Abstract—Near-duplicate detection is important when dealing with large, noisy databases in data mining tasks. In this paper, we present the results of applying the Rank distance and the Smith-Waterman distance, along with more popular string similarity measures such as the Levenshtein distance, together with a disjoint set data structure, for the problem of near-duplicate detection.

Index Terms—Near-duplicate detection, string similarity measures, database, data mining.

I. INTRODUCTION

A. Motivation

The concept of near-duplicates belongs to the larger class of problems known as knowledge discovery and data mining, that is identifying consistent patterns in large scale data bases of any nature. Any two chunks of text that have possibly different syntactic structure, but identical or very similar semantics, are said to be near duplicates. During the last decade, largely due to low cost storage capacity, the volume of stored data increased at amassing rates; thus, the size of useful and available datasets for almost any task has become very large, prompting the need of scalable methods. Many datasets are noisy, in the very specific sense of having redundant data in the form of identical or nearly identical entries. In an interview for The Metropolitan Corporate Counsel (see http://www.metrocorpcounsel.com/articles/7757/near-duplicates-elephant-document-review-room), Warwick Sharp, vice-president of Equivio Ltd., a company offering information on retrieval services to law firms to huge legal document databases, noted that 20 to 30 percent of data they work with are actually near-duplicates, and this is after identical duplicate elimination. The most extreme case they handled was made up of 45% near-duplicates. Today it is estimated that around 7% of websites are approximately duplicates of one another, and their number is growing rapidly. On the one hand, near-duplicates have the effect of artificially enlarging the dataset and therefore slowing down any processing; on the other hand, the small variation between them can contain additional information so that, by merging them, we obtain an entry with more information than any of the original near-duplicates on their own. Therefore, the key problems regarding near-duplicates are identification (detection) and aggregation. It is probable that different methods are needed to treat different types of data: for example, small texts, large texts, or images.

The work [1] identified the following domains that can benefit from efficient near-duplicate detection and aggregation methods.

- Web mirrors identification
- Clustering for related documents
- Data extraction
- Plagiarism detection
- Spam detection
- Duplicates in domain-specific corpora

These are by no means exhaustive; the problem finds applications in countless fields.

When looking for duplicates in domain-specific corpora, the goal is to identify near-duplicates arising out of revisions, modifications, copying or merger of documents, etc. Example datasets for such an application are TREC benchmarks, Reuters news articles, and Citeseer data (duplicate scientific article citations). See [1, Conrad and Schriber (22)] for a case-study involving legal documents at a law firm. [1, Manber (42)] initiated an investigation into identification of similar files in a file system, with applications in saving disk space. [1, Review (2009)] identifies a few sample situations when we might deem two text documents as being duplicates of each other:

- Files with a few different words - widespread form of near-duplicates
- Files with the same content but different formatting - for instance, the documents might contain the same text, but dissimilar fonts, bold type or italics
- Files with the same content but different file type - for instance, Microsoft Word and PDF versions of the same file.

For short texts such as text messages, [2] indicated the fundamental differences that must be taken into account when doing term weighting, for example. For short messages, larger differences need to be tolerated, and as much semantic information needs to be taken into account. This technique is also relevant for title matching or for comparing short fields from a database. The literature contains various methods, each more suited for specific applications. Depending on the domain and of the specific goals, certain methods are better than others.

A new algorithm could be tailored to a particular task, improving in the measures that have more weight for that particular application, while possibly scoring less from other
points of view: for example, a duplicate detection algorithm for handheld devices is subject to heavy computational and memory limits, so some accuracy needs to be traded. Alternatively, an innovative and general algorithm could improve the state of the art performance in multiple applications, without trading off any resources.

