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Abstract—The management of infrastructure for supporting

. 2 PrivilegedVM VM1

Cloud Computing presents the challenge of automated service
provisioning, which addresses the problem of mapping CRM Application VMp,
high-level requirements expressed in end-user terms to low-level QoS App_SLO —
resources such as CPU, memory, and network bandwidth. o Application
Current infrastructure is supported through virtualization via — fr _mznager P
hypervisors. In this paper, we describe the formal specification ©; rE] helper a |'*"
of a high-level component for enhancing hypervisors. With QO0S CPU [Guest O8] application
this component, applications running in a Virtual Machine manager / [z
can receive a Quality of Service defined by Service Level o | slog Ll virtual ¥ //,[Guest 03]
Objectives. The manager is aware of the application’s needs and C"enpts Network4—
requests the CPU resources through the lifetime of the Virtual [, Host OS
Machine. The implementation of our proposal achieves to manage -
computing-oriented and net-oriented applications. [ Hypervisor ]

Index Terms—Hypervisor, QoS, SLO. [ Hardware ]

. INTRODUCTION Fig. 1: Interactions of the QoS App-SLO manager in a

OWADAYS, virtualization infrastructure is a commonYM-based resource provider

solution for supporting Cloud Computing, Grid, and
High Performance Computing. An important challenge in h ) ¢ th lication’ q q
these infrastructures is the automated service provisioning' "¢ Manager is aware of the application’s needs an

of Virtual Machine (VM) based resource providers for th&€auests the CPU resources through the lifetime of the Virtual
1 achine. The implementation of our proposal achieves to

execution of applications. When we review the literature [1], ) . A o .
some interesting questions arise from end users willing | anage computing-oriented and neF—on‘ented appllcanons, ie.
deploy applications in VM-based resource providers. it meets at least the agreed application requirements, and
— How can we predict (or have some degree of certaint ovides self-management for external modifications in the
that deadline execution time requirements for a given jc%)plication’s SLO (e.g. a user requests more transactions per
: secod (tps)).
will met? . .
be met The proposal relies on the services offered by the

- How can we cqmpute the amount of resources thﬁ‘t ervisor, the host OS, and the low-level component QoS
are needed to increase (or decrease) the number ;
U manager [2] which manages the Sk;.

transactions to a certain required level?

— Moreover, how can we provide the needed resources
and at the same time minimize the degradation of the Il. QOS APP-SLO MANAGER
externally-perceived response times? In this section, we describe a QoS App-SLO manager.

In this paper, we describe the formal specification dfigure 1 shows the interactions of this manager in a

a high-level component for enhancing hypervisors. TheéM-based resource provider. It allows handling the high-level
component is named QoS App-SLO manager and allows emdjuirements of user’s applications, i.e. it runs in the scope of
users to express the application’s requirements in terms ofhe privilegedVM and manages the resources needed by each
Service Level Objective (SLO). guest VM.

With our component, applications running in a virtual Additionaly, the definitions of the proposal are build upon

machine can receive a Quality of Service (QoS) defined Ibyo systems to acquire knowledge about information of each

two types of SLOs (o2, slo3). application;
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December 10, 2012 tion system that allows writing and reading information in
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the metric tps transactions per second and writes The approach for measuring the throughput of a web
the measured metrics through the inter-VM messagirapplication assumes that requests are atomic and represents
system. a unit of work which ends with the successful transfer
of the results. As Web servers are the target application,
for managing the net-oriented applications we propose the
following approach.

The formal specification that we propose has the following Trace the http requests of each VM by inspecting the
features: Application rate (app-rate) guarantees for grantiggnnection states of the incoming HTTP packets. Depending
a requirement expressed in transactions per secgsd of the hypervisor [3], [4], tracing could be done in the
user-perceived service guarantees for providing a SlgivilegedVM or the guest VM. Thus, we can measure the
in (user-perceived) response times, net-rate guarantees rfponse time of each connection and build a distribution array
granting a requirement expressed in requests per segend pitp at every trace period of length,i;, = Cht; — Cht;_;.
and a request admission control for applying a policy in thehis array hasn elements, each element is a counter of

A. Characteristics

incoming requests to meet a SLO. successful (served) requests according to its responsertime
The granularity ofn depends of thet ranges that need to be
B. Definitions grouped. We propose a granularitysef= 9 which is mapped

to the ranges shown in Table I. The metkg,, is the arrival

Definitioq 2'1:_ I'_et ¢ be the set of online guest Virt“alrate observed in the virtual machinen for the net-oriented
machines identifiers and ledApptype,,, be the sequence application.

indexed byp that defines the type of application that is running

in the guest virtual machine so that
TABLE I: SERVICE TIME GROUPS OFHTTP REQUESTS USED

Apptype,, € {computing-orientechet-orientediVom € 9. TO BUILD THE DISTRIBUTION ARRAY.

