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Abstract—A parametric method to carry out fringe pattern
demodulation by means of a particle swarm optimization is
presented. The phase is approximated by the parametric
estimation of an nth-grade polynomial so that no further
unwrapping is required. A particle swarm is used to optimize the
input parameters of the function that estimates the phase. A
fitness function is established to evaluate the particles, which
considers: (a) the closeness between the observed fringes and the
recovered fringes, (b) the phase smoothness and c) the prior
knowledge of the object, such as its shape and size. The swarm of
particles evolves until a fitness average threshold is obtained. We
demonstrate that the method is able to successfully demodulate
fringe patterns and even a one-image closed-fringe pattern.

Index Terms—Phase retrieval;
metrology; evolutionary technique.

fringe analysis; optical

1. INTRODUCTION

NTERFEROMETRY is an non-destructive optical

technique: It is used to measure physical variables (stress,
temperature, acceleration, curvature, and so on), and this with
a high degree of resolution, as it follows from the wavelength
magnitude used by the light [1]. A typical interferometer splits
a laser beam using a beam divisor. Beam A is called reference,
and it is projected directly onto a film or a CCD camera using
mirrors or optical fiber; beam B interacts with the physical
phenomenon to be measured. The interaction modifies the
optic path of beam B; which is then projected onto the same
film or CCD camera as beam A. A diagram of the Michelson
interferometer is shown in Fig. 1, and the basic operation of
the interferometer is as follows. Light from a light source is
split into two parts, with one part of the light travelling a
different path length than the other. After traversing these
different path lengths, the two parts of the light beam are
brought together to interfere with each other and the
interference pattern can be seen on a screen.

In optical metrology, it is well known that in a fringe pattern
can be represented through total irradiance, using the
following mathematical expression:

I(x,y)=a(x,y)+b(x,y)cos[¢(x,y)], )
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where x,y are integer values representing coordinates of the
pixel location in the fringe image, a(x,y) is the background
illumination, b(x,y) is the amplitude modulation (e.g., this
factor is related with the surface reflectance), and ¢(x,y) is

the phase term related to the physical quantity being measured,
and is the most important term for optical metrology.

The purpose of any interferometric technique is to
determine the phase term, which is related to the physical
quantity being measured. Fig. 2(a) shows an interferogram,
with its and its associated phase term ¢(x,y) in Fig. 2(b).

One way to calculate the phase term ¢(x, y) is by means of
the phase-shifting technique (PST), as described in [2, 3, 4, 5].
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Fig. 1. a) Schematic illustration of a Michelson interferometer, and
b) real schematic.
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Fig. 2. (a) Fringe pattern, and (b) its phase map.

A drawback is that it requires at least three interferograms with
the phase-shifted. The phase shift among interferograms must
be known and experimentally controlled. This technique can
be used when mechanical conditions are met throughout the
interferometric experiment, one of these conditions and the
most important refer the object of study, this must be static, to
project the phased shifted into it, these because they must have
at least three images.

On the other hand, when the mentioned stability conditions
are not satisfied, for example objects or experiments that
change over time (also called transients), and for that
measurement which is only possible to obtain a single image;
other techniques can be used to estimate the phase term (or
also known as demodulation) from a single fringe pattern; for
example in [6] and [17], authors use the Fourier Transform
method, while in [8], the Synchronous method is introduced,
and the phase locked loop method (PLL) in [9]. However,
these techniques work well only if the analyzed interferogram
has a carrier frequency and a narrow bandwidth, and the signal
has low noise; moreover, these methods do not perform well
for phase calculation in a closed-fringe pattern. Additionally,
the Fourier and synchronous methods estimate the wrapped
phase due to use of an arctangent function during the phase
calculation, so an additional unwrapping procedure is required
[10]. The unwrapping process is difficult when the fringe
pattern includes high amplitude noise, which causes
differences greater than 27 radians between adjacent pixels
([11], [12] and [13]). In the PLL technique, the phase is
estimated by following the phase changes of the input signal
by varying the phase of a computer simulated oscillator
(VCO), such that the phase error between the fringe pattern
and VCO'’s signal vanishes.

