Creation and Usage of Project Ontology In
Development of Software Intensive Systems

Petr Sosnin

Abstract—The key problem of successful developing of the
software intensive system (SIS) is adequate conceptual
interactions of designers during the early stages of development.
The success of the development can be increased by using of a
project ontology, the creation of which is being embedded into
the processes of conceptual solving the project tasks and
specifying the project solutions. The essence of the conceptual
design is a specification of conceptualization. The main
suggestion of this paper is a creation of the project ontology in
the form of a specialized SIS that supports the conceptual activity
of designers. For creation of the project ontology of such type,
the instrumental shell was developed. For creation of the project
ontology the designers should fill this shell with the adequate
information. The basic reasons for evolving the content of the
ontology are negative results of testing of the used text units
according to the conformity to the ontology. Such shell (in any
state of its using) includes the created ontology and its working
version (working dictionary) which helps to manage the
informational flows, to register the life cycles of the conceptual
units and to provide the representativity of their usages.

Index terms—Project ontology, system development, software
engineering, task solving.

I. INTRODUCTION

OWADAYS one of the most challenging area of

computer applications is “Development of Software
Intensive  Systems”, within the frame of which the
collaborative works of developers and other stakeholders are
being carried out in corporate networks. The success of such
activity in this area, which is being estimated regularly by
corporation Standish group [18] for last 16 years, is extremely
low (a little more than 30%). Failures can occur in
development of the SIS related to any part of the SIS’s
definition [15]: “A software intensive system is a system
where software represents a significant segment in any of the
following points: system functionality, system cost, system
development risk, development time.”

A very important cause of the failures is semantic mistakes
in the collective intellectual activity of developers and other
persons involved to the development of the SIS. The
necessary condition of the developers success is their mutual
understanding in collaborative actions based on reasoning
over textual information including the statements of task and
definitions of project solutions. Developers of the SIS should

Manuscript received May 9, 2010. Manuscript accepted for publication
August 3,2010.

Petr Sosnin is with the Computer Department, Ulyanovsk State Technical
University, Ulianovsk, 432028, Russia (sosnin@ulstu.ru).

51

be supplied with useful and effective techniques for the
prevention and correction of semantic mistakes.

At the beginning stage of the SIS development the
necessary understanding usually is absent. The adequate
understanding is formed only gradually and step by step
during the interaction in working groups. Evolution of
understanding follows step by step the design of the SIS in the
collaborative development environment (CDE) and the current
state of understanding includes its positive influences on the
management of the development process.

The important role of understanding (personal and mutual)
in the development of the SISs is well known. For exploiting
of this phenomenon the special techniques for “interactions”
with understanding are being created and are used. One type
of such technique is a glossary. The specialized version of the
glossary is applied, for example, in widely used methodology
(and technology) Rational Unified Process (RUP) [14]. Let us
notice that in the RUP such artifact is normatively defined,
though it does not have collaborative techniques for its
informational filling in real time of design. The problems of
dynamically extracting, defining, modeling, registering,
keeping and visualizing the units of understanding in
designing the SISs do not have satisfactory solution.

In this paper for the explicit work with understanding of
SIS designers, a specialized system of the project ontology,
which is creating as a subsystem embedded into the
developing SIS, is proposed. Moreover, it is suggested to
create the project ontology as an interactive system of the SIS
type. Such system which will be denoted below as SIS, is
implemented on the base of an ontology shell which supports
the collaborative extracting and checking of ontology units
from statements of project tasks and definitions of project
solutions.

The implemented ontology shell is included into the
instrumental system WIQA [16] which is aimed to designing
the complex system of the SIS type. The WIQA is based on
question-answer reasoning and the models of the units’ flow,
of which the informational source of concepts’ usages
embedded into the project ontology is extracted.

II. RELATED WORKS

A set of typical kinds of ontologies, according to their level
of dependence on a particular task or a point of view, includes
the top-level ontologies, domain ontologies, tasks ontologies
and applied ontologies. All these types of ontologies are
defined in [9] and [10] as techniques that are used in different
systems.