B. State of the art

The state of the art methods in near-duplicate detection cover a broad spectrum of applications and are based sometimes on radically different background techniques. We will first review the web crawling and mining domain and its particular applications. [1] made two research contributions in developing a near-duplicate detection system intended for a multi-billion page repository. Initially, they demonstrated the appropriateness of Charikar’s fingerprinting technique [3] for the objective. Locality-sensitive hashing methods have been used in the context of Map-Reduce systems in order to efficiently do approximate nearest neighbour searches in parallel, on big data: this method is taught at Stanford in their class CS246: Mining Massive Data Sets. The major advantage of it is the speed and scalability, while the drawback of this method is the lack of room for tweaking. [4] from Google developed a two-step duplicate identification method that first finds candidates using Charikar’s fingerprinting method, followed by refining the query response using similarity measures on the tractable subsets identified by the first step. (US Pat. 8015162). [5] proposed a novel algorithm called I-Match, which they have shown to perform well on multiple datasets, differing in size, document length and degree of duplication. This is step forward, but its drawbacks are that it relies on term frequencies, which can mislead when compared to a ranking-based approach. Secondly, it requires a lexicon, and therefore domain knowledge and language assumptions. For this reason, the system cannot be used out of the box for different problems, but its performance might be better after appropriate tweaking. Another key discussion in duplicate identification is whether to assume the transitivity of the duplicate relation. Granted, this reduces the number of total comparisons needing to be made. Hashing-based detectors use this fact in order to say that objects assigned to the same bucket are duplicates. In practice, however, because we are facing noisy near duplicates, such a procedure can propagate and augment errors.

On the problem of near-duplicate image detection, [6] applied compact data structure to region-based image retrieval using EMD (Earth Mover’s Distance) and compared their results positively with previous systems. [7] have applied the neuroscience-inspired Visual Attention Similarity Measure in order to give more weight to regions of interest. A previous, but nonetheless efficient system was given by Chum et al., using locality-sensitive hashing on local descriptors (SIFT), with tf-idf-like weighting schemes, which suggests a unified approach based on deep learning, that would work on text and images. An extension of this method is used by Gao and Tang, wherein they initially compare a subset of local features from subsets of two images, followed by crossed near-neighbour searches which should succeed if the images are near-duplicates (US Pat. App 12576236). Furthermore, recent developments in dictionary learning gave way to powerful applications in image classification, denoising, inpainting and object recognition (the Willow team at INRIA [8]). These methods can prove very useful as feature learners for near-duplicate image detection and we intend to leverage them in our system. Andrew Ng and his team at Stanford have successfully applied this kind of unsupervised feature learning and sparse coding, traditionally used in image processing for text processing tasks [9], which encourages the idea that the features for our system can be learned automatically from domain specific data, and thus work efficiently on different types of data.

C. Our approach

As far as we are aware, there is no research combining deep / unsupervised feature learning with near-duplicate identification and detection. After building a tractable feature-representation of the data, any duplicate detection algorithm needs a notion of similarity. At the moment we stuck with text features, but tried out different metrics. There is a number of metrics used to define similarity [10], around which duplicate detection algorithms are built.

Identification of an adequate metric for determining the similarity of two objects is an intensely studied problem in linguistic and in social sciences. The numerous possible applications (from establishing text paternity, measuring the similarity between languages, text categorization [11]) place this problem in the top of open problems in domains like computational linguistics.

This paper focuses on finding duplicates represented as textual strings. The similarity between two strings is generally measured by Levenshtein (edit) distance or variants. In this paper we use other two distances (Rank distance and Smith-Waterman distance) and compare them. We will introduce them in the following part, along with the union-find disjoint set data structure used to manage the data and optimize the number of comparisons.

Section 3 is dedicated to experimental results, and the final section presents our conclusions and our intended future work.

II. Preliminaries

A. Rank distance

The rank-distance metric was introduced by Dinu in [12] and was successful used in various domains as natural languages similarities, authorship identification, text categorization, bioinformatics, determining user influence [13], etc. To measure rank distance between two strings, we use the following strategy: we scan (from left to right) both

\[\text{Rank Distance} = \text{sum of differences} \]

1http://cs246.stanford.edu
strings and for each letter from the first string we count the
number of elements between its position in first string and the
position of its first occurrence in the second string. Finally, we
sum all these scores and obtain the rank distance. Clearly, the
rank distance gives a score zero only to letters which are in
the same position in both strings, as Hamming distance does
(recall that Hamming distance is the number of positions
where two strings of the same length differ). On the other
hand, an important aspect is that the reduced sensitivity of
the rank distance w.r.t. to deletions and insertions is of paramount
importance, since it allows us to make use of ad hoc extensions to
arbitrary strings, such as do not affect its low computational
complexity.