Definition 2.2: Let slotype,,, be a set that has the type of array position| response ime range
resquested SLOslo, or slog for a givenvm. Let slop be a rt <lps
service level objective of the form "ensure that the application 13&‘;83;’:;:?;28
running in a guest virtual machinen will be able to achieve 10%5 <7 < Tms
an application rate of at least 95% of the target or rps”. Tms < rt < 1025
Let sloz be a service level objective of the form "ensure that 107 2s<rt < 10~ 1s
the application running in a guest virtual machine will be 107 s <rt<1s
able to achieve a % of the served requests with response times 152 é :E 2 }835
below a given threshold expressed in seconds”.dpetsio be
the set of parameters of the requested service level objectives, order to measure the metric mean response time of the

for all managed virtual machines . served requests it makes use of a circular buffé? with a
Inspecting the throughput that was achieved by ea?ﬁ‘story lengthl for each vm so that

computing-oriented application can be done as follows. Definition 2.4: Let CB,,., be the history of response times
Definition 2.3: Let tp8v7n be the throughput achieved byof the lastl! served requests for a g|vemrl Let meanRTvm

Cahy,Cahy—; and let T be the number of composite machinevm so that

transactions measured by the application-helper so that

O | O O | W N | O

1
CBym
T meanRT,,, = @va € 0.
tpSym = ————F.
Povm = Cah, — Cahy 4 Using the distribution arrayhttp the inspection of
throughput achieved by each net-oriented application can be
C. Network-manager done as follows.

With this subsystem we aim to measure the burst behavio&JrDefm'tlon 2.5:Let rps,, Dbe the throughput achieved

of the net-oriented application. Web technologies are based on g the last period,,, and 12 the number of successful

the transport protocols Hypertext Transfer Protocol (HTTI§)OmpleteOI requests measured by théwork-manageso that

and the secure HTTP protocol (HTTPS), both main function R ihtt

is to move data between Web servers and browsers. Despite - Pom.k

the fact that it is a stateless protocol it is howadays the facto k=1

transport protocol for technologies based on web services. TDSum = R )

Common protocols for deployment of web services are SOAP Chty — Chty—q

(Simple Object Access Protocol), REST (RepresentationalFinally, the metrics are advertised through the inter-VM
state transfer), and XML-RPC. messaging system.
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. t—N
D. App-rate metrics collector — 1
pp . . SDvm = N Z SDvm,ia
It is in charge of getting the observed metrics of the i—t
running application. It interacts with the inter virtual machine
messaging system and the network manager. Its functionSig forecastym s = SDtrendym +w@*0ym, ¢ 0<w<2.

to keep a snapshot of the measured metrics for the Iearningl_ ) )
component. he service demand forecasted is a snapshot of the needed

Definition 2.6: Let TPSapp., be the set of measured'®SOUrces for the next controller period. However, we introduce
metrics app-rate expressed in requests/transactions per sedBgdiotion of Number of Rounds To LeaMRT'L. parameter
so that TPSapp, = m(vm) in order to find out a tradeoff between reactiveness and
disturbance. ANRTL = 1 means that th& D forecast,m,
tpsvm  Apptype,,, = computing-oriented will be used at each controller period in order to compute a
m(z) = {rpsum Apptypesm — net-oriented (1) hew CPU requirement for the application, the reactiveness of
the learning phase is high but the accuracy of the forecast is
affected by the disturbances of so frequent changes irithe
(CPU resource). On the contrary, fStRT'L > 1 we introduce
Its function is to compute online parameters that profiles thiee notion of learning phase (or window) which helps in the
current application rate. We use a multi queue system. Eaghoothing of the service demand forecasted and also improves
virtual machine is modeled using Little's law from queueinghe accuracy of computed values.
theory. Definition 2.10: Let NRTL be the length of the controller
By having the CPU consumption of each virtual machingindow needed to learn a smoothed valueSab forecast.
and the application rate we obtain the service dem&fhdas The length of the period of each NRTL window is given
follows by controller period times. Let NRTL be a counter which
Definition 2.7: Let avgmets be a set of mean CPU metricsdecreases at each controller period.
for each virtual machine computed by the QoS CPU managemNow we use an approach to find out the burst behaviour of
during the previous controller period. L&tD,,, be the mean the requests in the net-oriented application. It is proposed to
CPU time spent per transaction/request during the previoyse an array of percentilegrc of p = n — 1 elements (see

