
 

  
Abstract—Particle Swarm Optimization (PSO) is a bioinspired 

meta-heuristic for solving complex global optimization problems. 
In standard PSO, the particle swarm frequently gets attracted by 
suboptimal solutions, causing premature convergence of the 
algorithm and swarm stagnation. Once the particles have been 
attracted to a local optimum, they continue the search process 
within a minuscule region of the solution space, and escaping 
from this local optimum may be difficult. This paper presents a 
modified variant of constricted PSO that uses random samples in 
variable neighborhoods for dispersing the swarm whenever a 
premature convergence (or stagnation) state is detected, offering 
an escaping alternative from local optima. The performance of 
the proposed algorithm is discussed and experimental results 
show its ability to approximate to the global minimum in each of 
the nine well-known studied benchmark functions. 
 

Index Terms—Particle Swarm Optimization, Local optima, 
Global Optimization, Premature Convergence, Random Samples, 
Variable Neighborhoods. 
 

I. INTRODUCTION 

ARTICLE Swarm Optimization is a bioinspired search 
technique that simulates the social behavior observed in 
groups or swarms of biological individuals [1], [2]. It is 

based on the principle that intelligence does not lie in 
individuals but in the collective, allowing for the solution of 
complex optimization problems from a distributed point of 
view, without centralized control in a specific individual. Each 
organism (particle) adjusts its position by using a combination 
of an attraction to the best solution that they individually have 
found, and an attraction to the best solution that any particle 
has found [3], imitating those who have a better performance. 
Thus, the particle swarm overflies the search space detecting 
promising regions. 

Although the PSO meta-heuristic has proved to be efficient 
for solving real-value optimization problems, the particle 
swarm is often attracted to stable points that are not 
necessarily global optima [4], [5]. This behavior causes 
premature convergence of the algorithm, in which the particles 
are grouped about suboptimal solutions with little chance of 
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 escaping from this situation. Once the particles have 
converged prematurely, they continue converging within 
extremely close proximity of one another so that the global 
best and all personal bests are within one minuscule region of 
the search space [6], limiting the algorithm exploration. 

Several approaches have been proposed in the literature for 
addressing this undesirable situation. For example, in 
Attraction-Repulsion based PSO (ATREPSO) [7] the swarm 
switches between the attraction phase, repulsion phase, and in 
between phase which consist of a combination of attraction 
and repulsion to the optimal position. Another approach called 
Quadratic Interpolation based PSO (QIPSO) [8] uses a 
quadratic crossover operator and the swarm diversity as a 
measure to guide the population for finding a better solution in 
the search space. Using a certain threshold of diversity, 
Gaussian Mutation PSO (GMPSO) [9] activates a mutation 
operator with the hope to increase the diversity of the swarm. 
Lastly, in [10] the authors propose a new hybrid variant called 
HPSO-SA that combines PSO and Simulating Annealing (SA) 
to avoid premature convergence using the strong local-search 
ability of SA. 

Although these approaches generally outperform classical 
PSO, there is a need to incorporate alternative procedures for 
enhancing the PSO search process. In this work we present a 
modified constricted PSO called Particle Swarm Optimization 
with Random Sampling in Variable Neighborhoods (PSO-
RSVN) which detects and treats the premature convergence 
state, achieving promising results compared to several 
approaches reported in the literature. 

The rest of the paper is organized as follows: in next 
Section II a theoretical background of standard PSO is 
described. In Section III we introduce the proposed PSO-
RSVN algorithm. Section IV gives the experimental settings, 
the numerical benchmark problems used for comparison and 
the result discussion. Finally, conclusions and further research 
aspects are given in Section V.  

II. PARTICLE SWARM OPTIMIZATION  

The PSO technique involves a set of agents or particles 
known as swarm which “flies” through the solution space 
trying to locate promising regions. The particles are 
interpreted as possible solutions for the optimization problem 
and are represented as points in n-dimensional search space. In 
the case of standard PSO, each particle (Xi) has its own 
velocity (Vi) bounded by a maximum value (Vmax), a memory 
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of the best position it has obtained (Pi) and knowledge of the 
best solution found in its neighborhood (G). In the search 
process the particles adjust their positions according to the 
following equations (1) and (2): 

V������			V����
	c1r1�P� � X�����	
	c2r2�G � X�����      (1) 

X���
1�			X����
	V���
1�                             (2) 

where k indexes the current generation, c1 and c2 are positive 
constants, r1 and r2 are random numbers with uniform 
distribution on the interval �0, 1�.  

