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Abstract—Particle Swarm Optimization (PSO) is a bioinspired
meta-heuristic for solving complex global optimizaion problems.
In standard PSO, the particle swarm frequently getsattracted by
suboptimal solutions, causing premature convergencef the
algorithm and swarm stagnation. Once the particleshave been
attracted to a local optimum, they continue the saah process
within a minuscule region of the solution space, ahescaping
from this local optimum may be difficult. This paper presents a
modified variant of constricted PSO that uses randm samples in
variable neighborhoods for dispersing the swarm wheever a
premature convergence (or stagnation) state is deteed, offering
an escaping alternative from local optima. The pedrmance of
the proposed algorithm is discussed and experimeritaesults
show its ability to approximate to the global mininum in each of
the nine well-known studied benchmark functions.

Index Terms—Particle Swarm Optimization, Local optima,
Global Optimization, Premature Convergence, Randonsamples,
Variable Neighborhoods.

I. INTRODUCTION

escaping from this situation. Once the particlesveh
converged prematurely, they continue converginghiwit
extremely close proximity of one another so that tobal
best and all personal bests are within one minesagdion of
the search space [6], limiting the algorithm exatmm.

Several approaches have been proposed in theuditeréor
addressing this undesirable situation. For examypte,
Attraction-Repulsion based PSO (ATREPSO) [7] tharsw
switches between the attraction phase, repulsiasghand in
between phase which consist of a combination ahettbn
and repulsion to the optimal position. Another agmh called
Quadratic Interpolation based PSO (QIPSO) [8] uses
guadratic crossover operator and the swarm diyessit a
measure to guide the population for finding a lestdution in
the search space. Using a certain threshold ofrsitye
Gaussian Mutation PSO (GMPSO) [9] activates a rartat
operator with the hope to increase the diversityhef swarm.
Lastly, in [10] the authors propose a new hybridar# called
HPSO-SA that combines PSO and Simulating Anned&#g
to avoid premature convergence using the strongl-eearch

PARTICLE Swarm Optimization is a bioinspired Seardhbility of SA.
t

echnique that simulates the social behavior oleskim

groups or swarms of biological individuals [1], [21 is
based on the principle that intelligence does rnet ih
individuals but in the collective, allowing for themlution of
complex optimization problems from a distributedinpoof
view, without centralized control in a specific imidual. Each
organism (particle) adjusts its position by usingpanbination
of an attraction to the best solution that theynirdiially have
found, and an attraction to the best solution #rat particle
has found [3], imitating those who have a bettefgeance.
Thus, the particle swarm overflies the search spketecting
promising regions.

Although the PSO meta-heuristic has proved to beierfit
for solving real-value optimization problems, tharticle
swarm is often attracted to stable points that ao#
necessarily global optima [4], [5]. This behavioauses
premature convergence of the algorithm, in whiehghrticles
are grouped about suboptimal solutions with lithence of
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Although these approaches generally outperformsidak
PSO, there is a need to incorporate alternativeqatares for
enhancing the PSO search process. In this workresept a
modified constricted PSO called Particle Swarm @jatation
with Random Sampling in Variable Neighborhoods (PSO
RSVN) which detects and treats the premature cgevee
state, achieving promising results compared to radve
approaches reported in the literature.

The rest of the paper is organized as follows: é@xtn
Section 1l a theoretical background of standard PSO
described. In Section Il we introduce the propo$tsO-
RSVN algorithm. Section IV gives the experimentattisags,
the numerical benchmark problems used for comparésw
the result discussion. Finally, conclusions andhier research
aspects are given in Section V.