E. Learning component

period section II-C) for eachrm with a net-oriented application. Each
SD,,, = avgmetsym element has a circular buffer of lengfiRT L. The position
TPSappum of the element in the array accounts, in the circular buffer, the

In order to obtain the learned service demand we applyPgrcentage of requests that were served below the threshold
forecasting method. First, we obtain a trend of the pasts servftgfined in the position of each element (response times) in the
demands by applying exponential moving average (EMA) [5rray hitp.
which technically can be classified as an Auto-RegressiveDefinition 2.11:Let perc be an array of circular buffers.
Integrated Moving Average ARIMA(0,1,1) model with noEach circular buffer of length NRTL for each virtual machine
constant term [6]. Second, the method enhances the trendvpy So that
measuring the volatility of the sampled metrics using a trading
mechanism with a configurable parameter We propose to j

ut ( i—0 Mtpum,i

TPSvm

apply Bollinger bands [7] in order to capture the burst behavior
of the running applications and improve the reactiveness of the
QoS CPU manager. ) ] ) )

Definition 2.8: Let SDtrend be an Exponential Moving O instance,perc,n, is a circular buffer with the

Average function to compute the trend for the service demaR@rcentage of requests that were successful server below 1

of a givenum so thatS Dtrend,,, ; is defined as follows second, see table I. .
The QoS CPU manager usgsto set the reactiveness of

SDtrendym,s = SDym,t,t =0, the manager in order to climb and achieve the requesigd
B for eachvm. The default value of the parametéris set
SDtrendum,; = axSDom e+ (1—a)SDtrendum,t—1,t > 0. 5 0 though can be dynamically configured by the type of

Definition 2.9: Let N be the length of history needed to@pplication running in the virtual machine, e.g. computing
forecast the next service demand. L&D forecast be a intensive applications have a value of 0. However, net-oriented

forecasting function to compute the next service demand @pplications need mechanisms to detect the behavior of bursty
a givenum so thatSD forecast,m ; is defined as follows applications and configure a properly value ®f Therefore,
we useperc to measure the bursty behavior as follows.
t—

LN Definition 2.12: Let 3 be the degree of burst behaviour
Tomit = | — (SDym.i — SDym)?, detected in the (served) requests of the traced application
N imt running in the virtual machinem so that

> inpercym,j,1 < j < n.

85 Polibits (46) 2012



Fernando Rodriguez-Haro, Felix Freitag, and Leandro Navarro

ac(MHzSLA,9) = 0 can be rejected and the status is

burst... — zn:a _ informed to the QoS App-SLO manager.
B Definition 2.14: Let S, be an array of virtual machines
! ordered by differentiated service. Lethzbe the needed CPU
NRTL in order to achieve a given application rate (i.e. MHz to serve
Tom,j = 1 Z (percym.i — PeTCom)?, the target referencegppslo or A) for a givenvm. Let newQoS
N = be the CPU that is granted by the QoS CPU manager according
, to 49, if is not specified then = 1. Let ¢ be the configurable
Bum = b(burstum)Vom € ¢ iff NRTL = 0. node capacity, and leb be the raw CPU capacity of the

resource provider. Lep the minimum reservation ap for the
guest virtual machines. LeE be the absolute CPU capacity
of the node, i.e. for 4 processags= 4 % 100 = 400. The sets