Polibits (42) 2010



Petr Sosnin

For the SISs, the more adequate type of ontologies is
applied — the type that must be expanded usually by means of
the other ontologies’ types. In accordance with the publication
[11], the theory and practice of applied ontologies “will
require many more experiences yet to be made”.

It is necessary to notice that the project ontology as a
subtype of applied ontologies is essentially important for SISs.
Project ontologies mainly are aimed at the process of design
but after refining they can be embedded into implemented
SISs.

The specificity of project ontologies is indicated in a
number of publications. In the technical report [5] the main
attention is concentrated on “people, process and product” and
collaborative understanding in interactions. Investigation of
the possibility of the ontology-based project management is
discussed in the paper [1].

The usage of the ontology potential in developing the
program system and ontological problems of program
products are investigated in the paper [4]. This article
describes the experience of development of the task ontologies
taking into account first of all the role of different kinds of
knowledge. The introduction of knowledge into the task
ontologies is reflected and discussed in the work [2]. The role
of knowledge connected with problem-solving models is
presented in the paper [12].

In all mentioned publications there are many useful ideas
but the approach to the ontology as to the specialized SISNT —
for extracting, defining and assembling concepts into the
ontology in the process of designing the SIS — is not
considered. The Internet search of publications with key
words which include such phrases as “project ontology” and
“software intensive system”, has remained without
competitive results coinciding with results suggested in this
paper.

Let us remind that the main goal in using the project
ontology is to provide the necessary understanding in
collaborative design which is impossible without human-
computer interaction. Therefore the theory and experience of
human-computer interaction as presented in [13] were taken
into account in this paper.

III. SPECIFICITY OF SUGGESTED ONTOLOGY

Attempts to view the project ontology from the side of
creating the specialized SIS°N" leads to the questions about its
architecture, life cycle and used models which must be
coordinated with the evolution of the project ontology. Below
we answer these questions.

The architecture of any SIS for the definite SIS has a
problem-oriented type the materialization which begins its life
cycle from the ontology shell with architectural solutions,
inherited and kept by the SIS°™" without changing. The
principle architecture of the shell (and any SIS also) is
presented in Fig. 1.

For any dictionary entry of the ontology there is a
corresponding analog in the working dictionary. Such analog

Polibits (42) 2010

is used firstly as a representative set of samples registering the
variants of the concept usages extracted from statements of
project tasks and definitions of project solutions (or shortly
from text units). Samples are being gathered naturally in
interactions of designers who are testing (implicitly or
explicitly on different working places) the used concepts
according to their conformity to the ontology.

Life cycle of the designing SIS — the real time
source of textual units processed by designers

N

Entry_1 I(\)I | Linguistic.processor
11
T R

Entry 2 0 Working dictionary

........... Elolelrf2]. |
G — |

Entry N % | Logic processor

Fig. 1. Architecture of the project ontology.

Filling the ontology by the content is connected with a
specialized project task appointed to an administrator of the
ontology. The work of the administrator is managed:

— By events each of which is generated when the result
of comparison of the used concept with the ontology is
not correct;

— In accordance with a sequence of actions supporting
the normative state of the project ontology (current
levels of adequacy and systematization).

The necessary informational material for the administrator
of the ontology is supplied by designers with the help of the
predicative analysis. Designers must test and confirm the
authenticity of concepts which are used in statements of tasks
and definitions of project solutions. For achieving such aim
they have to extract firstly the usage of concepts (from the text
units) and then to compare them with the ontology. The
differences of comparisons (new concepts or additional parts
of existing concepts, additional questions which require
answers) are used as the informational material for evolving
the ontology. Let us notice that any extracted concept usage
includes its expression as a simple predicate but not only this
(the full expression will be presented below).

Used concepts are the main part of the project ontology
which should be expanded by systematizations and axiomatic
relations. Techniques of systematizations are embedded into
the ontology component while axiomatic relations are being
created with the help of the logic processor.