[I. PARTICLE SWARM OPTIMIZATION

The PSO technique involves a set of agents orghesti
known as swarm which “flies” through the solutiopase
trying to locate promising regions. The particlese a
interpreted as possible solutions for the optinidzaproblem
and are represented as points in n-dimensionatisspace. In
the case of standard PSO, each particl§ Bas its own
velocity (V;) bounded by a maximum value £), a memory
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of the best position it has obtained)(&nd knowledge of the
best solution found in its neighborhood (G). In thearch

process the particles adjust their positions adngrdo the

following equations (1) and (2):

k k k k
vED = v e (B - XP) + (6 -xF) @)

(k+1) _ (k) (k+1)
X; U =X"+V, )

where k indexes the current generationaied ¢ are positive

constants, o+ and p are random numbers with uniform

distribution on the intervdlo, 1].
A commonly used parameter that changes the origiS&
is the constriction coefficient (x), which was introduced by

Clerc et al. [11] to guarantee the algorithm convergence,

avoiding the explosion of the particle swarm (itke state
where the particles velocities and positional cowtks
careen toward infinity). It can be expressed im&pf g and
C, as shown in (3):

2
= ——=—= and =ci+c, >4 3
X |2—(P—\/T4<P| ¢ 1 2, ¢ ()

Another parameter that modifies the standard PS@es
inertia weight o) added by Shét al. [12]. The incorporation
of this parameter guarantees the balance between

capacities of local and global search; a higherghteivalue
(w > 1) will facilitate the exploration, while a low weigh

procedure of swarm reorganization based on
selected particles from the neighborhoods of tlubal best
particle is presented.

A. Detection of the premature convergence state

The first step to enhance the performance of ciotetr
PSO algorithm is to detect the premature convergetate.
When PSO falls into a local optimum all individuadse
grouped around this solution, which is why diversg lost
among the swarm particles, making more difficult fbod
better solutions in the algorithm progress. In [§8}eral ways
to detect this state are discussed:

i. Cluster analysis: a percentage of the particles are at a
certain Euclidean distance of the best global glerti
Objective function without progress: the objective
function does not suffer significantly improvement
several iterations of the generational cycle. Thiterion
also may be used for detecting the stagnation.state
Maximum radius of the swarm: the particle with more
Euclidean distance respect to the global best gbarti
found, have a distance less than a pre-set thig:shbis
criterion it is formally defined as:

(k) _
 max X7 =G

p(k) = (6)

|Gmax ~ Omin |

th

where ||.|| denotes the Euclidean norniR3nwhile o,,;,, and

randomly

Omax are the end points on which each dimension of the
particle X is defined (assuming same domain for all
dimensions), wherea@ represents the particle swarm. In this

(w < 1) facilitates the exploitation. The wrong choicetlois
parameter value will affect the algorithm convergespeed,

so it is recommended to adjust it dynamically aswshin the
following equation (4):

Wmax — Omin

Fy C))

Wy = Wmax — F
max

where,@,,;, andm,,,,match the end points of the interval on
which thek-th inertia weight is defined Flenotes the number

of evaluations at thk-cycle, whereas Jz, corresponds to the
maximal number of evaluations allowed. So, bothdecare
applied to the equation (1) as follow:

Vi(k+1) =X (mk+1vi(k)+51 (Pl _ ka)) + 62 (G - XEk))) (5)

way the threshold is normalized for each generation
Particularly, we use ii) to detect the stagnatitatesand iii) for
identify premature convergence.

B. Treatment of the Premature Convergence State

Once premature convergence signals are detectad it
necessary to take some action to allow the alguorith escape
from this state, for example:

i. Moving the position of the globally best partictaifd.

ii. Reorganizing the particle swarm (applying genetic
operators in order to diversify the population, re-
initializing the swarm, etc.).

Although both strategies have reported good results

solving global optimization problems, they have som

Extensive experiments carried out in [3] showedt thalrawbacks. In the first case is not trivial to fired better
constricted PSO returns improved performance over tparticle, and even when once found, the populaopoorly

original PSO; however, it provides no mechanisndébect
and treat premature convergence (or stagnatiom)stditthe
particle swarm, which could adversely affect thgoathm
effectiveness.

