
 

  

Abstract—A parametric method to carry out fringe pattern 

demodulation by means of a particle swarm optimization is 

presented. The phase is approximated by the parametric 

estimation of an nth-grade polynomial so that no further 

unwrapping is required. A particle swarm is used to optimize the 

input parameters of the function that estimates the phase. A 

fitness function is established to evaluate the particles, which 

considers: (a) the closeness between the observed fringes and the 

recovered fringes, (b) the phase smoothness and c) the prior 

knowledge of the object, such as its shape and size. The swarm of 

particles evolves until a fitness average threshold is obtained. We 

demonstrate that the method is able to successfully demodulate 

fringe patterns and even a one-image closed-fringe pattern. 

 
Index Terms—Phase retrieval; fringe analysis; optical 

metrology; evolutionary technique. 

I. INTRODUCTION 

NTERFEROMETRY is an non-destructive optical 
technique: It is used to measure physical variables (stress, 

temperature, acceleration, curvature, and so on), and this with 
a high degree of resolution, as it follows from the wavelength 
magnitude used by the light [1]. A typical interferometer splits 
a laser beam using a beam divisor. Beam A is called reference, 
and it is projected directly onto a film or a CCD camera using 
mirrors or optical fiber; beam B interacts with the physical 
phenomenon to be measured. The interaction modifies the 
optic path of beam B; which is then projected onto the same 
film or CCD camera as beam A. A diagram of the Michelson 
interferometer is shown in Fig. 1, and the basic operation of 
the interferometer is as follows. Light from a light source is 
split into two parts, with one part of the light travelling a 
different path length than the other. After traversing these 
different path lengths, the two parts of the light beam are 
brought together to interfere with each other and the 
interference pattern can be seen on a screen. 
In optical metrology, it is well known that in a fringe pattern 

can be represented through total irradiance, using the 
following mathematical expression:  

( ) ( ) ( ) ( ), , , cos , ,φ= +   I x y a x y b x y x y      (1) 
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where ,x y  are integer values representing coordinates of the 

pixel location in the fringe image, ( , )a x y  is the background 

illumination, ( , )b x y  is the amplitude modulation (e.g., this 

factor is related with the surface reflectance), and ( , )x yφ  is 

the phase term related to the physical quantity being measured, 
and is the most important term for optical metrology. 
The purpose of any interferometric technique is to 

determine the phase term, which is related to the physical 
quantity being measured. Fig. 2(a) shows an interferogram, 
with its and its associated phase term ( , )x yφ  in Fig. 2(b). 

One way to calculate the phase term ( ),x yφ  is by means of 

the phase-shifting technique (PST), as described in [2, 3, 4, 5]. 
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Fig. 1.  a) Schematic illustration of a Michelson interferometer, and 

                    b) real schematic. 
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A drawback is that it requires at least three interferograms with 
the phase-shifted. The phase shift among interferograms must 
be known and experimentally controlled. This technique can 
be used when mechanical conditions are met throughout the 
interferometric experiment, one of these conditions and the 
most important refer the object of study, this must be static, to 
project the phased shifted into it, these because they must have 
at least three images. 
On the other hand, when the mentioned stability conditions 

are not satisfied, for example objects or experiments that 
change over time (also called transients), and for that 
measurement which is only possible to obtain a single image; 
other techniques can be used to estimate the phase term (or 
also known as demodulation) from a single fringe pattern; for 
example in [6] and [17], authors use the Fourier Transform 
method, while in [8], the Synchronous method is introduced, 
and the phase locked loop method (PLL) in [9]. However, 
these techniques work well only if the analyzed interferogram 
has a carrier frequency and a narrow bandwidth, and the signal 
has low noise; moreover, these methods do not perform well 
for phase calculation in a closed-fringe pattern. Additionally, 
the Fourier and synchronous methods estimate the wrapped 
phase due to use of an arctangent function during the phase 
calculation, so an additional unwrapping procedure is required 
[10]. The unwrapping process is difficult when the fringe 
pattern includes high amplitude noise, which causes 
differences greater than 2π  radians between adjacent pixels 
([11], [12] and [13]). In the PLL technique, the phase is 
estimated by following the phase changes of the input signal 
by varying the phase of a computer simulated oscillator 
(VCO), such that the phase error between the fringe pattern 
and VCO’s signal vanishes. 
Recent techniques make use of soft computing algorithms 

