta de Iris 78 12 5 18 39 24
Cáncer de mama 99 19 11 10 26 40
Diabetes 75 19 13 23 32 24
Desórdenes del hı́gado 37 27 17 23 37 23
Rec. Objetos 75 49 56 60 52 36
Vino 141 44 4 28 54 50
Vidrio 133 50 26 43 71 65

Total 728 241 244 233 366 296

Finalmente, se realizó una comparación con resultados
generados por el método del gradiente descendiente (algoritmo
de retropropagación) y el algoritmo de Levenberg-Marquardt;
algoritmos clásicos de entrenamiento para las RNA. El
porcentaje promedio ponderado de cada algoritmo es mostrado
en la Tabla IV. Se realizaron dos configuraciones diferentes
para las arquitecturas de las RNA entrenadas con cada
algoritmo clásico. Estas arquitecturas consiste en generar una
capa oculta y otra con dos capas ocultas.
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El número máximo de neuronas totales MNN de las RNA
entrenadas con los algoritmos clásicos, se generaron mediante
la misma ecuación en nuestra metodologı́a propuesta para el
caso de una capa oculta, ver Ec. 7 pero, para RNA con dos
capas, la distribución se hace a traves de la Ec. 11.

DN = 0.6 × (MNN) + 0.4 × (MNN) (11)

en donde la primera capa tiene el 60% de las neuronas ocultas
y el 40% de las neuronas de la capa oculta está en la segunda
capa, es decir una arquitectura piramidal.

Los parámetros para el algoritmo del gradiente descendiente
y Levenberg-Marquardt tuvieron dos criterios de paro: al
alcanzar las 5000 generaciones o alcanzar un error de
0.000001. Los problemas de clasificación fueron divididos en
tres partes: el 40% de los patrones totales fue utilizado para
el entrenamiento, el 50% fue utilizado para la generalización
y el 10% fue utilizado para la validación. Se utilizó un tasa
de aprendizaje del 0.1.

Estas redes neuronales, generadas para la aplicación de los
algoritmos clásicos, fueron diseñadas con el fin de obtener los
mejores desempeños y ası́ poder compararlas contra las RNA
generadas por la metodologı́a propuesta.

En la Tabla IV, podemos observar que el porcentaje
promedio ponderado generado por la metodologı́a propuesta
es mejor en seis problemas de clasificación: en la espiral,
sintético 1, sintético 2, cáncer de mama, diabetes y desórdenes
del hı́gado. En el caso de la planta de Iris y del problema
de reconocimiento de objetos, el mejor promedio ponderado
se alcanzó con el algoritmo de Lebenberg-Marquardt de una
capa. Para los problemas del vino y del vidrio, el algoritmo de
Levenberg-Marquardt de dos capas obtubo el mejor porcentaje
de reconocimiento ponderado.

A pesar de que el algoritmo clásico Levenberg-Marquardt,
obtuvo en algunos casos mejores resultados que la
metodologı́a propuesta, el promedio general de todos los
problemas de clasificación fue mayor con la metodologı́a
propuesta.

VII. CONCLUSIONES

Aunque la metodologı́a propuesta ya fue presentada en
[25] y [26], los autores no habı́an contemplado el incluir
el conjunto de validación durante la etapa de entrenamiento,
ni se habı́a realizado un estudio de sensibilidad previa a la
experimentación, aunado a ésto, se agragaron más problemas
de clasificación.

En esta investigación, se presentó la metodologı́a que
permite diseñar de manera automática una red neuronal. Este
diseño incluye, la arquitectura (cómo se conectan las neuronas
y cuántas neuronas son suficientes), el valor del conjunto de
pesos sinápticos y el tipo de funciones de transferencia dado un
conjunto. El algoritmo evolutivo que se aplicó fue el llamado
Evolución diferencial.

En una primera etapa de la experimentación, se realizó
un estudio de sensibilidad de los parámetros de dicho

algoritmo evolutivo. En esta experimentación se probaron
diferentes valores de los parámetros y se seleccionó la
mejor configuración. Esta configuración (que generó el mejor
desempeño en las RNA generadas para cada problema) se dió
al utilizar un número de individuos de 100, en un espacio de
búsqueda entre [−4, 4].

De dos funciones de aptitud seleccionadas para el anális
de sensibilidad (las funciones de MSE y CER), las cuales
incluyeron la etapa de validación, se encontró que, la mejor
fue F2 = 0.4 × (CERT ) + 0.6 × (CERV ). Para el caso del
factor de cruza CR el mejor valor fue 0.9 y para la constante
F un valor de 0.5.

Como es bien sabido, la etapa de validación juega un papel
indispensable en la etapa de entrenamiento de una red neuronal
artificial, ya que impide el sobreaprendizaje. Por ese motivo,
se decidió implementar la etapa de validación en la función
de aptitud, con el fin de encontrar una solución con error
mı́nimo de clasificación y al mismo tiempo que no generara
un sobreaprendizaje.

Para validar estadı́sticamente los resultados, dicha configu-
ración se aplicó a 30 corridas del algoritmo en cada problema
de clasificación. Se encontró que el desempeño de las RNA
diseñadas por la metodologı́a bajo las condiciones dadas en
el párrafo anterior, presentan un porcentaje de reconocimiento
alto: en el 50% de los problemas el reconocimeinto es mayor
al 95% siendo el más bajo de 61.79%.