. PSO-RSVNALGORITHM

In this section we introduce a modification for stitted
PSO algorithm defined by equations (2) and (5)stFseveral
mechanisms to detect the premature convergence atag
the progress of the algorithm are discussed. Neaxphew
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diversified.

In the second case, diversification increases Hamaes of
escaping the local optimum but if the swarm is paiperly
reorganized, the particles may converge to the sswhdion
or indiscriminately move away from the promisingas that
were found. In order to mitigate these problemshis paper
we assume a hybrid approach consisting in divengjfithe
population while trying to move the position of thest global
particle found (G) in the search process.

The Variable Neighborhood Search (VNS) [14] is m@e
and effective meta-heuristic for combinatorial gevbs and
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global optimization which is based on the systemakiange
of the neighborhood in the search process. Inspinedhis
idea, we present a procedure called Random Samjyting
Variable Neighborhoods (RSVN) which aims to dispetise
swarm when the premature convergence or stagnstiade is
detected. The main idea of this procedure is touesire the

particle swarm from the selection of random sample

uniformly distributed in several neighborhoods gated
around the n-dimensional point G. Equations (7),ai@d (9)
formalize the way to generate the set of samplegaoh
neighborhood:

A

Tid» Tid = Omi

- jd» tjd = Ymin

= and 7;,4= G4 — §;|o — Ominl(7

{Gmin'Tjd<0min jd d E}l max mml( )

A +_{de' deso-max
jd

J Omax» de>0-max

and Cia= Gd"’Ejlo-max - 0-min|(8)

Xe €W [Xea~UNjg A0 "), t =1, | j=1,..,M (9)

where d indexes the particle dimension, M is a-gpecified
integer parameter that denotes the number of neitjolods,

Whereaséj € (0,1]is a fractional value called neighborhood

factor that denotes the j-th neighborhood propont@the size
of the search space; and it is caIcuIatedgjas*. j/M. Lastly,

W;represents thgth set of uniformly distributed samples in

the domain that defines the inter{a, ~, 4,4 *].

After collecting the samples, a selection procetshe
particles takes place. These agents will form #he swarm as
shown below:

Q¥ = &, U, U...UD, - U D, | D,V
=

(10)

where®;is a subset of good enough particles compared to

A " o . |
samples'¥; using an elitist criterion. In this procedure each
particle X is a candidate to replace the best global particle

which complements the swarm dispersion processt, Nex
pseudocode summarizes the main
parameters of the PSO-RSVN algorithm.

An important aspect to be discussed is the selecticcach

subset®;; due to the high computational cost that genera"é(omplexity of the function

involve the evaluation of the objective functione tlelitist

criterion may be replaced by a heuristic criterifom,example:
“select the particles with greater Euclidean distarespect to
the global best particle”. However, for high-dimemsl

problems the extra-computational cost needed topotanthe
Euclidean distance could become significant. Févisg this

inconvenient, a simple but effective alternativeghtibe: for
each set of samples make;| = |¥;| = |Q|/M, ie., the
selection process is omitted and consequently estiube
extra-computational cost required for computing Hvearm
reorganization process. In fact, this last criteri® used in all
experiments carried out in next Section IV.

Pseudocode of PSO with Random Sampling in Variable Neighborhoods

Generate the swarm vector and the velocity veaiodomly
Select the best global particle of the swarm (G)
Initialize ®may= 1.4,0min = 0.4, ¢ = 2.05, ¢ = 2.05
While (the maximal number of evaluations is not met)
Calculatew; dynamically according to expression (4)
ForEachX;®eQ
Calculate Y*Vaccording to expression(5)
Adjust the position of %V according to expression (2)
Evaluate the new particlg
IF(X;**Vis the best record for theh particle)
Update the best record for thk particle with X**2
IRX;**Vis a better particle than G)
Update G with;%V as the best global particle
endIF
endIF
endForEach
IF (premature convergence or stagnation state is eefect
Disperse the swar@h according to the expressions (7-10)
Reset velocity vector using a random segeien
Update the vector P and the best particle G
Reset the inertia weight
endIF
endWhile