Recent techniques make use of soft computing algorithms
like neural networks and genetic algorithms (GA). In the
neural network technique [14] and [15], a multi-layer neural
network (MLNN) is trained by using fringe patterns, and the
phase gradients associated with them, from calibrated objects.
After the training, the MLNN can estimate the phase gradient
when the fringe pattern is presented in the MLNN input.

The first method based on GAs to applied to the phase
demodulation problem, was proposed by Cuevas et al. in [16],
proposed the use of a fitness function based on a phase
estimate by creating a surface through by the adjustment of the
coefficients of a polynomial of order four, and in [17] was
using the fitness function created by Cuevas et al. [16], the
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Fig. 3. Update particle.

adjustment of the surface was changed by a Zernike
polynomial. To demodulate more complicated interferograms
were created methods based on partition of the image, this
method is called Window Fringe Pattern Demodulating
(WFPD) technique, and it was proposed in [18], and used in
[19], where each window is demodulated by a genetic
algorithm, and these windows are slightly overlapping. The
functions can be Bessel in the case of fringes coming from a
vibrating plate experiment, or Zernike polynomials, in an
optical testing experiment. In the case when not much
information is known about the experiment, a set of low degree
polynomials p(a,x,y) can be used. A population of

chromosomes is codified with the function parameters that
estimate the phase. A fitness function is established to evaluate
the chromosomes, and it considers the same aspects as the cost
function in a regularization technique. The population of
chromosomes evolves until a fitness average threshold is
obtained. The method can demodulate noisy, closed fringe
patterns and so, no further unwrapping is needed.

In this paper, we present a variation of the WFPD method
introduced by Cuevas et al. in [19]. The new proposal is
applied to demodulate complex fringe patterns using a particle
swarm optimization technique (PSO) to fit a polynomial; it
also allows one to create an automatic fringe counting based
on digital image processing. In addition, we use low resolution
versions of the interferogram for the recovery of the phase; in
other words, we use subsampled images. Results using closed
and under-sampled computer generated fringe patterns are
presented.

II. PARTICLE SWARM OPTIMIZATION

Particle swarm optimization has been used to solve many
optimization problems since it was proposed by Kennedy and
Eberhart in [20] and [21]. After that, they published the book
in [22] and several papers on this topic ([23], [24] and [25]),
one of which made a study on its performance using four non-
linear functions, which has been adopted as a benchmark by
many researchers in this area. In PSO, each particle moves in
the search space with a velocity that is in accordance with its
own previous best solution and its group’s previous best
solution. The dimension of the search space can be any



positive integer. Following Eberhart and Kennedy’s naming
conventions, D is the dimension of the search space. The i”
particle is represented as 4, =(a,,a,,...,a,,), and the best

particle of the swarm, i.e. the particle with the lowest function
value, is denoted by index g. The best previous position (i.e.
the position corresponding to the best function value) of the
i" particle recorded and  represented  as

P =(p,> Piss---» Pipy) » and the position change (velocity) of the

i" particle is v, =(v,,v,,,...,v,,) . Bach particle updates its

is

position with the following two equations:

vld (t+1) = a)ald +cl(/)l (pld _ald (t))

)
+6,0, (pgd —4iy (t))

a,(t+1)=a,(1)+v, (t+1), 3)

where for each particle i, g, is the position, v,, the velocity,

P, the best position of a particle, P,, the best position within

the swarm, and ¢, and ¢, are positive constants containing

the balance factors between the effect of self-knowledge and
social knowledge in moving the particle towards the target; in
literature, a value of 2 is usually suggested for the sum of both
factors, ¢, and ¢, are random numbers between 0 and 1, and

o is inertia weight. Within the update of the particles, the
velocity is denoted as the momentum with which the force is
pulling the particle to continue in its current direction. The
best position of a particle is the cognitive component, and this
force emerges from the particle’s tendency to return to its own
best solution found so far, while the best position of a swarm is
the social component, this is the force emerging from the
attraction of the best solution found so far in its neighborhood.
These features are shown in Fig. 3.