like neural networks and genetic algorithms (GA). In the 
neural network technique [14] and [15], a multi-layer neural 
network (MLNN) is trained by using fringe patterns, and the 
phase gradients associated with them, from calibrated objects. 
After the training, the MLNN can estimate the phase gradient 
when the fringe pattern is presented in the MLNN input. 
 The first method based on GAs to applied to the phase 

demodulation problem, was proposed by Cuevas et al. in [16], 
proposed the use of a fitness function based on a phase 
estimate by creating a surface through by the adjustment of the 
coefficients of a polynomial of order four, and in [17] was 
using the fitness function created by Cuevas et al. [16], the 

adjustment of the surface was changed by a Zernike 
polynomial. To demodulate more complicated interferograms 
were created methods based on partition of the image,  this 
method  is called Window Fringe Pattern Demodulating 
(WFPD) technique, and it was proposed in [18], and used in 
[19], where each window is demodulated by a genetic 
algorithm, and these windows are slightly overlapping. The 
functions can be Bessel in the case of fringes coming from a 
vibrating plate experiment, or Zernike polynomials, in an 
optical testing experiment. In the case when not much 
information is known about the experiment, a set of low degree 
polynomials ( , , )p a x y  can be used. A population of 

chromosomes is codified with the function parameters that 
estimate the phase. A fitness function is established to evaluate 
the chromosomes, and it considers the same aspects as the cost 
function in a regularization technique. The population of 
chromosomes evolves until a fitness average threshold is 
obtained. The method can demodulate noisy, closed fringe 
patterns and so, no further unwrapping is needed. 
In this paper, we present a variation of the WFPD method 

introduced by Cuevas et al. in [19]. The new proposal is 
applied to demodulate complex fringe patterns using a particle 
swarm optimization technique (PSO) to fit a polynomial; it 
also allows one to create an automatic fringe counting based 
on digital image processing. In addition, we use low resolution 
versions of the interferogram for the recovery of the phase; in 
other words, we use subsampled images. Results using closed 
and under-sampled computer generated fringe patterns are 
presented.  

II. PARTICLE SWARM OPTIMIZATION 

Particle swarm optimization has been used to solve many 
optimization problems since it was proposed by Kennedy and 
Eberhart in [20] and [21]. After that, they published the book 
in [22] and several papers on this topic ([23], [24] and [25]), 
one of which made a study on its performance using four non-
linear functions, which has been adopted as a benchmark by 
many researchers in this area. In PSO, each particle moves in 
the search space with a velocity that is in accordance with its 
own previous best solution and its group’s previous best 
solution. The dimension of the search space can be any 

     
(a)           (b) 

 
Fig. 2.  (a) Fringe pattern, and (b) its phase map. 

  

 
Fig. 3.  Update particle. 
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positive integer. Following Eberhart and Kennedy’s naming 

conventions, D  is the dimension of the search space. The th
i  

particle is represented as 
1 2

( , , , )
i i i iD

A a a a= K , and the best 

particle of the swarm, i.e. the particle with the lowest function 
value, is denoted by index g. The best previous position (i.e. 
the position corresponding to the best function value) of the 
th
i  particle is recorded and represented as 

1 2
( , , , )

i i i iD
P p p p= K , and the position change (velocity) of the 
th
i  particle is 

1 2
( , , , )

i i i iD
v v v v= K . Each particle updates its 

position with the following two equations: 

( ) ( )( )

( )( )

1 1

2 2

1 ω ϕ

ϕ

+ = + −

+ −

i d i d i d i d

g d i d

v t a c p a t

c p a t
      (2) 