IV. PERFORMANCESTUDY

In this section two implementations of the PSO-RSVN
algorithm are evaluated; the first implementatiatied PSO-
RSVN-a detects the premature convergence state, comparing
the maximum radius of the swarm (according to éqoai))
with a pre-set threshold. The second variant called PSO-
RSVN-p is useful for identify a premature convergerstate
as well as a possible stagnation state, and invlparameter
(p) that represents the allowed maximal numbewvafuations
&{ithout progress. It must be mentioned that PSOR$V
nduce less extra-computational cost, since thenatibn of
the maximum radius of the swarm is not required.

' Table | describes nine well-known benchmark fundio
taken from [15], which are used to compare thequerénce

ideas and Commic“of the proposal with several approaches reportedthin

literature. These functions are minimization proige
characterized by multiple local optima, especialligen the
increases, that is, whdre
dimensionality of the search space increases. fseseven
problems are scalable and includes unimodal, mattethand
noisy functions, whereas the last two problems Eghly
multimodal in nature. Therefore, the use of thasections
helps in deciding the credibility of an optimizatialgorithm.

The experimental results discussed in this sectoa
addressed in two sub-sections which study the paeoce of
the PSO-RSVN algorithm for 20-dimensional and 30-
dimensional solution search spaces.

A. PSO-RSVN behavior in 20-dimensional search spaces

This section compares both PSO-RSVN variants agains
five approaches evaluated and discussed in [16]; RSO,
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TABLE |
STANDARD BENCHMARK FUNCTIONS USED IN THIS WORKLAST COLUMN (Fy,) REFERS TO GLOBAL MINIMUM
VALUE EXISTING IN THE DOMAIN DEFINED BY BOUNDARIES

Mathematical Formulation Search Range Fmin

() = z x7 [-100.0,100.0]  0.0000000
i=

JAGE Z (x? — 10 cos(2mx;) + 10) [-5.120,5.120]  0.0000000
i=1

f:(0) ( ! )Zn z Hn (xi) +1 [-600.0,600.0]  0.0000000

X)=|(——= xX; = cos|— - .0, . .
: 4000/ Luj=y™" =1 Wi

n-1

L@ = Z (100(x;1 — xP)% + (x; — 1)) [-2.048,2.048]  0.0000000
i=1

&) = Z ix} +rand[0,1] [-1.280,1.280]  0.0000000
i=1

fe(X) = —z (x;sin(y/|x;1)) [-500.0,500.0] -420.968

i=1

1

1 n 2 n
£, =20+e— 208—0.2((;) Sra) LG/ SN cosenxy  [32.0,32.0]  0.0000000

5 5
fe(X) = Z icos((i + Dx, + i)z icos((i + Dx, + 1) [-10.0,10.0] -186.7309
i=1 i=1

Fo@ = (Gt +x2—11)2 + (ty + 22 — )2 + x, [-5.00,5.00]  -3.783961

3K and Ryare defined irR? space.

TABLE Il
AVERAGE ERROR OBTAINED IN THE OPTIMIZATION PROCESS HE BEST PERFORMING
ALGORITHM FOR EACH FUNCTION IS EMPHASIZED IN BOLDF&E.

ID PSO QIPSO ATREPSO GMPSO HPSO-SA  RSVMN: RSVN-p

F, 1.167E-45 0.0000000 4.000E-17 7.263E-17 5.365E-320.0000000 0.0000000
F»  22.339158 11.946888 19.425979  20.079186.0000000 0.0000000  0.0000000
F:  0.0316460 0.0115800 0.0251580  0.0244620 3.322E-B0D000000  0.0000000
Fs 22101725 8.9390110 19.490820 14.159547 0.227048B35E-16 7.312E-25
Fs  8.6816020 0.4511090 8.0466170 7.1606750 0.0020198B72E-06 1.386E-05
Fe  2240.8010 2063.7740 2235.6830 2371.69089.700000 43.651000 1280.4350
F  3.483E-18 2.461E-24 0.0184930 1.474E-18 7.435E-16 4.440E-16 4.440E-16
Fs  1.420E-05 0.0000000 1.420E-05 1.530E-05 8.670E-140.0000000 0.0000000
Fo  0.4524730 0.0000000 0.0325030 0.3237280 1.000E-06 1.000E-06.0000000