A commonly used parameter that changes the original PSO 
is the constriction coefficient (χ), which was introduced by 
Clerc et al. [11] to guarantee the algorithm convergence, 
avoiding the explosion of the particle swarm (i.e. the state 
where the particles velocities and positional coordinates 
careen toward infinity). It can be expressed in terms of c1 and 
c2 as shown in (3): 

χ			 2
�	2�φ	��φ2�	4φ	� 		and		φ			c1
	c2	,	φ	"	4          (3) 

Another parameter that modifies the standard PSO is the 
inertia weight (ϖ) added by Shi et al. [12]. The incorporation 
of this parameter guarantees the balance between the 
capacities of local and global search; a higher weight value 
(ϖ " 1� will facilitate the exploration, while a low weight 
(ϖ $ 1� facilitates the exploitation. The wrong choice of this 
parameter value will affect the algorithm convergence speed, 
so it is recommended to adjust it dynamically as shown in the 
following equation (4): 

ϖ� 	 ϖ%&' �ϖ%&' �ϖ%�(
F%&'

F� 																										�4� 

where, ϖ%�( and ϖ%&'match the end points of the interval on 
which the k-th inertia weight is defined, Fk denotes the number 
of evaluations at the k-cycle, whereas Fmax corresponds to the 
maximal number of evaluations allowed. So, both factors are 
applied to the equation (1) as follow: 

*������			χ +ϖ���V����
,��P� � X�����	
	,-�G � X�����.    (5) 

Extensive experiments carried out in [3] showed that 
constricted PSO returns improved performance over the 
original PSO; however, it provides no mechanism to detect 
and treat premature convergence (or stagnation state) of the 
particle swarm, which could adversely affect the algorithm 
effectiveness. 

III.  PSO-RSVN ALGORITHM 

In this section we introduce a modification for constricted 
PSO algorithm defined by equations (2) and (5). First, several 
mechanisms to detect the premature convergence state along 
the progress of the algorithm are discussed. Next, a new 

procedure of swarm reorganization based on randomly 
selected particles from the neighborhoods of the global best 
particle is presented. 

A. Detection of the premature convergence state 

The first step to enhance the performance of constricted 
PSO algorithm is to detect the premature convergence state. 
When PSO falls into a local optimum all individuals are 
grouped around this solution, which is why diversity is lost 
among the swarm particles, making more difficult to find 
better solutions in the algorithm progress. In [13] several ways 
to detect this state are discussed: 

i. Cluster analysis: a percentage of the particles are at a 
certain Euclidean distance of the best global particle. 

ii.  Objective function without progress: the objective 
function does not suffer significantly improvement in 
several iterations of the generational cycle. This criterion 
also may be used for detecting the stagnation state.  

iii.  Maximum radius of the swarm: the particle with more 
Euclidean distance respect to the global best particle 
found, have a distance less than a pre-set threshold. This 
criterion it is formally defined as: 

 

ρ�k� = 

max�	1	�	1	|Ω|3X�
��� � G3

|σ%&' � σ%�(| 																												�6� 
 

where ||.|| denotes the Euclidean norm on 6n, while σ%�( and 
σ%&' are the end points on which each dimension of the 
particle Xi is defined (assuming same domain for all 
dimensions), whereas Ω represents the particle swarm. In this 
way the threshold is normalized for each generation k.  
Particularly, we use ii) to detect the stagnation state and iii) for 
identify premature convergence. 

B. Treatment of the Premature Convergence State 

Once premature convergence signals are detected it is 
necessary to take some action to allow the algorithm to escape 
from this state, for example: 

i. Moving the position of the globally best particle found. 
ii.  Reorganizing the particle swarm (applying genetic 

operators in order to diversify the population, re-
initializing the swarm, etc.). 

Although both strategies have reported good results in 
solving global optimization problems, they have some 
drawbacks. In the first case is not trivial to find a better 
particle, and even when once found, the population is poorly 
diversified. 