( ) ( ) ( )1 1+ = + +
i d i d i d
a t a t v t  ,     (3) 

where for each particle i , 
i
a is the position, 

id
v  the velocity,   

id
P  the best position of a particle, 

gd
P  the best position within 

the swarm, and 
1
c  and 

2
c  are positive constants containing 

the balance factors between the effect of self-knowledge and 
social knowledge in moving the particle towards the target; in 
literature, a value of 2 is usually suggested for the sum of both 
factors, 

1
ϕ  and 

2
ϕ  are random numbers between 0 and 1, and 

ω  is inertia weight. Within the update of the particles, the 
velocity is denoted as the momentum with which the force is 
pulling the particle to continue in its current direction. The 
best position of a particle is the cognitive component, and this 
force emerges from the particle’s tendency to return to its own 
best solution found so far, while the best position of a swarm is 
the social component, this is the force emerging from the 
attraction of the best solution found so far in its neighborhood. 
These features are shown in Fig. 3. 

III. PSO APPLIED TO PHASE RECOVERY 

As described by Eberhart and Kennedy, the PSO algorithm is 
an adaptive algorithm based on a social-psychological 
metaphor; a population of individuals (referred to as particles) 
adapts by returning stochastically toward previously successful 
regions. The fringe demodulation problem is a difficult 
problem to solve when the noise in the fringe pattern is high, 
since many solutions are possible even for a single noiseless 
fringe pattern. Besides, the complexity of the problem is 
increased when a carrier frequency does not exist (closed 
fringes are present). 
Given that for a closed fringe interferogram there are 

multiple phase functions for the same pattern, the problem is 
stated as an ill-posed problem in the Hadamard sense, since a 
unique solution cannot be obtained [26]. It is clear that the 

image of a fringe pattern ( ),I x y  will not change if ( ),x yφ  in 

(1) is replaced with another phase function ( ),x yφ
)

 given by: 

( )
( ) ( )

( ) ( )

, 2 ,
,

, ,

φ π
φ

φ

− + ∈
= 

∉

) x y k x y R
x y

x y x y R
,       (4) 

where R is an arbitrary region, and k is an integer. In this work, 
PSO is presented to carry out the optimization process, where 
a parametric estimation of a non-linear function is proposed to 
fit the phase of a fringe pattern. Then, the PSO technique fits a 
global non-linear function instead of a local plane to each 
pixel, just as it is done in regularization techniques [27] and 
[28]. The fitting function is chosen depending on prior 
knowledge of the demodulation problem, such as object shape, 
carrier frequency, pupil size, etc; when no prior information 

about the shape of ( ),x yφ  is known, a polynomial fitting is 

recommended. In this paper, the authors have used a 
polynomial fitting to show how the method works. 
The purpose in any application of PSO is to evolve a 

particle swarm of size P  (which codifies P  possible 
solutions to the problem) using the update velocity and 
position of each particle, with the goal of optimizing a fitness 
function that solves the problem. 
In phase demodulation from fringe patterns, the phase data 

can be approximated by choosing from one of several fitting 
functions. The fitness function is modeled by the following 
considerations: a) the similarity between the original fringe 
image and the genetic generated fringe image, and b) the 
smoothness in the first and second derivatives of the fitting 
function. 

A. Fitness function 

The fitness function U  that was utilized in this paper to 

evaluate the th
p  particle p

a  in the swarm, used an r-degree 

approximation, and is given by: 

( ) 2 2
0 1 2 3 4 5

2 2
6 7 ( 1)( 2)

2

, ,

+ + 
 
 

= + + + + +

+ + + +L

r

r

r r

p a x y a a x a y a x a y a xy

a x y a xy a y
   (5) 

Many ways to quantify the quality of fitness function U  can 
be used. We decided to use a term that compares the RMS 
error between the original fringe pattern and the fringe pattern 
obtained from the estimated phase: 

( ) ( ) ( )( )
2

1 1

1 1

, cos , ,

− −

= =

 = −
 ∑∑

R C
p p

N

y x

U a I x y f a x y    (6) 

where x, y are integer values representing indexes of the pixel 
location in the fringe image. Super-index p  is an integer index 

value between 1 and p , which indicates the number of 

particles in the swarm. ( ),

N
I x y  is the normalized version of 

the detected irradiance at point ( ),x y . 