When rank distance is restricted to permutations (or full
rankings), it is an ordinal distance tightly related to the
so-called Spearman’s footrule.

Let us go back to strings. Let us choose a finite alphabet,
say \{A, C, G, T\} as relevant for DNA strings, and two strings
on that alphabet, which for the moment will be constrained
to be a permutation of each other. E.g. take the two strings
of length 6, AACGTT and CTGATA. To compute rank
distance, we proceed as follows: number the occurrences of
repeated letters in increasing order to obtain \(A_1, A_2, C_1, C_2, T_1, T_2
\) and \(C_1, T_1, G_1, A_1, T_2, A_2\). Now, proceed as follows: in the first
second sequence \(A_1\) is in position 1, while it is in position 4 in
the second sequence, and so the difference is 3; compute the
difference in positions for all letters and sum them. In this case
the differences are 3, 4, 2, 1, 3, 1 and so the distance is 14.
Even if the computation of the rank distance as based directly
on its definition may appear to be quadratic, two algorithms
which take it back to linear complexity are presented in [14].

Let \(u = x_1x_2 \ldots x_n\) and \(v = y_1y_2 \ldots y_m\) be two strings
of lengths \(n\) and \(m\), respectively. For an element \(x_i \in u\) we
define its order or rank by \(\text{ord}(x_i | u) = i\): we stress that the
rank of \(x_i\) is its position in the string, counted from the left
to the right, after indexing, so that for example the second \(T
\) in the string \(CTGATA\) has rank 5.

Note that some (indexed) occurrences appear in both strings,
while some other are unmatched, i.e. they appear only in one
of the two strings. In definition 1 the last two summations
refer to these unmatched occurrences. More precisely, the first
summation on \(x \in u \cap v\) refers to occurrences \(x\) which are
common to both strings \(u\) and \(v\), the second summation on
\(x \in u \setminus v\) refers to occurrences \(x\) which appear in \(u\) but not in
\(v\), while the third summation on \(x \in v \setminus u\) refers to occurrences \(x\) which appear in \(v\) but not in \(u\).

Definition 1. The rank distance between two strings \(u\) and \(v\)
is given by:

\[
\Delta(u, v) = \sum_{x \in u \cap v} |\text{ord}(x | u) - \text{ord}(x | v)| + \sum_{x \in u \setminus v} \text{ord}(x | u)
+ \sum_{x \in v \setminus u} \text{ord}(x | v).
\]

Example 1. Let \(w_1 = abbh\) and \(w_2 = abbbac\) be two strings.
Their corresponding indexed strings will be: \(\overline{w_1} = a_1b_1b_2a_2b_3\)
and \(\overline{w_2} = a_1b_1b_2b_3a_2c_1\), respectively. So, \(\Delta(w_1, w_2) = 8\)

Remark 1. The ad hoc nature of the rank distance resides
in the last two summations in (1), where one compensates for
unmatched letters, i.e. indexed letters which appear only in
one of the two strings.

B. Smith-Waterman Distance

The Smith-Waterman algorithm was introduced in [15],
being a variation of Needleman-Wunsch algorithm. Since
it is a dynamic programming algorithm, it has the desirable
property that it is guaranteed to find the optimal local
alignment with respect to the scoring system being used
(which includes the substitution matrix and the gap-scoring
scheme). The main difference to the Needleman-Wunsch
algorithm is that negative scoring matrix cells are set to zero,
which renders the (thus positively scoring) local alignments
visible. Backtracking starts at the highest scoring matrix cell
and proceeds until a cell with score zero is encountered,
yielding the highest scoring local alignment.