0.5 0.00<z<0.03
0.6 0.03 <z <0.06

bz) = 0.7 0.06 <z <0.09 (2) appslo andslotype were defined in Def. 2.2. Now, we define
0.8 0.09<z<0.12 negotiateslol as the function that sets the raw CPU (in % of
0.9 0.12<z<0.15 @) for each VM. In other words, aBlo; is computed so that
10 0.15< the running application receivesgos or slos.
E CPU-rate estimator newQoS,, = negotiateslol(mhz(vm),¥)Yom € S, @
When a learning phase ends, thatN6RT'L = 0, this iff NRTL =0
component sets theiew@oS estimated for the running
application. The approach of the process involves asking an negotiateslol(MHzSLA, 9) =
increase or decrease in the amount of assigned resources, MH2zSLA «ac(MHzSLA,V) (%)
which in fact is and admission control procedure. Due that maz( o ¥)
higher decisions (such as migration of VMs) are leave to
the global resource manager, the CPU-rate estimator works & % min <appszom*sp_forecastm,t 1 0)
as follows. _ = o
— It stores the forecasted service demand. if vm € tpsA slotypesm = sloz
— It stores the modification of the QoS.
— It computes and stores the percentage of QoS granted D * min (“ppszo’”"’*ng”ecm”m*t,1.0)
with the current state of the CPU resources. mhz(vm) = . y

— It uses the notion of premium services, via differentiated it vm € 1pS/\ slotypeum = sloz
service, to prioritize the assignment of the CPU
resources. ® x min (A"’"‘*S Diorecostume 1.0)

The CPU-rate estimator computes the needed raw CPU if vm € rps)\ slotypeym = slos
power for all virtual machines with computing-oriented and (6)
net-oriented applications defined in the sgts andrps. The  |n the third case of Equation 6, we have introduced the
needed raw CPU power is transformed into a SLO of tygetion of automatic sizing for net-oriented applications which
slo; and requested via the QoS CPU manager. request anslos. In this case, the requestedos; takes into

Definition 2.13:Let S be the current state (availableaccount the observed arrival rateof each traced net-oriented
resources) of the CPU capacity of the resource provider at timgplication and it increases or decreases its demand according
t. Let ¥ be a parameter required by the end user for the SIt@ the observed behaviour.
which express the degree of tolerable (soft,...,hard) reduction
in the requestedlo;. Let ac an admission control mechanismG. Net-rate estimator

that is defined in the QoS CPU manager as follows: ] o
For net-oriented applications we follow an approach to

implement an admission control mechanism. It is applied at

ac(MH2SLA,9) = the end of a learning phase. Only if the target net-oriented

1 MHzSLA< S N9 =1 3) application has a computing-oriented behaviour it is likely,

MHzSLA*9 < S, N05 <9 <1 applying queueing theory, to find a relation between the
number of requests served and the CPU consumed. However,

net-oriented applications have a burst behaviour with different
This function helps to manage the admission controbsource consumption patterns. Therefore, we propose to use
of new virtual machines and online virtual machines thdhe user-perceived service as a measure of the quality served

request internal updates efo,, i.e. all virtual machines with by the net-oriented application. Even if it can be seen as

Sy
MHzSLA
0 otherwise
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a black-box that ignores the inner bottlenecks which can admission,,, = steadystate(vm)Yom € rps.
cause a bad perceived service, with this approach we aim
to size the resources according to the current configuration
of the net-oriented application and scale up the aggregation [ maz (reqsym, reqadmission,, — marQL)

steadystate(vm) =

of VMs. We assume that a load balancer can manage the if TSLis“ > 0.05

external requests and distribute them to the online virtual Az (8)
machines, thus by aggregating VMs we increase the number o mazQL

of served requests. However, additional inner optimizations in max (reqsvm”eq“dmwswnvm - T)

the configuration of the web application server can be applied otherwise
out of the band and the effect of this optimizations will be The next step is the application of the network

seen as an increase/reduce of the resources assigned. Fir]‘é‘U& admission-control through the network manacer. B
the capacity is granted according to the differentiated service; ) ger. by

Definition 2.15: Let v be the CPU resources, expressed i(r:]or_n_rolling the admis_sion of incpming net packets before
percentage of the full node capacity, that are available for &frnving the_ target ap_phcgnon we aim to ensure a given level O.f
VMs. Let capacit be the granted capacity, expressed i ser-perceived service in the response times. Therefore, with
oS 'Of the vzijrtualy;nn;chine <o that ' is approach we do not only size the resources according to a

s, given external demand but also according to an expected level
capacityym, = n(vm)vom € rps. in the quality of service.