QIPSO, ATREPSO, GMPSO, and HPSO-SA. In each Analyzing the results shown in Table Il we obsertlet for
simulation we used 30 particles and 300.000 obhjectithe functions I F,, F; and kB both PSO-RSVN variants
function evaluations in a 20-dimensional searchcepdn always finds the global optimum satisfactorily. For
addition, five variable neighborhoods (M=5) arediseor the Rosenbrock (fj function PSO-RSVN-p outperforms all
PSO-RSVNe implementationa threshold for the maximum €xamined algorithms; in this function the stagratitate is
radius of the swarm= 1.0E-5 is adopted, whereas for Psoffeduently presented due to the search space piepeFor
RSVN-p the allowed number of evaluations withouwgress e noisy function ESO-RSVNe  computes the best
is set to 200. Table Il summarizes the averager etained performance, whereas for Shwefelg(FHPSO-SA locates

respect to the global optimum for each algorithrorr 30 better solutions. PSO-RSVd-is slightly the best approach

independent trials. In all tables, PSO-RSYN- abbreviated for minimizing the Himmelblau @& function. Finally, QIPSO

has the best results reported for Ackley)(Followed by both
as RSVNe and PSO-RSVN-p as RSVN-p. PSO-RSVN algorithms.
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In a deeper statistical study of the algorithmsfqremance
we used several test for exploring significant afiéinces

among them. Depending on the concrete type of data.

employed, statistical procedures are grouped in ¢lasses:
parametric and nonparametric [18]. Parametric tegt® been
often used in the analysis of experiments in comtpral
intelligence. Unfortunately, they are based on @ggions
(independence, normally, homoscedasticity) which arost

probably violated when analyzing the performance ofii.

stochastic algorithms based on computational igtaiice
[19],
frequently use nonparametric statistical procedutesn these
previous assumptions cannot be satisfied.

First, we compute the Friedman test (Friedman twg-w

analysis of variances by ranks) [21], [22]. Thisttés a
multiple comparisons procedure for detecting sigaift
differences between the behaviors of two or mogerdhms;
i.e. it can be used for detecting whether at Iéast of the
samples represent populations with different medioes or

not, in a set oh samplesr>2). Table Il shows the mean rank

and the p-value associated with this test. Usisigaificance
level of 0.05, corresponding to the 95% confidemterval,
the Friedman test suggest rejecting the null hygsith (p-
value < 0.05), thus, there exist highly significalifferences
between at least two methods across benchmark. dasde

observed that PSO-RSVN-p and PSO-RS¥Mfe the best

ranked; however this information cannot be usedadiaclude
that our proposals are involved on this differences

TABLE Il

MEAN RANK ACHIEVED BY THE FRIEDMAN TEST

Evaluated Algorithms Mean Rahk
RSVN-p 2.39
RSVNwa 2.39
HPSO-SA 2.89
QIPSO 3.44
GMPSO 5.39

ATREPSO 5.50
PSO 6.00

Monte Carlo signification (p-value) = 0.00

The main drawback of the Friedman'’s tests is they bnly
can detect significant differences over the wholeltiple
comparisons, being unable to establish proper cdsges
between some of the algorithms considered [23]. this
reason we also compute the Wilcoxon signed rargt424]; it
is used for answering a simple question: do two pdasn
represents two different populations? Thus, Wilecoxe a
pairwise procedure that aims to detect signifiddifferences
between two sample means, that is, the behaviotwof
algorithms.