III. PSO APPLIED TO PHASE RECOVERY

As described by Eberhart and Kennedy, the PSO algorithm is
an adaptive algorithm based on a social-psychological
metaphor; a population of individuals (referred to as particles)
adapts by returning stochastically toward previously successful
regions. The fringe demodulation problem is a difficult
problem to solve when the noise in the fringe pattern is high,
since many solutions are possible even for a single noiseless
fringe pattern. Besides, the complexity of the problem is
increased when a carrier frequency does not exist (closed
fringes are present).

Given that for a closed fringe interferogram there are
multiple phase functions for the same pattern, the problem is
stated as an ill-posed problem in the Hadamard sense, since a
unique solution cannot be obtained [26]. It is clear that the

image of a fringe pattern /(x,y) will not change if ¢(x,y) in
(1) is replaced with another phase function &(x, y) given by:
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_ {—¢(x,y)+27rk (x,y) €R , )

#(x.y)= 4(x.7) (x.y)2 R

where R is an arbitrary region, and £ is an integer. In this work,
PSO is presented to carry out the optimization process, where
a parametric estimation of a non-linear function is proposed to
fit the phase of a fringe pattern. Then, the PSO technique fits a
global non-linear function instead of a local plane to each
pixel, just as it is done in regularization techniques [27] and
[28]. The fitting function is chosen depending on prior
knowledge of the demodulation problem, such as object shape,
carrier frequency, pupil size, etc; when no prior information

about the shape of ¢(x,y) is known, a polynomial fitting is

recommended. In this paper, the authors have used a
polynomial fitting to show how the method works.

The purpose in any application of PSO is to evolve a
particle swarm of size P (which codifies P possible
solutions to the problem) using the update velocity and
position of each particle, with the goal of optimizing a fitness
function that solves the problem.

In phase demodulation from fringe patterns, the phase data
can be approximated by choosing from one of several fitting
functions. The fitness function is modeled by the following
considerations: a) the similarity between the original fringe
image and the genetic generated fringe image, and b) the
smoothness in the first and second derivatives of the fitting
function.

A. Fitness function
The fitness function U that was utilized in this paper to
evaluate the p” particle ¢” in the swarm, used an r-degree
approximation, and is given by:

po(a.xy)=ay +ax+ay+ax* +a,y* +asxy

(6))

2 2
+agx"y+a;xy +"'+a[(r+1)(r+2)]yr
2

Many ways to quantify the quality of fitness function U can
be used. We decided to use a term that compares the RMS
error between the original fringe pattern and the fringe pattern
obtained from the estimated phase:

[IN (x,y)—cos(f(a",x,y))]2

R-1C-1

U(a’)= 6)

y=1 x=1

where x, y are integer values representing indexes of the pixel
location in the fringe image. Super-index p is an integer index

value between 1 and p, which indicates the number of
particles in the swarm. 7, (x,y) is the normalized version of
the detected irradiance at point (x, y) .

The data from the inferferogram were normalized in the
range [-1,1], RxC 1is the image resolution whose fringe

intensity values are known, and [ (apx, y) = p(ap X, y) .

Additional terms are added to the fitness functions; in this
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case, the restrictions for the phase. The fitness function used
by Cuevas et al. in [19] incorporates three criteria: similarity,
smoothness and overlapped phase similarity with a previously
estimated phase. Similarity between fringe patterns is given by
equation (6), while smoothness and overlapped phase
similarity are expressed by the following equation:

R-1C—1 ﬁ[(f(apaan’)_f(apax_LJ’))Z -
+(f(a1'x,y) —f(al’x,y—l))z}m(x,y)

where R(a") is the total amount of restrictions added to the
fitness function for a given window whose origin is (r,c);

m(x, y) is a mask that indicates where the fringe pattern

appears inside the image, and A is a smoothness weight factor
(it should be clear for the reader that a higher value of
parameter A implies a smoother function to be fitted).

The third criterion is eliminated in order to simplify the
fitness function to get a robust retrieval in just one window.
This way, the phase in different windows can be demodulated
in parallel. The phase segments are sequentially overlapped.
Noise filtering and fringe normalization are solved by using
alternative low-pass filtering techniques. We assume smooth
phase continuity distributed in first and second derivatives.