n(vm) = _newQoSum * 7y @ [1l. EVALUATION

SDforecastomt We implement the abovementioned proposal in a Local

Now we compute the admission control parameter for tlResource Manager (LRM) to test the resource management
net packets. We use the metrics of the network manager, bé.computing-oriented and net-oriented applications. In the
the dynamics of the external arrival rate of the net-orientddllowing, we have the characteristics of the QoS App-SLO
application clients and the queue length of the current pendinginager.
requests for each traced net-flow that was observed during the application-aware. It uses inspection of high-level

last controller period. application metrics in order to learn the CPU needed
Definition 2.16: Let perc,,,,¢ be a circular buffer with the (slo1) to achieve app-rate level requirementss( rps).

percentage of requests that were successful server below 1 service negotiation. It acts on behalf of administrators
second. Letsloym,targer the service level objective requested i order to request the newlo; through the QoS CPU

by the user. Lefh;, be the adjustment positive/negative in the  manager interfaces. However, it depends on reservations
number of requests per second admitted to reach the virtual (jeases) to grant or revoke the assigned resources as well
machine. Letregadmission,,, be the required admission a5 policies to detect and limit the misbehavior of virtual
control parameter that limits the amount of accepted requests. machines. If a newslo; can not be fully granted then

it is informed via a VMstate information system. The

abovecapacityym = Apm — TDSvm, VM-state agent is in charge of informing about this issue
NRTL to external agents so that decisions about the migration of
Diimg  PETCum6 - : -
sloym, jevel = NRTL , virtual machines can be managed by, for instance, global
resource managers.
A = (510um tevel — SLOvm target) * abovecapacityym, — Learning. It acquires online knowledge about_ the
o ‘ consumed resources. It also constructs a CPU profile for
reqadmissiony,m = capacityym + Aym. the resource consumed by the running application.

Next step is to adjust the admission control according to theWWe set up three experiments in two physical machines with
number Of Wamng requests in the system_ Fedora Linux and Xen interconnected through a g|gab|t SWitCh,

Definition 2.17: Let QL be an array of circular buffers. both with Intel Quad CPU Q6700 with 8GB of memory and
Each circular buffer for each virtual machine: has a length & 750GB SATA Disk.
of NRTL elements and it stores the observed queue length
of waiting/pending requests inside the system during the Igst Evaluation of computing-oriented applications

cont_roller period. Let maxQL a sort—'term memory value of the The experimental setup test the following festures:
maximum queue length observed in the NRTL samples. Let

admission,,, be therps that will be admitted in the next
learning phase.

— Create four virtual machines which request, as a bootstrap
mechanism, different CPU-rate SLO guarantees.

— Deploy a math-application in all VMs.

— Handle virtual machines which request different app-rate

put(ObservedQLym.¢) iINQLypm, i, YVom € rps, guarantees with fixed differentiated services.
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Fig. 2: Application throughput relative to agreed SLO. An M pc3
user’s view of the application performance. e

— Provide dynamic management by responding to external
agents that change the initial VM's differentiated service
(pc3 and pc4).

— Provide dynamic management by responding to external
agents that change the initial VM’s app-rate. ‘ o

The agreed app-rate requirement is managed according to drefer)

each requested parameter. The initial CPU-rate parameter is an

initial guess of the needed resources though it can be obtained (b) Web image server in pc3

from previous executions. The learning procedure obtains apig. 3: Distribution vector of served requests. Http packets are
requests new CPU-rates which are managed accordingcthtrolled.

their respective differentiated service. Applications can benefit

from having hard and soft guarantees about the expected

performance (tps). Additionally, each user has a real viedith a response time below one second. The same behaviour
of its application throughput. Figure 2 shows results for thi§ observed for the web application server in Figure 3(a).
experiment. The speedup graph represents the transactions

per second relative to its agreed app-rate. From the reswdts Automatic sizing

for the SLO type 2 {lo;) we obtained the following mean We test in this experiment a net-oriented application, i.e.

relative errors: pcl -0.01, pc2 -0.01, pc3 -0.07, and pc4 -0.03yirya) machine with the web application server described
Therefore, we can observe that each VM achieves its ag“?ﬁdthe previous experiment. The goal is to evaluate that

SLO, and additionally we can observe that VMs with premiur{he QoS App-SLO manager is able to find out the VM's
services receive their corresponding aggregated resources, fill§rce configuration parameters so that the application, at

Cumulative probability
coooooooo
[ SN SO NE T =t ==

they achieve a better throughput. any moment, can reach its maximum throughput and at the
) _ o same time meet the user’s perceived service-time requirements
B. Evaluation of net-oriented applications slos.