In the second case, diversification increases the chances of 
escaping the local optimum but if the swarm is not properly 
reorganized, the particles may converge to the same solution 
or indiscriminately move away from the promising areas that 
were found. In order to mitigate these problems in this paper 
we assume a hybrid approach consisting in diversifying the 
population while trying to move the position of the best global 
particle found (G) in the search process. 

The Variable Neighborhood Search (VNS) [14] is a simple 
and effective meta-heuristic for combinatorial problems and 
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global optimization which is based on the systematic change 
of the neighborhood in the search process. Inspired by this 
idea, we present a procedure called Random Sampling in 
Variable Neighborhoods (RSVN) which aims to disperse the 
swarm when the premature convergence or stagnation state is 
detected. The main idea of this procedure is to restructure the 
particle swarm from the selection of random samples 
uniformly distributed in several neighborhoods generated 
around the n-dimensional point G. Equations (7), (8) and (9) 
formalize the way to generate the set of samples in each 
neighborhood: 

 

λ89�	 :;89 ,			;89 	<	σ%�(
σ%�( ,	;89$σ%�( 	and	;89		G9 � ξ8|σ%&' � σ%�(|(7)	

	
λ89�	 :>89 ,		>89 	?	σ%&'

σ%&' ,	>89"σ%&' 	and	>89		G9
ξ8|σ%&' � σ%�(|(8)	
	

X@ ∈ Ψ8 	|X@9~U�λ89�, λ89��, E 	 1,… , GΨHG; 		J 	 1, … ,M  (9) 
 

where d indexes the particle dimension, M is a user-specified 
integer parameter that denotes the number of neighborhoods, 
whereas ξ

j
∈ �0,1�is a fractional value called neighborhood 

factor that denotes the j-th neighborhood proportion to the size 
of the search space; and it is calculated as: ξ

j
	 J M⁄ . Lastly, 

Ψ8represents the j-th set of uniformly distributed samples in 

the domain that defines the interval Mλ89�, λ89�N. 
After collecting the samples, a selection process of the 

particles takes place. These agents will form the new swarm as 
shown below: 

 

Ω� = Φ1⋃Φ2⋃…⋃Φm=QΦ8
m

8=1

	 | Φ8⊆Ψ8 , ∀J														�10� 
 
where Φ8 is a subset of good enough particles compared to all 
samples Ψ8 using an elitist criterion. In this procedure each 
particle Xi is a candidate to replace the best global particle, 
which complements the swarm dispersion process. Next, a 
pseudocode summarizes the main ideas and constriction 
parameters of the PSO-RSVN algorithm. 

An important aspect to be discussed is the selection of each 
subset Φ8; due to the high computational cost that generally 
involve the evaluation of the objective function the elitist 
criterion may be replaced by a heuristic criterion, for example: 
“select the particles with greater Euclidean distance respect to 
the global best particle”. However, for high-dimensional 
problems the extra-computational cost needed to compute the 
Euclidean distance could become significant. For solving this 
inconvenient, a simple but effective alternative might be: for 
each set of samples make GΦ8G 	 GΨ8G 	 |Ω| M⁄ , i.e., the 
selection process is omitted and consequently reduced the 
extra-computational cost required for computing the swarm 
reorganization process. In fact, this last criterion is used in all 
experiments carried out in next Section IV. 

Pseudocode of PSO with Random Sampling in Variable Neighborhoods 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IV.  PERFORMANCE STUDY 

In this section two implementations of the PSO-RSVN 
algorithm are evaluated; the first implementation called PSO-
RSVN-α detects the premature convergence state, comparing 
the maximum radius of the swarm (according to equation (6)) 
with a pre-set threshold α. The second variant called PSO-
RSVN-p is useful for identify a premature convergence state 
as well as a possible stagnation state, and involve a parameter 
(p) that represents the allowed maximal number of evaluations 
without progress. It must be mentioned that PSO-RSVN-p 
induce less extra-computational cost, since the estimation of 
the maximum radius of the swarm is not required. 