The new fitness function can thus be written as:

)
+ﬂ[(f(ap,x,y)—f(ap,x—l,y))2 )
+(f(a",x,y)—f(a",x,y—l))z}}m(x,y)

Parameter o must be set to the maximum value of the
second term in equation (8). This is done with the aim of
converting the problem from a minimal to a maximal
optimization question, since a fitness function for PSO is
considered to be a non-negative image of merit and profit; this
is:

o= max(R1 2{(11\/ (an’)‘COS(f(ap’x’y)))z

p y=I x=

+ﬂ[(f(a”,x,y)—f(ap,x—l,y))z ©)
+(f(a",x,y)—f(a",x,y—l))z}}jm(x,y)

The first term inside the double summation in equation (9)
attempts to keep the local fringe model close to the observed
irradiances in the least-squares sense, while the second term is
a local discrete difference, which enforces the assumption of
smoothness and continuity of the detected phase.
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B. Decoding particles

As it was said earlier, PSO is used to find the function
parameters; in this case, vector a. If we use this function, the
particle can be represented as:

(10)

az[ao a, ...an

A k-bit bit-string is used to codify a particle value; then, the
particle has gxk bits in length. We define the search space

for these parameters. The bit-string codifies a range within the
limits of each parameter. The decoded value of the g,

parameter will use the methodology introduced by Toledo and
Cuevas in [18], and is:

U B
Lo

a=1" .
2k—1

i i

an

where ¢, is the i” parameter real value, L is the i” bottom
limit, L is the /" upper limit, and N, is the decimal basis
value. These maximum values can be expressed as:

L=-n L =nx (12)
L'=-1 (13)
= RTZ 51" (19

where F is twice the maximum number of fringes on the
window; the equation is expressed in [18]:

F:meax(Q,Ev,,/sz +Fj)

F. and F, are the maximum fringe numbers in the x and y

s)

directions. Finding the value for F automatically is not an
easy problem to solve; to our knowledge, there are several
algorithms that perform this count, ranging from manual
counting by an expert, using a priori knowledge of the
phenomenon being measured, even those based on image
processing, so in this paper, to get the maximum number of
fringes in an image, we propose combining image thresholding
described in [29] and connected component labeling, as
described in [31] and [32]:

Image thresholding: To binarize the fringe image, we have
used Otsu's technique [29], which is known to be based on
discriminated analysis. The threshold value ¢ obtained by this
method allows partitioning the image into two classes: C, and
C, (i.e., the foreground and background). In other words:
C,={0,1,2,....t}and C,={r+1,1+2,...,L—1}, where L is
the number of gray levels. For an example of the application of
Otsu’s procedure onto an image, refer to Fig. 5. Fig. 6(a)

shows a simple fringe image, while Fig. 6(b) shows the
corresponding binary version obtained by Otsu’s method.



Connected component labeling: Segmenting a binary image by
means of connected component labeling is a standard
procedure found in literature. A connected component (CC) is
a region of foreground pixels for which a connected path can
be found for any two pixels belonging to the region. Finding
the connected components in a binary image can be done in
many ways ([30], [31] and [32]). The simplest method consists
in iteratively replacing each label with the minimum of its 8-
connected neighborhood [31]. The algorithm begins with an
initial labelling of all 1-pixels, and ends when no more
replacements can be made.

In this work, we use the following methodology. Taking as
input the binary image, for example the image showen in Fig.
5(a), the algorithm makes a journey through the image from
left to right and top to bottom. At each position, a 2x2
neighborhood is analyzed. The positions of the pixels in the

neighborhood are:d, . G 9 0 and Ay i) (see

Fig. 4). Under 8-connectivity, it is guaranteed that the four
pixels are connected.

a a

ij i+l

a a

i+l j+1

i+l j

Fig. 4. 2x2 neighborhood scheme.

To assign the subset that corresponds to each pixel, the
following steps are applied:

1. Check the validity of a, ,, a;,, .4 ., and q

i+l j+1)
A pixel is valid if 7(i,j)=1 (it belongs to the
foreground), or zero if (i, j)=0 (it belongs to the

background).