We setup a web application server that renders 3DFirst, as a baseline experiment, we evaluate the web
images and a web image server in two VMs, and fapplication server without our QoS App-SLO manager, for
http benchmarking we use Siege [8]. Figure 3 shows tligis experiment we launch the benchmarking tool Siege with
results of this experiment. In this experiment we see tla incremental load in the number of simulated web clients
controller changing the CPU resources of two web-basé? 8,32,128,256). Each incremental load has a think-time equal
services which have different resource intensive requiremerits. zero and a duration of 60secs. The results show the
Despite that pc3's workload is network intensive with lovsaturation points which can be observed in metrics CPU
CPU consumption and pc2’s workload is CPU intensive witbonsumption and successful requests. The surges correspond
low network consumption, the controller is able to manage the start and end times of the load generated by the
both type of applications. At the same time, the netwotienchmarking tool, each one with a duration of 60secs.

QoS policy adjusts the acceptance in the number of allowedThe maximum transaction rate is achieved with 8 clients
connections that can reach each VM. starting at second 61 and the saturation point of response times

A closer look in Figure 3(b) shows that after time 95s morat second 190 with 32 clients, which can be seen more clearly
than 90% of the requests are served by the web image selvefFigure 4(b) and Figure 4(a) respectively. Therefore, the
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mean response times perceived by remote users start climbing
at second 190.

In the second part of this experiment we enabled the

IV. RELATED WORK

QoS App-SLO manager in order to evaluate its automaticDongyan Xu et al. [9], [10] identified the following

sizing capability. The workload used in this experiment hagajienges that arise in realizing the vision of amtonomic
an incremental/decremental traffic pattern with the followingi.tyal environment adaptationin a multi-domain share

number of remote clients: 2,8,32,128,256,128,32,8,2; each Selastructure:

of clients has a duration of 60secs giving an experiment of
length 540secs.

The results can be seen in Figure 5 and Figure 6. Figure 5(a)
shows that automatic sizing allows requesting CPU resources
taking into account the dynamics of the observed requests.
Therefore, it is achieved that the resources assigned to the VM
can grow or shrink by tracing platform-independent metrics
(http requests).

We achieve to trace accuracy http metrics that allow us to
keep track of the pending requests in the system. Figure 6(b)
shows the queue length of the mean pending requests observeg
during the last controller period.

We observe that, when managed, the queue of pending
requests is less than when there is not admission control.
Finally, the admission control applies the requested policy
in order to meet theslos. Figure 6(a) compares the mean
response times of the web application server as seen by the
end-user. When managed, the response times are kept belo®)
1 second.

1)

89

Live adaptation mechanismsThe need to support
application-transparent adaptation of Virtual Distributed
Enviroments (VDESs). VMs supports runtime resource
re-allocation and VM migration within LANs but, a
multi-domain infrastructure needs live migration across
networks domains without pausing or checkpointing the
application. The solution has to meet two requirements:
VMs need to retain the same IP address and remain
connected to each other and migration mechanism
cannot relay on NFS.

Logistic service for VM migration Consisting of
distributed depots A depot is part of a infrastructure
domain, in it, VM images are assembled using either
local or transfered “parts”. Optimization problem: how
to compute a distributed schedule for VM parts delivery
and assembly so that all VMs will be ready in their
destination hosts no later than a certain deadline?.
Adaptation decision makinglechanisms for monitor-
ing, controling, and adjusting resource allocations and
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6 S S p— The HPC research community is particularly interested in
5 e using VMs. However, the main concerns widely discussed
are the overhead caused by the virtualization layer,
4 and the security [12], [13], [14]. On the other hand,
large-scale scenarios such as HPC will benefit from fine-grain
management tools to assign CPU resources.
L The work of Kephartet al. [15] discusses the importance
S of self-management systems in the context of autonomic
AM’?\A ) o computing. These systems accept high-level objectives from
60 120 180 240 300 360 420 480 administrators and apply self management policies.