Table I describes nine well-known benchmark functions 
taken from [15], which are used to compare the performance 
of the proposal with several approaches reported in the 
literature. These functions are minimization problems 
characterized by multiple local optima, especially when the 
complexity of the function increases, that is, when the 
dimensionality of the search space increases. The first seven 
problems are scalable and includes unimodal, multimodal and 
noisy functions, whereas the last two problems are highly 
multimodal in nature. Therefore, the use of these functions 
helps in deciding the credibility of an optimization algorithm. 

The experimental results discussed in this section are 
addressed in two sub-sections which study the performance of 
the PSO-RSVN algorithm for 20-dimensional and 30-
dimensional solution search spaces. 

A. PSO-RSVN behavior in 20-dimensional search spaces 

This section compares both PSO-RSVN variants against 
five approaches evaluated and discussed in [16], [10]: PSO, 

Generate the swarm vector and the velocity vector randomly 
Select the best global particle of the swarm (G) 
Initialize ωmax = 1.4, ωmin = 0.4, c1 = 2.05, c2 = 2.05 
While(the maximal number of evaluations is not met)  

    Calculate ϖ� dynamically according to expression (4) 
    ForEach Xi

(k) εΩ 
        Calculate Vi

(k+1)according to expression(5) 
        Adjust the position of Xi

(k+1) according to expression (2) 
        Evaluate the new particle Xi

(k+1) 
        IF(X i

(k+1) is the best record for the i-th particle) 
            Update the best record for the i-th particle with Xi

(k+1) 
            IF(X i

(k+1) is a better particle than G) 
                Update G with Xi

(k+1) as the best global particle 
            endIF 
        endIF 
    endForEach 
    IF (premature convergence or stagnation state is detected) 
        Disperse the swarm Ω according to the expressions (7-10) 
        Reset velocity vector using a random sequence 
        Update the vector P and the best particle G 
        Reset the inertia weight 
    endIF 
endWhile 
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TABLE I 
STANDARD BENCHMARK FUNCTIONS USED IN THIS WORK. LAST COLUMN (FMIN) REFERS TO GLOBAL MINIMUM  

VALUE EXISTING IN THE DOMAIN DEFINED BY BOUNDARIES. 
 

Mathematical Formulation Search Range Fmin 

S��TU� 	 V T�-
(

�W�
 [-100.0,100.0] 0.0000000 

S-�TU� 	V �T�- � 10 cos�2ZT�� 
 10�
(

�W�
 [-5.120,5.120] 0.0000000 

S[�TU� 	 \ 1
4000]V T�-

(

�W�
�^ cos\T�√`] 
 1	

(

�W�
 [-600.0,600.0] 0.0000000 

Sa�TU� 	 V �100�T��� � T�-�- 
 �T� � 1�-�
(��

�W�
 [-2.048,2.048] 0.0000000 

Sb�TU� 	V `T�a 
 cdef�0,1�
(

�W�
 [-1.280,1.280] 0.0000000 

Sg�TU� 	 �V �T�sin	��|T�|��
(

�W�
 [-500.0,500.0] -420.968n 

S7�TjU� 	 20 
 k � 20k�l.-\+
n
o.p 'qro

qsn ]
n
r
� k��/(�p uvw	�-x'q�o

qsn  
[-32.0,32.0] 0.0000000 

Sy�TU� 	V `z{|��` 
 1�T� 
 `�V `z{|��` 
 1�T- 
 `�
b

�W�

b

�W�
 [-10.0,10.0] -186.7309 

S}�TU� 	 �T- 
 T�- � 11�- 
 �T� 
 T-- � 7�- 
 T� [-5.00,5.00] -3.783961 

  a F8 and F9 are defined in 62 space. 

 
TABLE II 

AVERAGE ERROR OBTAINED IN THE OPTIMIZATION PROCESS. THE BEST PERFORMING  
ALGORITHM FOR EACH FUNCTION IS EMPHASIZED IN BOLDFACE. 