Of the pixels that are valid, check whether one of them
has been previously assigned to a given neighborhood.
If one or more of the valid pixels have been assigned to
a neighborhood, then search for the pixel with the
highest number of elements. This is done by using a
vector 7, which contains all the subsets that have
already been assigned, as well as the number of
elements in each subset. This facilitates the search.
Among the pixels of the neighbourhood that are valid,
we search for the pixel whose subset has more
elements. To this subset, the other pixels will be
assigned.

If none of the pixels is assigned to a group, then assign
them to a new subset and update the value of the tag in
the vector T .

Update the values of the subsets and advance one pixel
to repeat the steps above.

6. Repeat these steps all over the image.

The result of applying this methodology to an image is
shown in Fig. 6(c). The four connected foreground regions

87

Demodulation of Interferograms based on Particle Swarm Optimization

appear in different colors. The number of connected
components found is a good approximation of the maximum
number of fringe patterns in the image.

Alternative way to compute the maximum number of fringes in
an image: Another way to find the maximum number of
fringes F is as follows. Starting from the central pixel of the
fringe image, scan it horizontally, vertically and diagonally, in
both directions, as shown in Fig. (7). As an example, in this
figure, when we go from the central point to the right, we find
a transition from the fringe to the background; as we continue
we find a second transition from the background to another
fringe. We have thus two fringes. To get the final number, we
take into account the considerations given in [1]; by using the
interference order for each fringe, we arrive at the end of the
swapping that in the example image there are four fringes. This

value F can now be used in equation (14) to compute L .
From Equation (13), we can compute 7. Finally, we can

substitute these two values in Equation (11) to estimate
each g, . This constitutes an original and very simple procedure

to find the components of vector a .

For the special case a, (i=0), the limits are between —7 and

#
£

|

a) b)
Fig. 5. Example of connected component labelling, a) original image, b)
labelling image.

2D

Fig. 6. a) image of fringe patterns, b) binary image using Otsu method, c)
labelling image with the result of 4 fringes in the image.

Fig. 7. Direction of sweeps for the location of fringes.
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TABLEI
TABLE OF INERTIA AND VELOCITY PARAMETERS

Inertia 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.0001  2.870 3.432 3.612 3.505 3.839 3277 2916 2777 2.395
0.0002  3.007 3.044 3.210 3.083 2725 2.680 1.688 1.801 2.366
0.0003  1.665 1.875 2.565 2.559 1.576 1.708 1.151 1.945 2.469
0.0004  2.170 1.738 2777 1.912 1.290 2.171 1.806 0.567 1.946
0.0005  1.883 1.860 2.838 1.686 1.701 2.063 1.969 0.791 1.792
0.0006  2.106 2.134 2.900 1.086 2318 1.705 1.645 1.399 2.343
0.0007  1.928 1.993 0.853 1.168 2.019 2.270 1.772 1.428 1.828
0.0008  0.893 1.938 1.350 1.531 2.019 2.632 1.373 1.373 2.260
0.0009  1.536 1.911 1.436 1.773 2.407 0.313 1.902 0.779 1.523

+7. a, is eliminated from parameter vector a to redefine a

new vector a':

d=[aa..a,) (16)
so p(a.x,y) can be expressed as follows:
pla,x,y)=p(d,x,y)+a, (17)
and replacing (17) into (1):
I(x.y)=a(x.y)+b(x.y)cos[ p(a'.x.y)+a,]. (18)

Additionally, @, can be expressed asa, =27l+a,, with /
being an integer, and a; <27 , so equation (18) becomes:

I(x,y) = a(x,y)+b(x,y)cos[p(a',x,y) +a +27rl], (19)

I(x,y)= a(x,y)+b(x,y)cos[p(a',x,y)+a(’)], (20)

In equation (20) demonstrates that limits for g, within a

range of 2 are enough to represent the phase of the fringe
pattern.