The logic processor is intended to build the axiomatic
relations as formulas of the logic of predicates. Such work is
being implemented in the frame of the appropriate article
(entry) of the working dictionary where the necessary simple
predicates are being accumulated. Ontology axioms express
materialized units of the SIS and first of all those of them
which corresponds to UML-diagrams. Any built axiom is
registered in the definite entry (article) of the ontology.



Creation and Usage of Project Ontology in Development of Software Intensive Systems

The main architectural view presents the project ontology
from the side of its components and informational content
which defines the dynamics of the life cycle for the SISN'. In
a typical case such life cycle is being implemented in the form
of the real time work of several dozens of designers who have
solved and are solving several thousands of tasks. Models
which are used in the ontology life cycle will be presented
below.

IV. LINGUISTIC PROCESSOR

The life cycle of the SIS is embedded into the life cycle
of the designing SIS from which all (named above) text units
are being introduced into the linguistic processor. Another
possibility is to apply some term-extraction technique, for
example, as described in [8].

For testing any text unit, it is transformed into a set of
simple sentences and in such transformation the pseudo-
physics model of the compound sentence or complex sentence
of the other type is applied. In the pseudo-physics model of
the sentence all used words are interpreted as objects which
take part in the “force interaction” which is visualized on the
monitor screen. Formal expressions of pseudo-physics laws
are similar to the appropriate laws of the classic physics.

,’\AS

LF,

Ff

word (my,qy)

SF,
SF,

Fig. 2. Interaction of forces.

Simple sentence

Fig. 3. Extraction of the simple sentence.

In accordance with acting forces (forces of “gravitation”

F, , “electricity” F, , “elasticity” F, and “friction” F)

and attributes appointed to the “word-objects” such objects
after moving are being grouped in definite places of the
interaction area. The possible picture of the forces interaction
for one word of the investigated sentence is shown in Fig. 2.

In the stable state (Fig.3), each group of words-objects will
present the extracted simple sentence after finishing dynamic
process on the screen.

The screenshot in Fig.3 and other screenshots of this paper
are used with labels for the generalized demonstrations of the
visual forms and objects with which the designers are
working. The language of these screenshots is Russian.

Let us notice that in the assignment of attributes (values of
m;, g; and others values and parameters) two mechanisms are
applied — the automatic morphological analysis and the
automated tuning of object parameters. Values are assigned in
accordance with the type of the part of speech. The suitable
normative values were chosen experimentally. For description
of morphological analysis see works [6], [7].

After extraction of simple sentences the designer begins
their semantic analysis aimed to testing the correctness of each
simple sentence (SS;). In such work the designer uses the
model of SS; and its relations with surrounding, as presented
in Fig. 4. This picture shows the type of SS; which is used for
registering the appointment of the property for object. The
other type of model for registering the appointment of relation
between two objects has the similar scheme.

ASy, ASji
Normative values|

: Project Ontology M
| e &
te I (Con)Text il d
Pa : Simple sentence (plan of express{én) SS; i a
|
P r Predicate (plan of meaning) Ly i
Pt 17
Py ! Object is(has) Property 1
M T

| : e |ASi

! 71\ 71N 71V L S

So el p——{——!
T
Designers Designing SIS
......................... |
AS, AS;

Fig. 4. Model of the simple sentence.

The scheme of relations was used for defining and
implementing the techniques for their semantic testing. First
of all the expression of semantics for SS was chosen. The
structure of the semantics value as a set of semantic
components (SyU(UAS,)) is presented generally in Fig. 4
where the component S, indicates for the sentence SS its
conformity to the reality.

Definition and testing of any other semantic component AS;
helps to precise the semantic value of the SS if that can be
useful for the design of the SIS. Additionally, the work with
any semantic component increases the belief in the correctness
of the testable simple sentence (and embedded simple
predicate) and can lead to useful questions. In the work with
additional semantic components the conditional access to
appropriate precedents is used.