time(sec) Policy-based QoS control and learning have been proposed
() Observed end-user response times in non-VM contexts. Solutions based on QoS guarantees
have been discussed using control theory [16], [17], online

Mean response time (secs)
w

G 90 I — analytic performance models [18], regression-based analytic
g 32 Pemandged 200 e models [19], and statistical inference [20]. Some applications
2 o PCExen SMoOMh (bezier) - of these approaches are dynamic provisioning [21] and energy
§ 50 conservation [22]. With our proposal, we aim to provide a
g 10 framework to meet the low-level VM requirements for the
% 30 dynamic workload of the hosted application.
© 20 \ 4 h
g 12 M‘me L\w . VU[L V. CONCLUSION

60 120 180 240 300 360 420 480 We have presented the conceptual design and theoretical

time(sec) foundation of a Quality of Service App-SLO manager which
(b) Observed rps in-process is in charge of managing the application goals.

Fig. 6: Comparing traced metrics of an application web serverThe proposal has a set of definitions that captures the
properties for the management of two types of SL@&s;

expressed in the app-rate metric transactions (or requests)

locations of VDEs. The identified problems are relate@er second, andlos expressed in the web metric response
to find out when an application needs more resourcéges. Additionally, the manager supports an admission control
to perform well (or better), how to conciliate whenmechanism for the management of net-oriented applications.
adaptation affects the virtual environments sharing the Through experiments, we have presented results for
same resources?, and migration issues, i.e. decide whilifierent types of workloads: a math parallel application and a
virtual environment and where should it go by solvingveb-based application. We evaluated the management of two
tradeoffs between resource availability and overhead.service level objectives: application rate, and response times.
4) Adaptation shepherdinga intelligent component that The results show that the component is able to concurrently
takes decisions (‘Yjustify and approve”) regardingnanage mixed workloads with their specific application’s
adaptation requests, as a mechanism for preventing gfgectives at different levels with mixed workloads.
abuse of adaptations. Future work includes extending the capabilities of the
The factors that drive the adaptation OfDEs are: proposal to support distributed applications in Cloud

availability of infrastructure resources that are dynamic arf®®mPuting environments.
heterogeneous, and (2) the changing resources needs of the
applications that run in a virtual environments. ACKNOWLEDGMENT

Paul Ruthet al. [11] presents VioCluster, virtualization this work is supported in part by the Computer

for dynamic computational domains. The problem is thalhitecture Department of the Technical University of
each computational domain (e.g. cluster) faces the conflighiaionia, the Ministry of Education of Mexico, the program
between dynamic workload and static capacity. An OpportuniBRoMEP of the Public Education Secretary under Contract

to arises to resolve this conflict by dynamically adaptinBROMEP/103.5/10/7336, and the University of Colima.
the capacity of clusters by borrowing idle machines of

peer domains. Authors introduce the concept \oftual
computation domaingor “virtual domain$ for short) which
allow a cluster to dynamically grow and shrink based orji] L. Cherkasova, D. Gupta, and A. Vahdat, “When virtual is harder
resource demand. VioCluster uses both machine and network than real: Resource allocation challenges in virtual machine based IT
irtualizati techni to loaicall hi bet environments,” Hewlett Packard Laboratories, Tech. Rep. HPL-2007-25,
virtualization techniques to logically move machines DetWeen e 20 2007. [Online]. Available: http:/www.hpl.hp.com/techreports/

virtual domains. 2007/HPL-2007-25.pdf

REFERENCES

Polibits (46) 2012 90



(2]

(3]

(4]
(5]
(6]
(7]
(8]
(9]

[10]

[11]

[12]

(23]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

F. Rodiguez-Haro, F. Freitag, and L. Navarro, “Enhancing
virtual environments with gos aware resource management,”
Annals of Telecommunications vol. 64, pp. 289-303, 2009,
10.1007/s12243-009-0106-1. [Online]. Available: http://dx.doi.org/10.
1007/s12243-009-0106-1

VMWare, “Understanding Full Virtualization, Paravirtualization, and
Hardware Assist. Whitepaper,” 2007, http://www.vmware.com/files/pdf/
VMware_paravirtualization.pdf.

M. MSDN, “Hyper-V Architecture,” 2008, http://msdn.microsoft.com/
en-us/library/cc768520.aspx.

“NIST/SEMATECH e-handbook of statistical methods,” 2006, url-
http://www.itl.nist.gov/div898/handbook/.