For this application, it is not necessary to build string
alignment seeing as we are only interested in the final score,
so we will exclude this portion for minimizing the execution
time. We considered delta = 1 (the cost value for a gap),
the matched score = 2 and the unmatched score = -1.

C. Union-Find Algorithm

Under the assumption that the is-a-duplicate-of relation
is transitive, by building the similarity graph (thresholded
according to table I), the problem of near-duplicate detection
amounts to finding the connected components of the resulting
graph. This way we can avoid unnecessary comparisons
between nodes that are already connected, and reduce
computations for a memory cost.

The Union-Find structure was proposed for the task of
finding and storing connected components in a graph, for the
specific task of near-duplicate entry detection, in [16]. This
method is based on disjoint sets with a distinguished item
in each, called the representative. An implementation of this
well-known data structure was used in our experiment.

III. EXPERIMENTAL RESULTS

A. Datasets

In this section we will test the near-duplicate text document
detection algorithms discussed above on two data bases:
one representing a collection of IT products, and the other
containing bibliographic entries.

The first database was put together from different online
sources to which near duplicates (containing noise in
We sought out to investigate the problem of recognizing near duplicates by employing two basic tools: the Union-Find algorithm of grouping data efficiently and the algorithms proposed above. We also looked at the efficiency and the correctness of these algorithms. In what follows we will present the algorithms and the results.

B. Results

The distribution for the duplicates in the artificially distorted database is shown in table II. The results of the algorithms on the artificial database are displayed in figures 1 and 2 while the results on the real database are shown in figure 3. The figures are distribution plots, the y-value at the position \(x = k, k \in \{1, 2, \ldots\} \) showing the number of documents that can be captured in groups of \(k \). In other words, for \(k = 1 \) it shows the number of documents

TABLE I

<table>
<thead>
<tr>
<th>Metric</th>
<th>Perfect matching</th>
<th>Near matching</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rank distance</td>
<td>(d = 0)</td>
<td>(d \leq \frac{1}{n_a n_b})</td>
</tr>
<tr>
<td>Smith-Waterman</td>
<td>(d = 2 \max(n_a, n_b))</td>
<td>(d \geq \min(n_a, n_b))</td>
</tr>
<tr>
<td>Levenshtein</td>
<td>(d = 0)</td>
<td>(d \leq \frac{\max(n_a, n_b)}{n_a n_b})</td>
</tr>
<tr>
<td>Similar-text</td>
<td>(p = 100%)</td>
<td>(p \geq 50%)</td>
</tr>
</tbody>
</table>

TABLE II

<table>
<thead>
<tr>
<th>Group size</th>
<th>Groups number</th>
<th>Input number</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1720</td>
<td>1720</td>
<td>62.77%</td>
</tr>
<tr>
<td>2</td>
<td>274</td>
<td>548</td>
<td>20.00%</td>
</tr>
<tr>
<td>3</td>
<td>96</td>
<td>288</td>
<td>10.51%</td>
</tr>
<tr>
<td>4</td>
<td>26</td>
<td>104</td>
<td>3.79%</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>80</td>
<td>2.91%</td>
</tr>
<tr>
<td>Total</td>
<td>2132</td>
<td>2740</td>
<td>100%</td>
</tr>
</tbody>
</table>

“Planning and Scheduling” category, leaving only 3436 entries such as

A sample duplicate entry of this would be

We sought out to investigate the problem of recognizing near duplicates by employing two basic tools: the Union-Find algorithm of grouping data efficiently and the algorithms proposed above. We also looked at the efficiency and the correctness of these algorithms. In what follows we will present the algorithms and the results.

Fig. 1. Results of the first two algorithms on the artificially distorted database, along with the ground truth.

Fig. 2. Results of all similarity algorithms on the artificially distorted database.

Fig. 3. Results of all similarity algorithms on the bibliography database.
that the algorithm thinks have no duplicates, for \(k = 2 \) it
shows the documents that can be grouped in duplicate pairs,
while for \(k = 3 \) they can be grouped in triples. Note that the
points should add up to the total size of the database.