Polibits (42) 2010



Petr Sosnin

Elements of the typical set of semantic components are
estimated, applied and tested in the definite sequence. Such
work begins from the component S, which is compared with
elements of the ontology. The result of comparing can be
positive or can lead to questions which should be registered.

The positive result does not exclude the subsequent work
with additional semantic components.

Semantics of subjectivity and understanding (part AS1) are
estimated and tested for the relation with designers. The fact
of the non-understanding leads to questioning or even to
interruption of the work with the testable sentence.

Actual or future material existence of the sentence
semantics is a cause for testing the semantic relation of the SS
with designing (part ASi). Such type of relations is used in the
ontology for its systematization.

The greater part of semantic relations of the modality type
(parts ASi+1 — ASj) is aimed to defining and testing of the
uncertainties of measurable and/or probable and/or fuzzy
types. The semantic relations with normative values (parts
ASj+1 — ASM) suppose the potential inclusion of the SS or
its parts into the useful informational sources, for example,
into the ontology.

V. SOURCES OF TEXT UNITS

As it is shown in Fig. 1 the primary information for filling
the project ontology is being extracted by designers from the
life cycle of designing the SIS in the real time.

For the designers interaction with the life cycle of the SIS
the specialized instrumental system WIQA (Working In
Questions and Answers) was created. The main interface of
the WIQA is presented in Fig. 5 (with commentary labels).

] |
4 ;_,,» — ==
| ~| Task tree .f | QA-protocol =
| === . e
e — .’-" - Pl .
| % + e ug-ins
\ 7 : 1
v Other / -
- b 3 .
QA-protocols Picture

— = Responsible Person
Text expression

Fig. 5. The main interface of the WIQA.

The WIQA is intended for registering the current state of
designing in the form of a dynamic set of project tasks
combined into an interactive tasks tree. Each task of such tree
is defined with the help of the question-answer protocol of its
solving. Any QA-protocol opens the access to the question-
answer model (QA-model) of the corresponding task.

The screenshot shows that for the chosen task Z; from the
task tree its QA-model is opened through the QA-protocol of

Polibits (42) 2010

the registered question-answer reasoning (QA-reasoning). Let
us notice that any unit of reasoning (question Qj; or answer
Aj) has a textual expression with necessary pictures (for
example, with UML-diagrams and/or “block and line
schemes”). Any task with its statement and any unit of QA-
reasoning has the unique name Z.1 or Q.J or A.J where I or J is
a compound index expressing the subordinations of the
corresponding unit. So any text unit is visualized and has a
unique index which can be used as its address.

More specifically, any unit of the Z-, Q- or A-type is the
interactive object the properties of which are being opened
when the special plug-ins are used. One of such plug-ins
registers and indicates the responsibility (the assignment of
the tasks) in the designer group.

The WIQA is created on the base of the QA-model and the
usage of following architectural styles — repository, MVC,
client-server and interpreter. So for the current state of design
of the definite SIS the WIQA can open to designers the
statement of any task from the tasks tree and the definition of
any project solution accessible as the definite answer in the
corresponding QA-protocol.

Let us notice that the usage of the WIQA as the source of
text units is a solution proposed by the author but the
suggested ideas are possible to use for creating the project
ontology with other instrumental systems which can supply
designers by statements of project tasks and definitions of
project solutions.

VI. WORKING DICTIONARY

The role of the working dictionary is very important in
creating the project ontology. This component as the
preliminary version of the ontology accumulates all necessary
information and distributes informational units between
dictionary articles. Carrying out functions of transportation of
information, the working dictionary registers relate the text
units with their sources. The index name of unit, the number
of its sentence and the number of the corresponding simple
sentence are used for such referencing.

After extracting the simple sentence with the help of the
linguistic processor the predicate model of this sentence is
being included into the virtual article of the working
dictionary (the article with zero index). Zero article is a
temporal memory in the working dictionary which keeps
predicates till finishing their testing on the ontology
conformity. Zero article, the interface of which is presented in
Fig. 6, can be interpreted as a queue of predicates in their
mass service.