The data from the inferferogram were normalized in the 
range [-1,1], R C×  is the image resolution whose fringe 

intensity values are known, and  ( ) ( ), ,

p p
f a x y p a x y= . 

Additional terms are added to the fitness functions; in this 
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case, the restrictions for the phase. The fitness function used 
by Cuevas et al. in [19] incorporates three criteria: similarity, 
smoothness and overlapped phase similarity with a previously 
estimated phase. Similarity between fringe patterns is given by 
equation (6), while smoothness and overlapped phase 
similarity are expressed by the following equation: 

( )
( )( ( ))

( )( ( )) ( )

2

1 1

2
1 1

, , , 1,

, , 1 ,

p p

R C
p

p py x

f a x y f a x y

R a

f a x y f a x y m x y

λ
− −

= =

  − −  
= 

+ − −
 

∑∑   (7) 

where ( )p
R a  is the total amount of restrictions added to the 

fitness function for a given window whose origin is ( ),r c ; 

( ),m x y  is a mask that indicates where the fringe pattern 

appears inside the image, and λ  is a smoothness weight factor 
(it should be clear for the reader that a higher value of 
parameter λ  implies a smoother function to be fitted). 
The third criterion is eliminated in order to simplify the 

fitness function to get a robust retrieval in just one window. 
This way, the phase in different windows can be demodulated 
in parallel. The phase segments are sequentially overlapped. 
Noise filtering and fringe normalization are solved by using 
alternative low-pass filtering techniques. We assume smooth 
phase continuity distributed in first and second derivatives. 
The new fitness function can thus be written as: 

( ) ( ) ( )( )( ){
( ) ( )( )

( ) ( )( ) } ( )

1 1 2

1 1

2

2

, cos , ,

, , , 1,

, , , , 1 ,

R C
p p

N

y x

p p

p p

U a I x y f a x y

f a x y f a x y

f a x y f a x y m x y

α

λ

− −

= =

= − −

+ − −


+ − −


∑∑

     (8) 

Parameter α  must be set to the maximum value of the 
second term in equation (8). This is done with the aim of 
converting the problem from a minimal to a maximal 
optimization question, since a fitness function for PSO is 
considered to be a non-negative image of merit and profit; this 
is: 

( ) ( )( )( ){
( ) ( )( )

( ) ( )( ) } ( )

1 1 2

1 1

2

2

max , cos , ,

, , , 1,

, , , , 1 ,

α

λ

− −

= =


= −



+ − −


+ − −  

∑∑
R C

p

N
p

y x

p p

p p

I x y f a x y

f a x y f a x y

f a x y f a x y m x y

  (9) 

The first term inside the double summation in equation (9) 
attempts to keep the local fringe model close to the observed 
irradiances in the least-squares sense, while the second term is 
a local discrete difference, which enforces the assumption of 
smoothness and continuity of the detected phase. 

B. Decoding particles 

As it was said earlier, PSO is used to find the function 
parameters; in this case, vector a . If we use this function, the 
particle can be represented as: 

0 1
 =  K

q
a a a a          (10) 

A k-bit bit-string is used to codify a particle value; then, the 
particle has ×q k  bits in length. We define the search space 

for these parameters. The bit-string codifies a range within the 
limits of each parameter. The decoded value of the 

i
a  

parameter will use the methodology introduced by Toledo and 
Cuevas in [18], and is: 

2 1

−

= +

−

U B

B i i

i i ik

L L
a L N          (11) 

where 
i
a  is the th

i  parameter real value, B

i
L  is the th

i  bottom 

limit, U

i
L  is the th

i  upper limit, and 
i

N   is the decimal basis 

value. These maximum values can be expressed as: 

0 0
,π π= − =

B U
L L        (12) 

= −
U B

i i
L L              (13) 

4

1 1

π

=
U

i m n

i i

F
L

R C
         (14) 

where F  is twice the maximum number of fringes on the 
window; the equation is expressed in [18]: 