C. Convergence

PSO convergence depends mainly on swarm size. Large
swarm convergence takes place in smaller number of, but
processing time is increased. To stop the PSO process,
different convergence measures can be employed. In this
paper, we have used a relative error comparison between the
fitness function value of the best vectors in the swarm and
value a as follows in equation (21), which is the maximum
possible value that we can get from equation (8). Thus, we can
establish a relative evaluation with uncertainty to stop PSO as:

TABLE I
BEST PARTICLES
Inertia 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Velocity 0.0008 0.0004 0.0007 0.0006 0.0004 0.0009 0.0003 0.0004 0.0009

Low-resolution
interferogram

A

/

High resolution
interferogram

O

=\

-

~

—

- — N I~
The cosine function is periodical with period 27, so:
TABLE Il
WORST PARTICLES
Inertia 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Velocity 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0003

Low-resolution
interferogram

High resolution
interferogram
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a) b) ©)
a) b)
Fig. 10. Phase map observed (a), and phase map estimated by PSO (b).
||
| |
d) e)

Fig. 8. (a) Image of fringe pattern in resolution , b) binary image using
Otsu’s method, (c) labeling image with the result of 4 fringes in the image.
(d) Low resolution image with sub-Nyquist,(e) labeling image with the result
of 3 fringes in the image.

a) b) )

Fig. 11. (a) Observed fringe pattern, (b) estimated fringe pattern by PSO, (c)
estimated fringe pattern by GA.

polynomial were included. The following polynomial was

[ = 1 M .
2) b) coded in each particle:
p.(x.y)=a,+ax+a,y+a;x’ +a,xy
+a5y2+a6x3+a7xzy+a8xy2 (22)
+ayy’ +a,xt+a,x’y+a,x’y’
+ 5113)‘7)’3 + a14y4
e The 15 coefficients were configured in each particle inside
d) e f the swarm to be evolved. As real interferograms present low
} } ) ) contrast, and to show that our proposal performs efficiently, a
Fig. 9. (a) Observed fringe pattern, (b) Observed fringe pattern in low

resolution, (c) its phase map. (d) estimated fringe pattern by PSO, (f) in low
resolution and (g) its phase map.

a-Uld')

(24

<&

@2y

where U (a*) is the fitness function value of the best vectors in

the swarm in the current iteration, and ¢ is the relative error
tolerance. Additionally, we can stop the process in a specified
number of iterations if equation (21) is not satisfied.

IV. EXPERIMENTS

The proposed method was applied to estimate the phase for
a closed fringe pattern. We used a particle swarm size of 100,
with 70 iterations, inertia was chosen in the range [0.1 to 0.9],
and velocity was a number in the range [0.0001 to 0.0009]. In
each particle, the coded coefficients of a fourth degree

low noise closed fringe pattern was generated using the
following expression:

I(x,y)=127+63cos (P, (x,») +n(x,»)). (23)
where
P, (x,7)=0-0.7316x-0.2801y + 0.0065x"
~0.00036xy —0.0372y% +0.00212x°
+0.000272x%y +0.001xy% — 0.002)° (24)

+0.000012x* +0.00015x°y + 0.00023x7 y?
+0.00011xy° +0.000086y*

and 77(x, y) is the uniform additive noise in the range [-2

radians to 2 radians]. Additionally, the fringe pattern was
generated with a low resolution of 10x10 pixels. In this case,
we used a parameter search range of [-1 to 1]. The swarm of
particles evolved until the number of iterations reached 70, and
relative error tolerance & was 0.05 in equation (21). The
fringe pattern and the binary image field of the computer

89 Polibits (45) 2012



Julio Jiménez, Humberto Sossa, Francisco Cuevas, and Laura Gomez

Fig. 12. (a) Observed fringe pattern, (b) observed fringe pattern in low
resolution, (c) its phase map, (d) phase in 3D, e) PSO estimated fringe, (f)
in low resolution and (g) its phase map and h) phase in 3D.

a

N . ) -
A) no ) |
e g

Fig. 13. (a) Observed fringe pattern, (b) observed fringe pattern in low
resolution, (c) its phase, (d) phase 3d, e) estimated fringe pattern by PSO,
(f) in low resolution and (g) its phase map and h) phase 3d.