After extracting any simple sentence and transforming it to
the simple predicate, the designer has to start the test of the
predicate (as the definite usage of the definite concept). The
test begins usually without knowing the “normative usage of
the concept” for this predicate in the ontology. Moreover,
such usage of the concept in the ontology can be absent or the
result of comparing with the appropriate concept will be
negative. That is why any tested sentence and corresponding



Creation and Usage of Project Ontology in Development of Software Intensive Systems

predicate start their life cycles in the working dictionary from
zero article.

\ i : Address -
: Types of S - -
e =% articles Queue of predicates
Names of « Concept
articles P e
Sentence B
Context

Fig. 6. Virtual article of the working dictionary.

The “normative usage of the concept” for any tested
predicate is localized into the corresponding ontology article.
If the result of comparing is negative but the designer is
convinced that “predicate is truth” then the new ontology
article is to be created or the new variant of the concept usage
is to be built into the existed ontology article. The first of such
results requires to create the new article in the working
dictionary also and to transport the tested predicate from the
virtual article into this new article (Fig. 7).

[ p— -

Dictionary article

Ferrprcones  tha e rgsronin

llllll Mot oot Soparyny

Simple sentences Simple predicates

Dousmna poges)

Formula

Avop: al ol al flavs congamnn: 15033003 221108 131 Benpecmo-oreermas g ua

Fig. 7. Typical article of the working dictionary.

The type of the new article in the working dictionary is
being chosen by designers in accordance with the type of the
ontological unit of the designing SIS for representation of
which the transported predicate will be used.

Processing the second result includes the transportation of
the tested predicate but into the existed article (Fig. 7) of the
working dictionary. In general case such predicate is
transported into several articles of the working dictionary each
of which materializes the tested predicate in the definite form.

If the test of the predicate on the conformity to the ontology
is positive then this predicate should be transported in the
article of the working dictionary, but only in the article of the
definite concept for achieving its representativity. So (step-by-
step) predicates (and their parent sentences) are being

55

accumulated into corresponding articles of the working
dictionary.

There is a set of types of materialized SIS units which are
reflected in the project ontology. The set includes concepts
about “parts” of the reality embedded in the SIS and
materialized in its software (in the form of variables, classes,
functions, procedures, modules, components and program
constructions of the other types) and axioms which combine
concepts. Each of such unit is found as its initial textual
expression in statements of project tasks or in definitions of
project solutions. But when this unit is included into the
ontology article it is usually rewritten, redefined and
reformulated. All informational material for the execution of
the similar work is accumulated in the corresponding article of
the working dictionary. After creating the adequate textual
expressions and formulas they are rewritten from the working
dictionary to the corresponding articles of the project
ontology.

VII. LoGIC PROCESSOR

The logic processor is intended to build the formal
description of the text unit from simple predicates
accumulated in the definite article of the working dictionary.
Such work is being fulfilled by designer in the operational
space presented in Fig. 8 where designer assembles simple
predicates in the formula watching them in the graphical
window. Necessary predicates are being chosen by designer
from the processed article of the working dictionary.

. Patterns
Visual ————
editing :
Type
g e e | of relations
Text unit > <
P R Formula

Fig. 8. Assembling the formula for a text unit.

To assemble the predicates the designer has possibilities to
use the patterns of two bound predicates and setting of the
typical relations between predicates by editing the “picture”
(using the drag and drop and lexical information) and
registering the final result as the formula of the first predicate
logic.

Patterns for two bound predicates has been extracted by
author from the grammars of Russian (46 patterns) and
English (32 patterns). Such patterns are formalized as typical
formulas of the predicates logic.

Mechanisms of assembling the formulas were evolved with
experimental aims as the complex of instrumental procedures
that provides (for statements of tasks) the creation of prolog-
like descriptions. The transformation of the formalized

Polibits (42) 2010



Petr Sosnin

statement of task to the prolog-like description is being
implemented as an automated translating of the formula
registered in the appropriate article of the working dictionary.
Now the method of translating exists in the preliminary
version which will be rationalized by the author.