The similar_text function used for comparison is the text
similarity algorithm from [18], as implemented in the PHP
programming language’s standard library. It is included as
reference because of its accessibility, due to this fact.

In the case of the artificially generated noisy database,
we have access to the ground truth. From 1 we can see
that the results found by Rank distance are closer to the
real distribution of duplicates than the ones found by the
Smith-Waterman distance.

For the bibliographic entry database, we assume that the
ground truth probability of duplication is lower than in the
artificial case. No algorithm found more than 3 duplicate
entries for the same information. However under visual
inspection, the identified duplicates look correct, confirming
the precision of the methods. The Rank distance again seems
to have a slower decay rate than the other methods, which can
be interpreted as higher recall in the tail of the distribution,
assuming a fixed precision.

IV. CONCLUSIONS

Our methods for verifying existence of approximate
duplicates exhibit improvement over the previous work in
this field. The use of the Union- Find algorithm for grouping
the entries significantly reduces the number of comparisons,
hightening the efficiency of the general algorithm and its run

Although this relies on the existence of transitivity for
the similarity relation, we have seen that no entries were lost
and no errors occured in the grouping of objects.

Until now, the majority of studies on the subject of duplicate
detection were based on classic distances, such as Hamming
or Levenshtein, yet the results were not always correct.
The use of the Smith-Waterman algorithm for strings of
characters representing words may seem uncertain, taking into
consideration that DNA chains are not in the same domain as
the one choosen here, yet the results of our experiments show
a good performance, an excellent precision and an runtime
comparable with classic metrics. Rank distance is usually used
for computing distance between ranks, but its adaptation to
character strings proved to be fast andqnd precise. We note that there are yet many other metrics and algorithms, which may
at first seem unsuitable for a certain problem, but through
proper study may prove to be a new solution for a classical
problem, possibly even better, faster, and more precise. In our
case, the Rank algorithm proved to be more precise than the

Smith-Waterman algorithm, being the one closest to the real
situation of the duplicates in our datasets.

As future work, we plan to extend these methods in such
a way as to minimize the number of comparisons needed,
using fingerprinting techniques, as well as to extend them in
an unified manner for different data types (images, long text
fields, etc.)

V. ACKNOWLEDGEMENTS

All authors contributed equally to the work presented in
this paper. The research of Liviu P. Dinu was supported by
the CNCS, IDEI - PCE project 311/2011, “The Structure and
Interpretation of the Romanian Nominal Phrase in Discourse
Representation Theory: the Determiners.”

REFERENCES

for web crawling,” in Proceedings of the 16th international
conference on World Wide Web, ser. WWW ’07, New York,
//doi.acm.org/10.1145/1245272.1245292

algorithms,” in Proceedings of the thirty-fourth annual ACM symposium
on Theory of computing, ser. STOC ’02. New York, NY, USA: ACM,
1145/509097.509665

“Collection statistics for fast duplicate document detection,” ACM
http://doi.acm.org/10.1145/506309.506311

data structures,” in Proceedings of the thirteenth ACM international
conference on Information and knowledge management, ser. CIKM ’04.
http://doi.acm.org/10.1145/1031171.1031213

matching,” in Proceedings of the 3rd European Conference on Visual

learning for sparse coding,” in Proceedings of the 26th Annual
International Conference on Machine Learning, ser. ICML ’09.
http://doi.acm.org/10.1145/1553374.1553463

[9] A. Maas and A. Ng, “A probabilistic model for semantic word vectors,”
in NIPS Workshop on Deep Learning and Unsupervised Feature
Learning, 2010.

combining rule for text categorization,” in Proceedings of CICLing,

different constitutive elements,” Fundamenta Informaticae, vol. 55,

social network,” in Proc. IEEE Int. Conf. on Intelligence and Security
Informatics, 2010 (IIS ’10), May 2010.

subsequences,” Journal of Molecular Biology, vol. 147, pp. 195–197,
1981.

[18] I. Oliver, Programming classics - implementing the world’s best