( )2 2
2 max , ,= × +

x y x y
F F F F F       (15) 

x
F  and 

y
F  are the maximum fringe numbers in the x  and y  

directions. Finding the value for F  automatically is not an 
easy problem to solve; to our knowledge, there are several 
algorithms that perform this count, ranging from manual 
counting by an expert, using a priori knowledge of the 
phenomenon being measured, even those based on image 
processing, so in this paper, to get the maximum number of 
fringes in an image, we propose combining image thresholding 
described in [29] and connected component labeling, as 
described in [31] and [32]: 

Image thresholding: To binarize the fringe image, we have 
used Otsu's technique [29], which is known to be based on 
discriminated analysis. The threshold value t  obtained by this 
method allows partitioning the image into two classes: 

0
C  and 

1
C  (i.e., the foreground and background). In other words: 

{ }
0

0,1,2, ,C t= K and  { }
0

1, 2, , 1C t t L= + + −K , where L  is 

the number of gray levels. For an example of the application of 
Otsu’s procedure onto an image, refer to Fig. 5. Fig. 6(a) 
shows a simple fringe image, while Fig. 6(b) shows the 
corresponding binary version obtained by Otsu’s method. 
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Connected component labeling: Segmenting a binary image by 
means of connected component labeling is a standard 
procedure found in literature. A connected component (CC) is 
a region of foreground pixels for which a connected path can 
be found for any two pixels belonging to the region. Finding 
the connected components in a binary image can be done in 
many ways ([30], [31] and [32]). The simplest method consists 
in iteratively replacing each label with the minimum of its 8-
connected neighborhood [31]. The algorithm begins with an 
initial labelling of all 1-pixels, and ends when no more 
replacements can be made. 

In this work, we use the following methodology. Taking as 
input the binary image, for example the image showen in Fig. 
5(a), the algorithm makes a journey through the image from 
left to right and top to bottom. At each position, a 2 2×  
neighborhood is analyzed. The positions of the pixels in the 
neighborhood are:

( ),i j
a , 

( )1,i j
a

+
,

( ), 1i j
a

+
 and 

( )1, 1i j
a

+ +
 (see 

Fig. 4). Under 8-connectivity, it is guaranteed that the four 
pixels are connected. 

 
Fig. 4.  2x2 neighborhood scheme. 

To assign the subset that corresponds to each pixel, the 
following steps are applied: 

1.  Check the validity of 
( ),i j
a , 

( )1,i j
a

+
,

( ), 1i j
a

+
 and 

( )1, 1i j
a

+ +
. 

A pixel is valid if ( ), 1I i j =  (it belongs to the 

foreground), or zero if ( ), 0I i j =  (it belongs to the 

background). 
2.  Of the pixels that are valid, check whether one of them 

has been previously assigned to a given neighborhood. 
If one or more of the valid pixels have been assigned to 
a neighborhood, then search for the pixel with the 
highest number of elements. This is done by using a 
vector T , which contains all the subsets that have 
already been assigned, as well as the number of 
elements in each subset. This facilitates the search. 

3.  Among the pixels of the neighbourhood that are valid, 
we search for the pixel whose subset has more 
elements. To this subset, the other pixels will be 
assigned. 

4.  If none of the pixels is assigned to a group, then assign 
them to a new subset and update the value of the tag in 
the vector T . 

5.  Update the values of the subsets and advance one pixel 
to repeat the steps above. 

6.  Repeat these steps all over the image. 

The result of applying this methodology to an image is 
shown in Fig. 6(c). The four connected foreground regions 

appear in different colors. The number of connected 
components found is a good approximation of the maximum 
number of fringe patterns in the image. 

Alternative way to compute the maximum number of fringes in 

an image: Another way to find the maximum number of 
fringes F  is as follows. Starting from the central pixel of the 
fringe image, scan it horizontally, vertically and diagonally, in 
both directions, as shown in Fig. (7). As an example, in this 
figure, when we go from the central point to the right, we find 
a transition from the fringe to the background; as we continue 
we find a second transition from the background to another 
fringe. We have thus two fringes. To get the final number, we 
take into account the considerations given in [1]; by using the 
interference order for each fringe, we arrive at the end of the 
swapping that in the example image there are four fringes. This 

value F  can now be used in equation  (14) to compute U

i
L . 