Table IV shows the p-values associated with eadtwisz
comparison. Then some important conclusions cartie ou

i. Using a significance level of 0.05, correspondiaghe

[20]. To overcome this problem, the researshe

thus we can conclude that there exist highly sigaift
differences between them.

Using a significance level of 0.1, correspondingthe
90% confidence interval, the Wilcoxon test suggest
reject the null hypothesis (p-value < 0.1) for the
following pairwise comparisons: RSVN-p vs. QIPSO
and RSVNe vs. QIPSO; i.e. there exist fairly significant
differences between them.

For the pairwise comparisons that involve the foilg
methods: RSVNt, RSVN-p and HPSO-SA, there not
exist perceptible differences among them. Theseltees
confirm the improvement of the proposed procedures.

TABLE IV
WILCOXON SIGNED RANKS TEST RESULTS

Pairwise Comparison p-vafue
RSVN-p vs. RSVNx 0.621
RSVN-p vs. HPSO-SA 0.195
RSVN-p vs. GMPSO 0.013
RSVN-p vs. ATREPSO 0.004
RSVN-p vs. QIPSO 0.066
RSVN-p vs. PSO 0.013
RSVNa vs. HPSO-SA 0.292
RSVNa vs. GMPSO 0.013
RSVN«a vs. ATREPSO 0.004
RSVNa vs. QIPSO 0.081
RSVNe vs. PSO 0.013

#Monte Carlo signification

B. PSO-RSVN behavior in 30-dimensional search spaces

One of the most important variations to PSO is the
introduction of the local model or local topologypdst). In
this model, each particle can only communicate w&itsubset
of particles, limiting the overall exchange of infwation. In
contrast to the global model or the global topol¢ghest), the
local model converges more slowly but is less primnbeing
trapped in suboptimal solutions. In fact, severathars
suggest using the local topology to optimize comple
multimodal functions, and the global topology totioyze
unimodal functions [3].

Four different approaches have been evaluated]ithgg
include considerations about the topology of thetige
swarm in 30-dimensional spacekiest PSO with a ring
topology, ghest PSO, Regrouping PSO (RegPSO) [6] and
Opposition based PSO (OPSO) [17]. These simulatidiosy
studying the stability of the PSO-RSVN algorithm esmh
increasing dimensionality of the solution searchcgp Table
V summarizes the average error obtained for eagbrighm
from 50 trials, 20 particles as the swarm size 806.000
objective function evaluations. Moreover, five ‘adilie
neighborhoods (M=5) are used. For the PSO-R®VN-
implementationa tolerance for the maximum radius of the
swarma = 1.0E-5 is adopted, whereas for PSO-RSVN-p the

95% confidence interval, the Wilcoxon test suggest allowed number of evaluations without progressisie 500.
reject the null hypothesis (p-value < 0.05) for the From the numerical results shown in Table V a aasioh
following pairwise comparisons: RSVN-p vs. GMPSOgcame out: both variants of PSO-RSVN outperform wothe

RSVN-p vs. ATREPSO, RSVN-p vs. PSO, RSVNss.
PSO, RSVNe vs. GMPSO and RSVN-vs. ATREPSO;

approaches in all cases. PSO-RS¥Nand PSO-RSVN-p
always find the global optimum satisfactorily foptere (F),
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TABLE V
AVERAGE ERROR OBTAINED IN THE OPTIMIZATION PROCESY HE BEST PERFORMING
ALGORITHM FOR EACH FUNCTION IS EMPHASIZED IN BOLDF&E.