R. F. Nau, “Introduction to ARIMA: nonseasonal models,” 2005.
[Online]. Available: http://www.duke.edetknau/411arim.htm

J. Bollinger, “Bollinger bands,” 2012, http://fen.wikipedia.org/wiki/
Bollinger_bands.

Siege, “An http regression testing and benchmarking utility,” 2012.
[Online]. Available: http://www.joedog.org/JoeDog/Siege

D. Xu, P. Ruth, J. Rhee, R. Kennell, and S. Goasguen, “Short
paper: Autonomic adaptation of virtual distributed environments in a
multi-domain infrastructure,” in5th IEEE International Symposium on
High Performance Distributed Computing (HPDC'Q&une 2006, pp.
317-320.

P. Ruth, J. Rhee, D. Xu, R. Kennell, and S. Goasguen, “Autonomic
live adaptation of virtual computational environments in a multi-domain
infrastructure,” in IEEE International Conference on Autonomic
Computing, 2006. ICAC 062006, pp. 5-14.

P. Ruth, P. Mcgachey, and D. Xu, “Viocluster: Virtualization for
dynamic computational domain$Zfoceedings of the IEEE International
Conference on Cluster Computing (Cluster'03p05.

L. Youseff, R. Wolski, B. C. Gorda, and C. Krintz, “Paravirtualization
for hpc systems.” inSPA Workshops2006, pp. 474-486.

M. F. Mergen, V. Uhlig, O. Krieger, and J. Xenidis, “Virtualization for
high-performance computing3IGOPS Oper. Syst. Revol. 40, no. 2,

pp. 8-11, 2006.

W. Huang, J. Liu, B. Abali, and D. K. Panda, “A case for high
performance computing with virtual machines,”l®S '06: Proceedings

of the 20th annual international conference on Supercomputimégew
York, NY, USA: ACM Press, 2006, pp. 125-134.

J. Kephart and D. Chess, “The vision of autonomic computing,”
Computey vol. 36, no. 1, pp. 41-50, 2003.

T. Abdelzaher, J. Stankovic, C. Lu, R. Zhang, Y. T. A. Lu, J. Stankovic,
C. Lu, R. Zhang, and Y. Lu, “Feedback performance control in software
services,”Control Systems Magazine, IEE#ol. 23, no. 3, pp. 74-90,
2003.

J. L. Hellerstein, “Challenges in control engineering of computing
systems,” IBM Research Division, Thomas J. Watson Research Center,
P.O. Box 704, Research Report RC23159 (W0309-091), sep 2003.

D. A. Menasé, M. N. Bennani, and H. Ruan, “On the use of online
analytic performance models in self-managing and self-organizing
computer systems,” inSelf-star Properties in Complex Information
Systems ser. Lecture Notes in Computer Scieno®, Babaoglu,

M. Jelasity, A. Montresor, C. Fetzer, S. Leonardi, A. P. A. van Moorsel,
and M. van Steen, Eds., vol. 3460. Springer, 2005, pp. 128-142.
[Online]. Available: http://dx.doi.org/10.1007/11428589

Q. Zhang, L. Cherkasova, and E. Smirni, “A regression-based analytic
model for dynamic resource provisioning of multi-tier applications,”
in ICAC '07: Proceedings of the Fourth International Conference on
Autonomic Computing IEEE Computer Society, 2007, p. 27.

L. Bertini, J. C. B. Leite, and D. Mosse, “Statistical qos guarantee and
energy-efficiency in web server clusters,” HCRTS '07: Proceedings

of the 19th Euromicro Conference on Real-Time SysteM&shington,
DC, USA: IEEE Computer Society, 2007, pp. 83-92.

B. Urgaonkar and A. Chandra, “Dynamic provisioning of multi-tier
internet applications,” inICAC '05: Proceedings of the Second
International Conference on Automatic ComputingNVashington, DC,
USA: IEEE Computer Society, 2005, pp. 217-228.

C.-H. Tsai, K. G. Shin, J. Reumann, and S. Singhal, “Online web cluster
capacity estimation and its application to energy conservati®iEE
Transactions on Parallel and Distributed Systerasl. 18, no. 7, pp.
932-945, 2007.

91

A QoS App-SLO Manager for Virtualized Infrastructure

Polibits (46) 2012