From Equation (13), we can compute B

i
L . Finally, we can 

substitute these two values in Equation (11) to estimate 
each

i
a . This constitutes an original and very simple procedure 

to find the components of vector a . 

For the special case 
0
a  (i=0), the limits are between π−  and 

  
a)            b) 

Fig. 5.  Example of connected component labelling, a) original image, b) 

labelling image. 

  

 

     
               (a)             (b)                            (c) 

 

Fig. 6.  a) image of fringe patterns, b) binary image using Otsu method, c) 

labelling image with the result of 4 fringes in the image. 

  
 

Fig. 7.  Direction of sweeps for the location of fringes. 
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π+ . 
0
a  is eliminated from parameter vector a  to redefine a 

new vector a′ : 

1 2
′  =  K

q
a a a a         (16) 

so ( ), ,p a x y  can be expressed as follows: 

( )
0

, , ( , , )′= +p a x y p a x y a       (17) 

and replacing (17) into (1): 

( ) ( ) ( ) ( )
0

, , , cos , , ,I x y a x y b x y p a x y a′= + +        (18) 

Additionally, 
0
a  can be expressed as

0 0
2a l aπ ′= + , with l  

being an integer, and 
0

2π′ <a , so equation (18) becomes: 

( ) ( ) ( ) ( ) 0
, , , cos , , 2 ,I x y a x y b x y p a x y a lπ′ ′= + + +     (19) 

The cosine function is periodical with period 2π , so: 

( ) ( ) ( ) ( ) 0
, , , cos , , ,′ ′= + +  I x y a x y b x y p a x y a   (20) 

In equation (20) demonstrates that limits for 
0
a  within a 

range of  2π  are enough to represent the phase of the fringe 
pattern. 

C. Convergence 

PSO convergence depends mainly on swarm size. Large 
swarm convergence takes place in smaller number of, but 
processing time is increased. To stop the PSO process, 
different convergence measures can be employed. In this 
paper, we have used a relative error comparison between the 
fitness function value of the best vectors in the swarm and 
value a  as follows in equation (21), which is the maximum 
possible value that we can get from equation (8). Thus, we can 
establish a relative evaluation with uncertainty to stop PSO as: 

TABLE II 

BEST PARTICLES 

Inertia 

Velocity 

0.1 

0.0008 

0.2 

0.0004 

0.3 

0.0007 

0.4 

0.0006 

0.5 

0.0004 

0.6 

0.0009 

0.7 

0.0003 

0.8 

0.0004 

0.9 

0.0009 

Low-resolution 

interferogram 

         
          

High resolution 

interferogram 

         

 

TABLE III 

WORST PARTICLES 

Inertia 

Velocity 

0.1 

0.0002 

0.2 

0.0001 

0.3 

0.0001 

0.4 

0.0001 

0.5 

0.0001 

0.6 

0.0001 

0.7 

0.0001 

0.8 

0.0001 

0.9 

0.0003 

Low-resolution 

interferogram 

         
          

High resolution 

interferogram 

         

TABLE I 

TABLE OF INERTIA AND VELOCITY PARAMETERS 

Inertia 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.0001 2.870 3.432 3.612 3.505 3.839 3.277 2.916 2.777 2.395 

0.0002 3.007 3.044 3.210 3.083 2.725 2.680 1.688 1.801 2.366 

0.0003 1.665 1.875 2.565 2.559 1.576 1.708 1.151 1.945 2.469 

0.0004 2.170 1.738 2.777 1.912 1.290 2.171 1.806 0.567 1.946 

0.0005 1.883 1.860 2.838 1.686 1.701 2.063 1.969 0.791 1.792 

0.0006 2.106 2.134 2.900 1.086 2.318 1.705 1.645 1.399 2.343 

0.0007 1.928 1.993 0.853 1.168 2.019 2.270 1.772 1.428 1.828 

0.0008 0.893 1.938 1.350 1.531 2.019 2.632 1.373 1.373 2.260 

0.0009 1.536 1.911 1.436 1.773 2.407 0.313 1.902 0.779 1.523 
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( )U aα

ε

α

∗

−

<                     (21) 

where ( )U a
∗  is the fitness function value of the best vectors in 

the swarm in the current iteration, and ε is the relative error 
tolerance. Additionally, we can stop the process in a specified 
number of iterations if equation (21) is not satisfied. 