VIIL

The most important feature of any ontology and the project
ontology in particular is its systematization. In suggested case
the project ontology is defined initially as the Software
Intensive System, the integrity of which is provided by the
system of architectural views. Some of these views are
reflected implicitly by screenshots used in this paper. But such
version of the systematization is only one possibility.

Let us present the other way of the systematization. First of
all it is the classification of concepts in accordance with
structures of the SIS and process of its design. Such system
features of the ontology are formed implicitly through
definitions of concepts and corresponding axioms.

The next classification level of the ontology is bound with
classifying the variants of concept usages. In this case for any
concept its article in the project ontology is being formed,
which includes the ordered group of concept usage variants
and the textual definition of the concept.

The group of usage variants is a list of sub-lists each of
which includes main word (or phrase) as a name of the
concept (C;) and subordinated words (or phrases) as names of
characteristics (Wj;, Wi, ..., Win) of this concept. The definite
sub-list wj;, Wip, ..., Win, C; is an example of the “normative
usage of the concept” which can be used in testing of the
investigated predicate on the conformity to the ontology.

The basic operation of testing is a comparison of the
normative (ontological) sub-list of words with words extracted
from the investigated predicate. Two similar sub-lists of words
can be extracted from the simple predicate when it indicates
the feature and three sub-lists when the predicate registers the
relation.

After testing the chosen sub-list of words, which expresses
the definite variant of the concept usage, the following results
of comparison are possible:

— positive result when the chosen sub-list (W’;;, Wi,

.., Win, C)) is included into the normative sub-list;

— interrogative result when chosen sub-list crosses the
normative sub-list or the tested sub-list is outside of
all norms (the role of questions was explained
above).

The next direction of the systematization is related to
binding concepts. For uniting the ontology concepts into the
system the following relations are used: basic relations (the
part and the whole, the hereditary, the type of the
materialization), associative relations (in accordance with the
similarity, the sequence, common time and common space)
and causality relations.

This type of the view onto the ontology (onto the system of
concepts) is formed by administrator of the ontology at the

SYSTEMATIZATION OF ONTOLOGY

Polibits (42) 2010

screen shown in Fig. 9. Any unit of any such form is opened
for interactive action of designer.

To use the concept relation the designer chooses the
necessary concept by its names in the area “keys of entry” and
then designer can switch among groups (nodes of the relations
system) up to the necessary relation. For the group of relations
presented in Fig. 9 the designer may navigate in these
directions — “part of”’, “whole for”, “has attribute”, “attribute
of”, “descendant of”, “parent for”, ‘“has type” and
“materialized as”. Similar schemes of navigation are used for
the other classes of relations also.

Example of basic
relations

List of concepts

Requested description

Fig. 9. Systematization of ontology concepts.

In any state of the navigation the description of any
visualized unit can be opened. Let us notice that all forms of
the ontology systematization are inherited by the working
dictionary where it opens the possibility for useful switching
between its articles.

IX. COLLISION AVOIDANCE OF SEA VESSELS

The proposed version of the project ontology was created
and used in the development process of the “Expert system for
the collision avoidance of the sea vessels” which is
implemented with using the WIQA capabilities [17].

One of the important components of this expert system is a
knowledge base which includes the normative rules for the
vessel movement. Any unit of such rules was formalized as a
precedent with conditional and behavioral parts. Such
precedents were extracted from the textual descriptions of
normative rules in accordance with their formalizing and
coding in expert system by the WIQA capabilities.

At the first stage of the expert system development about
150 textual expressions describing precedents were extracted
from 37 rules of The International Regulations for Preventing
Collisions at Sea 1972 (COLREGS-72) presented in [3].

Each textual expression was processed with the usage of
techniques described above. As a result about 300 concepts
with their variants of usages and about 500 precedents were
extracted from the textual information. One possibility of the
access to the extracted concepts is presented in Fig. 9. Each
typical usage of any concept was embedded to the project
ontology with its declaration in C#. After developing the
expert system the project ontology was refined and included
into the created system as its ontology.