 

ID PSO QIPSO ATREPSO GMPSO HPSO-SA RSVN-αααα RSVN-p 

F1 1.167E-45 0.0000000 4.000E-17 7.263E-17 5.365E-32 0.0000000 0.0000000 
F2 22.339158 11.946888 19.425979 20.079185 0.0000000 0.0000000 0.0000000 
F3 0.0316460 0.0115800 0.0251580 0.0244620 3.322E-20 0.0000000 0.0000000 
F4 22.191725 8.9390110 19.490820 14.159547 0.2270481 2.635E-16 7.312E-25 
F5 8.6816020 0.4511090 8.0466170 7.1606750 0.0020199 4.372E-06 1.386E-05 
F6 2240.8010 2063.7740 2235.6830 2371.6900 39.700000 43.651000 1280.4350 
F7 3.483E-18 2.461E-24 0.0184930 1.474E-18 7.435E-16 4.440E-16 4.440E-16 
F8 1.420E-05 0.0000000 1.420E-05 1.530E-05 8.670E-14 0.0000000 0.0000000 
F9 0.4524730 0.0000000 0.0325030 0.3237280 1.000E-06 1.000E-06 0.0000000 

 
QIPSO, ATREPSO, GMPSO, and HPSO-SA. In each 
simulation we used 30 particles and 300.000 objective 
function evaluations in a 20-dimensional search space. In 
addition, five variable neighborhoods (M=5) are used. For the 
PSO-RSVN-α implementation, a threshold for the maximum 
radius of the swarm α= 1.0E-5 is adopted, whereas for PSO-
RSVN-p the allowed number of evaluations without progress 
is set to 200. Table II summarizes the average error obtained 
respect to the global optimum for each algorithm from 30 
independent trials. In all tables, PSO-RSVN-αis abbreviated 
as RSVN-α and PSO-RSVN-p as RSVN-p. 

Analyzing the results shown in Table II we observed that for 
the functions F1, F2, F3 and F8 both PSO-RSVN variants 
always finds the global optimum satisfactorily. For 
Rosenbrock (F4) function PSO-RSVN-p outperforms all 
examined algorithms; in this function the stagnation state is 
frequently presented due to the search space properties. For 
the noisy function F5PSO-RSVN-α computes the best 
performance, whereas for Shwefel (F6), HPSO-SA locates 
better solutions. PSO-RSVN-α is slightly the best approach 
for minimizing the Himmelblau (F9) function. Finally, QIPSO 
has the best results reported for Ackley (F7), followed by both 
PSO-RSVN algorithms. 
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In a deeper statistical study of the algorithms performance 
we used several test for exploring significant differences 
among them. Depending on the concrete type of data 
employed, statistical procedures are grouped in two classes: 
parametric and nonparametric [18]. Parametric tests have been 
often used in the analysis of experiments in computational 
intelligence. Unfortunately, they are based on assumptions 
(independence, normally, homoscedasticity) which are most 
probably violated when analyzing the performance of 
stochastic algorithms based on computational intelligence 
[19], [20]. To overcome this problem, the researchers 
frequently use nonparametric statistical procedures when these 
previous assumptions cannot be satisfied. 

First, we compute the Friedman test (Friedman two-way 
analysis of variances by ranks) [21], [22]. This test is a 
multiple comparisons procedure for detecting significant 
differences between the behaviors of two or more algorithms; 
i.e. it can be used for detecting whether at least two of the 
samples represent populations with different median values or 
not, in a set of n samples (n≥2). Table III shows the mean rank 
and the p-value associated with this test. Using a significance 
level of 0.05, corresponding to the 95% confidence interval, 
the Friedman test suggest rejecting the null hypothesis (p-
value < 0.05), thus, there exist highly significant differences 
between at least two methods across benchmark. Also can be 
observed that PSO-RSVN-p and PSO-RSVN-α are the best 
ranked; however this information cannot be used to conclude 
that our proposals are involved on this differences. 

 
TABLE III 

MEAN RANK ACHIEVED BY THE FRIEDMAN TEST 

Evaluated Algorithms Mean Ranka 

     RSVN-p 2.39 
     RSVN-α 2.39 
     HPSO-SA 2.89 
     QIPSO 3.44 
     GMPSO 5.39 
ATREPSO 5.50 
     PSO 6.00 

                  a Monte Carlo signification (p-value) = 0.00 
 
The main drawback of the Friedman’s tests is that they only 

can detect significant differences over the whole multiple 
comparisons, being unable to establish proper comparisons 
between some of the algorithms considered [23]. For this 
reason we also compute the Wilcoxon signed ranks test [24]; it 
is used for answering a simple question: do two samples 
represents two different populations? Thus, Wilcoxon is a 
pairwise procedure that aims to detect significant differences 
between two sample means, that is, the behavior of two 
algorithms.  