IV. EXPERIMENTS 

The proposed method was applied to estimate the phase for 
a closed fringe pattern. We used a particle swarm size of 100, 
with 70 iterations, inertia was chosen in the range [0.1 to 0.9], 
and velocity was a number in the range [0.0001 to 0.0009]. In 
each particle, the coded coefficients of a fourth degree 

polynomial were included. The following polynomial was 
coded in each particle: 

( ) 2

4 0 1 2 3 4

2 3 2 2

5 6 7 8

3 4 3 2 2

9 10 11 12

3 4

13 14

,p x y a a x a y a x a xy

a y a x a x y a xy

a y a x a x y a x y

a xy a y

= + + + +

+ + + +

+ + + +

+ +

        (22) 

The 15 coefficients were configured in each particle inside 
the swarm to be evolved. As real interferograms present low 
contrast, and to show that our proposal performs efficiently, a 
low noise closed fringe pattern was generated using the 
following expression: 

( ) ( ) ( )( )4
, 127 63 cos , , ,η= + +�I x y P x y x y       (23) 

where 

( ) 2

4

2 3

2 2 3

4 3 2 2

3 4

, 0 0.7316 0.2801 0.0065

0.00036 0.0372 0.00212

0.000272 0.001 0.002

0.000012 0.00015 0.00023

0.00011 0.000086

p x y x y x

xy y x

x y xy y

x x y x y

xy y

= − − +

− − +

+ + −

+ + +

+ +

               (24) 

and ( ),η x y  is the uniform additive noise in the range [–2 

radians to 2 radians]. Additionally, the fringe pattern was 
generated with a low resolution of 10 10× pixels. In this case, 
we used a parameter search range of [-1 to 1]. The swarm of 
particles evolved until the number of iterations reached 70, and 
relative error tolerance ε  was 0.05 in equation (21). The 
fringe pattern and the binary image field of the computer 

   
a)        b)        c) 

 

   
d)        e)        f) 

 
Fig. 9.  (a) Observed fringe pattern, (b) Observed fringe pattern in low 

resolution, (c) its phase map. (d) estimated fringe pattern by PSO, (f) in low 

resolution and (g) its phase map. 

   
a)        b)        c) 

 

  
d)        e) 

 
Fig. 8.  (a) Image of fringe pattern in resolution  , b) binary image using 

Otsu’s method, (c) labeling image with the result of 4 fringes in the image. 

(d) Low resolution image with sub-Nyquist,(e) labeling image with the result 

of 3 fringes in the image. 

  

    

a)            b) 

Fig. 10.  Phase map observed (a), and phase map estimated by PSO (b).  

   

a)        b)        c) 

Fig. 11.  (a) Observed fringe pattern, (b) estimated fringe pattern by PSO, (c) 

estimated fringe pattern by GA.  
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generated interferogram are shown in Figs. 8(a) and 8(b), 
respectively, with a resolution to 512 × 512, and after applying 
the Otsu’s method, we obtain the number of fringes on the 
image which was 4 number of fringes, this shown in Fig. 8(c). 
Finally in Figs. 8(d) and Fig. 8(e) shows a sub-sampled image 
10x10 and in the connected component labeled obtain the 3, 
number of fringes. 
The fringe pattern and the phase field of the computer 

generated interferogram are shown in Figs. 9(a) and 9(b), 
respectively. The PSO technique was used to recover the phase 
from the fringe pattern. The fringe pattern and the phase 
estimated through PSO are shown in Figures 9(d), 9(e) and 
9(f). 