En el caso especı́fico para cada problema, durante
las 30 experimentaciones se alcanzaron porcentajes de
reconocimiento del 100% tanto en la etapa de entrenameitno
como en la generalización.

Con esto, podemos decir que la etapa de validación y la
mejor configuración del algoritmo de Evolución diferenial
generaron resultados exitosos. Recordemos que los tres
conjuntos, a saber, los conjuntos de entrenamiento, validación
y generalización en los que se dividió cada problema se
eligieron de manera aleatoria para cada experimento, lo
que hace aún más valiosos los resultados obtenidos, pues
esto indica que los resultados se validan estadı́sticamente y
experimental.

La metodologı́a propuesta presenta un desempeño general
(en todos los problemas de clasificación) mejor que el
generado con los algoritmos clásicos de entrenamiento. A
pesar que hubo algunos casos donde el mejor promedio
de reconocimiento ponderado se alcanzó con Levenberg-
Marquardt, la metodologı́a propuesta presenta varias ventajas:
la primera es que el diseño se realiza de manera automática.
En segundo lugar, la metodologı́a no depende de un algoritmo
basado en el cálculo de derivadas, lo que la hace robusto ante
problemas más complejos.

Con esto podemos concluir que es posible generar diseños
de redes neuronales artificiales con desempeños hasta con
el 100% de reconocimineto en la etapa de entrenamiento y
generalización, que se puede encontrar varios diseños que
resuelven el mismo problema con diferente configuración
y mismos resultados y que algunos diseños presentan
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TABLA IV
PROMEDIOS DEL PORCENTAJE DE RECONOCIMIENTO PONDERADO PARA LOS ALGORITMOS CĹASICOS Y LA METODOLOGÍA PROPUESTA.

Problemas de Gradiente Gradiente Levenberg Levenberg Metodologı́a
clasificación Descendiente Descendiente Marquardt Marquardt propuesta

(1 capa ) (2 capas) (1 capa) (2 capas) (ED)

Espiral 0.500824742 0.50137457 0.509209622 0.50137457 0.666185897
Sintética 1 0.749911111 0.770444444 0.790088889 0.777288889 0.9812
Sintética 2 0.544859259 0.51442963 0.69997037 0.562488889 0.864888889
Planta de Iris 0.932266667 0.652266667 0.979111111 0.756266667 0.964133333
Cáncer de mama 0.967696547 0.944751762 0.969269149 0.957415353 0.974685447
Diabetes 0.757864583 0.727604167 0.765260417 0.760902778 0.771692708
Desórdenes del hı́gado 0.604435184 0.576515437 0.675610073 0.662586369 0.694492754
Rec. Objetos 0.744533333 0.694133333 0.982133333 0.727466667 0.970909091
Vino 0.982921348 0.933782772 0.968614232 0.979101124 0.959548023
Vidrio 0.707040498 0.685358255 0.789034268 0.798380062 0.617934272

Total 0.749235327 0.700066104 0.812830146 0.748327137 0.846567041

caracterı́sticas como la reducción de la dimensionalidad de
las caracterı́sticas de los patrones de entada.
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Un enfoque práctico. Madrid, España: Pearson Educación, 2004.

[18] B. Martı́n del Brı́o and A. Saenz Molina, Redes Neuronales y Sistemas
Borrosos. Madrid, España: Alfaomega, 2007.

[19] R. Storn and K. Price, “Differential evolution — a
simple and efficient adaptive scheme for global optimization
over continuous spaces,” International Computer Science
Institute, Berkeley, Tech. Rep., 1995. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1.9696

[20] S. Das and P. N. Suganthan, “Differential evolution: A survey of the
state-of-the-art,” IEEE Trans. Evolutionary Computation, vol. 15, no. 1,
pp. 4–31, 2011.

[21] E. Mezura-Montes, J. Velázquez-Reyes, and C. A. C. Coello,
“A comparative study of differential evolution variants for global
optimization,” in GECCO, M. Cattolico, Ed. ACM, 2006, pp. 485–492.

[22] R. Storn and K. Price. (2012, april) Official web site
this is a test entry of type @ONLINE. [Online]. Available:
http://www.icsi.berkeley.edu/storn/code.html,

[23] D. N. A. Asuncion, “UCI machine learning repository,” 2007. [Online].
Available: http://www.ics.uci.edu/∼mlearn/MLRepository.html

[24] R. A. Vázquez and H. Sossa, “A new associative model with dynamical
synapses,” Neural Processing Letters, vol. 28, no. 3, pp. 189–207, 2008.

[25] B. A. G. Licon, J. H. S. Azuela, and R. A. Vázquez, “Design of
artificial neural networks using a modified particle swarm optimization
algorithm,” in IJCNN. IEEE, 2009, pp. 938–945.

[26] B. A. Garro, H. Sossa, and R. A. Vázquez, “Artificial neural network
synthesis by means of artificial bee colony (abc) algorithm,” in IEEE
Congress on Evolutionary Computation. IEEE, 2011, pp. 331–338.

27 Polibits (46) 2012

Diseño automático de redes neuronales artificiales mediante el uso del algoritmo de evolución diferencial (ED)