Table IV shows the p-values associated with each pairwise 
comparison. Then some important conclusions came out: 

i. Using a significance level of 0.05, corresponding to the 
95% confidence interval, the Wilcoxon test suggest to 
reject the null hypothesis (p-value < 0.05) for the 
following pairwise comparisons: RSVN-p vs. GMPSO, 
RSVN-p vs. ATREPSO, RSVN-p vs. PSO, RSVN-α vs. 
PSO, RSVN-α vs. GMPSO and RSVN-α vs. ATREPSO; 

thus we can conclude that there exist highly significant 
differences between them. 

ii.  Using a significance level of 0.1, corresponding to the 
90% confidence interval, the Wilcoxon test suggest to 
reject the null hypothesis (p-value < 0.1) for the 
following pairwise comparisons: RSVN-p vs. QIPSO 
and RSVN-α vs. QIPSO; i.e. there exist fairly significant 
differences between them. 

iii.  For the pairwise comparisons that involve the following 
methods: RSVN-α, RSVN-p and HPSO-SA, there not 
exist perceptible differences among them. These results 
confirm the improvement of the proposed procedures. 

 
TABLE IV 

WILCOXON SIGNED RANKS TEST RESULTS 

  Pairwise Comparison p-valuea 

     RSVN-p vs. RSVN-α  0.621 
     RSVN-p vs. HPSO-SA 0.195 
     RSVN-p vs. GMPSO 0.013 
     RSVN-p vs. ATREPSO 0.004 
     RSVN-p vs. QIPSO 0.066 
     RSVN-p vs. PSO 0.013 
     RSVN-α vs. HPSO-SA 0.292 
     RSVN-α vs. GMPSO 0.013 
     RSVN-α vs. ATREPSO 0.004 
     RSVN-α vs. QIPSO 0.081 
     RSVN-α vs. PSO 0.013 

    a Monte Carlo signification 
 

B. PSO-RSVN behavior in 30-dimensional search spaces 

One of the most important variations to PSO is the 
introduction of the local model or local topology (lbest). In 
this model, each particle can only communicate with a subset 
of particles, limiting the overall exchange of information. In 
contrast to the global model or the global topology (gbest), the 
local model converges more slowly but is less prone to being 
trapped in suboptimal solutions. In fact, several authors 
suggest using the local topology to optimize complex 
multimodal functions, and the global topology to optimize 
unimodal functions [3]. 

Four different approaches have been evaluated in [6] that 
include considerations about the topology of the particle 
swarm in 30-dimensional spaces: lbest PSO with a ring 
topology, gbest PSO, Regrouping PSO (RegPSO) [6] and 
Opposition based PSO (OPSO) [17]. These simulations allow 
studying the stability of the PSO-RSVN algorithm when 
increasing dimensionality of the solution search space. Table 
V summarizes the average error obtained for each algorithm 
from 50 trials, 20 particles as the swarm size and 800.000 
objective function evaluations. Moreover, five variable 
neighborhoods (M=5) are used. For the PSO-RSVN-α 
implementation, a tolerance for the maximum radius of the 
swarm α = 1.0E-5 is adopted, whereas for PSO-RSVN-p the 
allowed number of evaluations without progress is set to 500. 

From the numerical results shown in Table V a conclusion 
came out: both variants of PSO-RSVN outperform other 
approaches in all cases. PSO-RSVN-α and PSO-RSVN-p 
always find the global optimum satisfactorily for Sphere (F1),
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TABLE V 

AVERAGE ERROR OBTAINED IN THE OPTIMIZATION PROCESS. THE BEST PERFORMING  
ALGORITHM FOR EACH FUNCTION IS EMPHASIZED IN BOLDFACE. 