ID  gbest PSO  Ibest PSO OPSO RegPSO RSV RSVN-p

F,  2.470E-323 5513E-160 9.881E-324 9.2696E-16.00000000 0.00000000
F  71.6368600 54.2849000 66.1646300 2.6824E-1100000000 0.00000000
Fs  0.05500800 0.00939970 0.02574900 0.013861@00000000 0.00000000
Fs  2.06915000 3.25523000 1.86410000 0.00393510 7.98@0E2.4299E-18
Fs  0.00394380 0.01325000 0.00101660 0.000643@1731E-06 1.4155E-05
F  3.91150000 0.07546900 2.67240000 4.6915E-074408E-16 4.4408E-16

Rastringin (k), Griewank (k) and Ackley (F) functions. For should be specified. The wrong selection of thisapseter
Rosenbrock (B PSO-RSVN-p has the best performancenay be relevant to the algorithm performance: dadrigzalue
whereas for Quartic ¢f the other proposal achieves the bestf a will affect the PSO-RSVMN+ exploitation capability, due
approximations. These results reveal that both RSUN are to a false premature convergence state could becéu
quite consistent across benchmarks when the dioweally whereas a lower value could never detect an egistin
of the search space increases. premature convergence state. Empirical experinshmiss that
Figure 1 illustrates, as an example, the behaviothe values from 1.0E-2 to 1.0E-8 are a good choicealiinfor
swarm diversity in the optimization process of Rastringin the PSO-RSVN-p implementation, a parameter forrodittg
function, for proposed PSO-RSVéhlgorithm and constricted the allowed number of evaluations without progrdss
PSO. In this simulation we use the maximum raditishe required. This parameter is easy to set and wpkedd on the
swarm for measuring the swarm diversity. So, in thelaximal number of the objective function evaluasion
generation number 4900 both methods prematurelyesge Although PSO-RSVN generally provides superior ressul
to a local optimum, i.e. the whole population isygped in a regarding examined approaches for well-known bermchm
minuscule region of the search space. This sitnatiegrades functions described in Table I, future work willudy the
the PSO search capabilities. However, the swarnersity algorithm performance across other well-known bematik
introduced by PSO-RSVMN- ensures the exploration of newfunctions, for example, shifted or badly scaledctions.
areas of the solution space, increasing the pdisgibi escape
from suboptimal solutions. V. CONCLUSIONS

In this paper was proposed a modified variant of th
12 constricted PSO called PSO-RSVN, for enhancingsteach
capability of this algorithm, when solving complex
FH ; optimization problems. Two PSO-RSVN implementatians
presented: the first one is capable to detect teenature
convergence state, and the second one is abletéotdbe
premature convergence as well as the stagnatite. ath
variants treat these undesirable states by reaiganithe
particle swarm, which is, conducting a random samgpin
several neighborhoods, emphasizing the neighborlubdte
best particle found so far. The swarm diversityadticed by
the proposed dispersion mechanism ensures therakipto of

10

9100
9600 [T

o
o
[}
~

S88c5888588888s588859 ; . :
R R I I R IR new areas of the solution space, increasing theilptty of

escape from suboptimal solutions.
constricted PSO ««e-e--+- PSO-RSVN It was evaluated the algorithm performance in camspa
with other variants of PSO reported in the literafby using
Fig. 1. Behavior of the swarm diversity for PSO-RE¥nd constricted nine well-known benchmark functions for 20-dimemsib
F 0, cunn e spizaon proces, The bt denles e WTher Search spaces. In addiion it was verifd the ki the
radius of the swarm. algorithm upon increasing the dimensionality of search
space, by using 30-dimensional spaces. In bothrempets
In general, PSO-RSVN introduces a new parametdreto the new algorithm (PSO-RSVN) provides superior ltesin
estimated by the user: the number of neighborhdtidsis an  most cases. In fact, due to its simplicity, elifisoperties and
integer value used to organize the sampling prod®ss low computational cost, the RSVN procedure could be
dividing the search space in several partitionzoRenended adapted and successfully integrated into other utiemiary
values for this parameter could be M =5 or M =ahough  paradigms. As mentioned, future work will be foalisen

other values are allowed. For the first implemeatata extending the study of the algorithm performancese other
normalized threshold for the maximum radius of the swarmyg||-known benchmark functions.
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