The 3D phase map observed is shown in Fig. 10(a), and the 
3D phase map estimated by PSO in Fig. 10(b). Tests are 
shown in Table 1, the best particles for the testers are shown in 
Table 2, and Table 3 shows the worst particle for the testers. 
Additionally, our method was compared with that proposed 

by Toledo and Cuevas in [18], which is based on genetic 
algorithms, and in which, taking into consideration the settings 
of GA parameters, eight parameters were initialized: number 
of generations, number of population, cross and mutation rate, 
type of selection, mutation rate and type of cross. In our case, 
only four parameters were initialized: iterations (generations), 
swarm (population), inertia and speed. Finally, during the test 
an error of 0.4281 was obtained with the GA-based method. 
With our PSO based proposal, we obtained an error of 0.313.  
The Fig. 11(a) shows the original interferogram; figures 

11(b) and 11(c) illustrate the result obtained through our 
method and the result obtained with the GA method introduced 
in [19]. The interferogram demodulation, in comparison, was 
almost identical, but the difference is that the image input used 
with the PSO technique with PSO was recovered from a low 
level image that had a serious problem of sub-Nyquist in that it 
no longer distinguished fringes. 
The proposed methodology was applied to other images to 

show its performance. For this, refer to Figs. 12 and 13. 
The use of a sub-sample with a high sub-Nyquist problem is 

something where traditional techniques (Fourier method, 
Synchronous method and the phase locked loop method) fail; 
instead, techniques that use GAs have a sub-sampling Nyquist 
above the limit (one fringe per pixel), as shown in Fig. 14. 
Compared with other methods in literature, our method has 

the advantage that, using a single image, it does not apply any 
unwrapping module to the phase, and that the polynomial is 
directly the phase term; it can work with images with high sub-
Nyquist, a problem that traditional methods have so far failed 
to solve. 
Execution time is considered fast compared to methods 

using GAs which is due to the encoding and the image size. 

V. CONCLUSION 

A PSO based technique was applied to recover the modulating 
phase from closed and noisy fringe patterns. A fitness function, 
which considers prior knowledge about the object being tested, 
is established to approximate the phase data. In this work, a 
fourth degree polynomial was used to fit the phase. 
A swarm of particles was generated to carry out the 

optimization process. Each particle was formed by a codified 
string of polynomial coefficients. Then, the swarm of particles 
evolved using velocity, position and inertia. 
The proposal works successfully where other techniques fail 

(Synchronous and Fourier methods). This is the case when a 
noisy, wide bandwidth and/or closed fringe pattern is 
demodulated. Regularization techniques can be used in these 
cases, but this proposal has the advantage that the cost function 
does not depend upon the existence of derivatives and 
restrictive requirements of continuity (gradient descent 

    
a)       b)      c)      d) 

    
e)       f)      g)      h) 

Fig. 12.  (a) Observed fringe pattern, (b) observed fringe pattern in low 

resolution, (c) its phase map, (d) phase in 3D, e) PSO estimated fringe, (f) 

in low resolution and (g) its phase map and h) phase in 3D. 

    
a)       b)      c)      d) 

    
e)       f)      g)      h) 

Fig. 13.  (a) Observed fringe pattern, (b) observed fringe pattern in low 

resolution, (c) its phase, (d) phase 3d, e) estimated fringe pattern by PSO, 

(f) in low resolution and (g) its phase map and h) phase 3d.  

     
Fig. 14.  Labelling images in low-resolution with the result of: (a) 5 fringes 

in the image show in 12(b), and 1 fringe in the image show in 13(b).  
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methods). Since PSO works with a swarm of possible solutions 
instead of with a single solution, it avoids falling into a local 
optimum. Additionally, no filters and no thresholding 
operators were required, in contrast with the fringe-follower 
regularized phase tracker technique. 
PSO has the advantage that if the user has prior knowledge 

of the object shape, then a better suited fitting parametric 
function can be used instead of a general polynomial function. 
Additionally, due to the fact that the PSO technique gets the 
parameters of the fitting function, it can be used to interpolate 
sub-pixel values and to increase the original phase resolution 
or interpolate where fringes do not exist or are not valid. A 
drawback is the selection of the optimal initial PSO parameters 
(such as swarm size, inertia and velocity) that can increase 
convergence speed.  
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