 

ID gbest PSO lbest PSO OPSO RegPSO RSVN-αααα RSVN-p 

F1 2.470E-323 5.513E-160 9.881E-324 9.2696E-15 0.00000000 0.00000000 
F2 71.6368600 54.2849000 66.1646300 2.6824E-11 0.00000000 0.00000000 
F3 0.05500800 0.00939970 0.02574900 0.01386100 0.00000000 0.00000000 
F4 2.06915000 3.25523000 1.86410000 0.00393510 7.9800E-04 2.4299E-18 
F5 0.00394380 0.01325000 0.00101660 0.00064366 2.1731E-06 1.4155E-05 
F7 3.91150000 0.07546900 2.67240000 4.6915E-07 4.4408E-16 4.4408E-16 

 
Rastringin (F2), Griewank (F3) and Ackley (F7) functions. For 
Rosenbrock (F4) PSO-RSVN-p has the best performance, 
whereas for Quartic (F5) the other proposal achieves the best 
approximations. These results reveal that both PSO-RSVN are 
quite consistent across benchmarks when the dimensionality 
of the search space increases. 

Figure 1 illustrates, as an example, the behavior of the 
swarm diversity in the optimization process of the Rastringin 
function, for proposed PSO-RSVN-αalgorithm and constricted 
PSO. In this simulation we use the maximum radius of the 
swarm for measuring the swarm diversity. So, in the 
generation number 4900 both methods prematurely converge 
to a local optimum, i.e. the whole population is grouped in a 
minuscule region of the search space. This situation degrades 
the PSO search capabilities. However, the swarm diversity 
introduced by PSO-RSVN-α  ensures the exploration of new 
areas of the solution space, increasing the possibility of escape 
from suboptimal solutions. 

 

 
 

Fig. 1. Behavior of the swarm diversity for PSO-RSVN and constricted 
PSO, during the optimization process. The horizontal axis denotes the number 
of objective functions evaluated and the vertical axis refers to the maximum 
radius of the swarm. 

 
In general, PSO-RSVN introduces a new parameter to be 

estimated by the user: the number of neighborhoods M; it is an 
integer value used to organize the sampling process by 
dividing the search space in several partitions. Recommended 
values for this parameter could be M = 5 or M =10, although 
other values are allowed. For the first implementation a 
normalized threshold α for the maximum radius of the swarm 

should be specified. The wrong selection of this parameter 
may be relevant to the algorithm performance: a higher value 
of α will affect the PSO-RSVN-α exploitation capability, due 
to a false premature convergence state could be induced, 
whereas a lower value could never detect an existing 
premature convergence state. Empirical experiments show that 
values from 1.0E-2 to 1.0E-8 are a good choice. Finally, for 
the PSO-RSVN-p implementation, a parameter for controlling 
the allowed number of evaluations without progress is 
required. This parameter is easy to set and will depend on the 
maximal number of the objective function evaluations. 

Although PSO-RSVN generally provides superior results 
regarding examined approaches for well-known benchmark 
functions described in Table I, future work will study the 
algorithm performance across other well-known benchmark 
functions, for example, shifted or badly scaled functions. 

V. CONCLUSIONS 

In this paper was proposed a modified variant of the 
constricted PSO called PSO-RSVN, for enhancing the search 
capability of this algorithm, when solving complex 
optimization problems. Two PSO-RSVN implementations are 
presented: the first one is capable to detect the premature 
convergence state, and the second one is able to detect the 
premature convergence as well as the stagnation state. Both 
variants treat these undesirable states by reorganizing the 
particle swarm, which is, conducting a random sampling in 
several neighborhoods, emphasizing the neighborhood of the 
best particle found so far. The swarm diversity introduced by 
the proposed dispersion mechanism ensures the exploration of 
new areas of the solution space, increasing the possibility of 
escape from suboptimal solutions. 

It was evaluated the algorithm performance in comparison 
with other variants of PSO reported in the literature, by using 
nine well-known benchmark functions for 20-dimensional 
search spaces. In addition it was verified the stability of the 
algorithm upon increasing the dimensionality of the search 
space, by using 30-dimensional spaces. In both experiments 
the new algorithm (PSO-RSVN) provides superior results in 
most cases. In fact, due to its simplicity, elitist properties and 
low computational cost, the RSVN procedure could be 
adapted and successfully integrated into other evolutionary 
paradigms. As mentioned, future work will be focused on 
extending the study of the algorithm performance across other 
well-known benchmark functions. 
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