@ D

Fig. 14. Labelling images in low-resolution with the result of: (a) 5 fringes
in the image show in 12(b), and 1 fringe in the image show in 13(b).

generated interferogram are shown in Figs. 8(a) and 8(b),
respectively, with a resolution to 512 x 512, and after applying
the Otsu’s method, we obtain the number of fringes on the
image which was 4 number of fringes, this shown in Fig. 8(c).
Finally in Figs. 8(d) and Fig. 8(e) shows a sub-sampled image
10x10 and in the connected component labeled obtain the 3,
number of fringes.

The fringe pattern and the phase field of the computer
generated interferogram are shown in Figs. 9(a) and 9(b),
respectively. The PSO technique was used to recover the phase
from the fringe pattern. The fringe pattern and the phase
estimated through PSO are shown in Figures 9(d), 9(e) and
9(f).
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The 3D phase map observed is shown in Fig. 10(a), and the
3D phase map estimated by PSO in Fig. 10(b). Tests are
shown in Table 1, the best particles for the testers are shown in
Table 2, and Table 3 shows the worst particle for the testers.

Additionally, our method was compared with that proposed
by Toledo and Cuevas in [18], which is based on genetic
algorithms, and in which, taking into consideration the settings
of GA parameters, eight parameters were initialized: number
of generations, number of population, cross and mutation rate,
type of selection, mutation rate and type of cross. In our case,
only four parameters were initialized: iterations (generations),
swarm (population), inertia and speed. Finally, during the test
an error of 0.4281 was obtained with the GA-based method.
With our PSO based proposal, we obtained an error of 0.313.

The Fig. 11(a) shows the original interferogram; figures
11(b) and 11(c) illustrate the result obtained through our
method and the result obtained with the GA method introduced
in [19]. The interferogram demodulation, in comparison, was
almost identical, but the difference is that the image input used
with the PSO technique with PSO was recovered from a low
level image that had a serious problem of sub-Nyquist in that it
no longer distinguished fringes.

The proposed methodology was applied to other images to
show its performance. For this, refer to Figs. 12 and 13.

The use of a sub-sample with a high sub-Nyquist problem is
something where traditional techniques (Fourier method,
Synchronous method and the phase locked loop method) fail;
instead, techniques that use GAs have a sub-sampling Nyquist
above the limit (one fringe per pixel), as shown in Fig. 14.

Compared with other methods in literature, our method has
the advantage that, using a single image, it does not apply any
unwrapping module to the phase, and that the polynomial is
directly the phase term; it can work with images with high sub-
Nyquist, a problem that traditional methods have so far failed
to solve.

Execution time is considered fast compared to methods
using GAs which is due to the encoding and the image size.

V. CONCLUSION

A PSO based technique was applied to recover the modulating
phase from closed and noisy fringe patterns. A fitness function,
which considers prior knowledge about the object being tested,
is established to approximate the phase data. In this work, a
fourth degree polynomial was used to fit the phase.

A swarm of particles was generated to carry out the
optimization process. Each particle was formed by a codified
string of polynomial coefficients. Then, the swarm of particles
evolved using velocity, position and inertia.

The proposal works successfully where other techniques fail
(Synchronous and Fourier methods). This is the case when a
noisy, wide bandwidth and/or closed fringe pattern is
demodulated. Regularization techniques can be used in these
cases, but this proposal has the advantage that the cost function
does not depend upon the existence of derivatives and
restrictive requirements of continuity (gradient descent



methods). Since PSO works with a swarm of possible solutions
instead of with a single solution, it avoids falling into a local
optimum. Additionally, no filters and no thresholding
operators were required, in contrast with the fringe-follower
regularized phase tracker technique.

PSO has the advantage that if the user has prior knowledge
of the object shape, then a better suited fitting parametric
function can be used instead of a general polynomial function.
Additionally, due to the fact that the PSO technique gets the
parameters of the fitting function, it can be used to interpolate
sub-pixel values and to increase the original phase resolution
or interpolate where fringes do not exist or are not valid. A
drawback is the selection of the optimal initial PSO parameters
(such as swarm size, inertia and velocity) that can increase
convergence speed.
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