Creation and Usage of Project Ontology in Development of Software Intensive Systems

As told above all necessary and useful axioms are included
into the project ontology also. Any formal expression of any
precedent is an axiom binding the definite group of variables
indicating the definite concepts.

Each precedent into the project ontology has five variants
of these expressions: the textual expression, the predicate
formula, the question-answer form, the source code in C# and
the executing code. The chosen version of precedent
materializations is suitable not only for the automated access
by the sailor on duty but for the automatic access of program
agents modeling the vessels in the current situation on the sea.

One of these precedents which correspond to the fifteenth
rule of MPPSS-72, has the following predicate expression:

if Condition = (Velocity V_1, “keep out of the way”)

&& (| Bear_I - Bear 2| > 11, 5)

&& (CPA-DDA- AD1 <0) then

Reaction = Maneuver Mi.

The precedent (where CPA is a “Closest Point of
Approach”, DDA is a normative distance between vessels and
AD is an error of the distance measuring) is included into the
article with as demonstration without full explaining the
variables and expressions. The expression of this precedent
(as the axiom) is included into the ontology of the expert
system for the collision avoidance of the sea vessels.

Let us notice that the set of articles of the project ontology
(in development process of the expert system) includes not
only units for named variables and precedents. The common
quantity of project ontology articles (still under refining) was
about two thousand.

X. CONCLUSION

This paper presents the system of techniques for the
creation and usage of the projects ontology in the
development of the SIS when enormous quantity of project
tasks is being solved by the team of designers in the corporate
instrumental network. The success of such activity essentially
depends of mutual understanding of designers in their
specification of conceptualization for solving project tasks and
making project decisions. Therefore any project ontology is to
be being created as the dynamic subsystem included into the
life cycle of the created SIS.

The main suggestion of the paper is the creation of the
project ontology as the problem-oriented SIS®™' which is
intended for supporting the evolution of understanding and
mutual understanding of designers in their step-by-step
conceptual activity.

The other important specificity of suggested techniques is
the usage of the working dictionary as the preliminary version
of the ontology which helps to manage the informational
flows and to register the life ways of the informational units
and their representativity.

Special attention is given to basic informational units the
roles of which are being fulfilled by simple sentences and
simple predicates extracted from them. For working with basic
informational units the linguistic and logic processors are

57

developed and used. The linguistic processor supports the
testing of the statements of project tasks and specifications of
project solutions (including requirements and restrictions) on
their conformity to the ontology and reality. Arising questions
are used for evolving the project ontology.

The logic processor helps to build ontology axioms as
predicate formulas. Its experimental research shows that this
processor can be (and will be) evolved till the automated
creation of the prolog-like description of project tasks.

All interfaces of suggested techniques are adjusted to
Russian but only the morphological analyzer and the library of
the patterns for two bound predicates are dependent from the
specific natural language. The library of patterns for English is
created also.

Various and useful techniques of the systematization are
embedded into the project ontology for the real time work of
designers. Such techniques are accessible both in the ontology
component and in the working dictionary.

As the source of the primary information for the creation of
the ontology the specialized instrumental system WIQA which
supports the usage of question-answer reasoning in the work
with project tasks and project solutions is used. Still suggested
and developed techniques can be adjusted to the other sources
supplying the created ontology by the primary information.

REFERENCES

H.-J. Bullingerl, J. Warschat, O. Schumacher, A. Slama, and P.
Ohlhausen, “Ontology-Based Project Management for Acceleration of
Innovation Project,” Lecture Notes in Computer Science, Vol. 3379, pp.
280-288, 2005.

B. Chandrasekaran, J. R. Josephsonl and V. R.Benjamins, “Ontology of
Tasks and Methods,” in Proc. of the Workshop on Applications of
Ontologies and Problem-Solving Methods, held in conjunction with
ECAI'98, Brighton, UK, 1998, pp. 31-43.

AN. Cockcroft, Guide to the Collision Avoidance Rules: International
Regulations for Preventing Collisions at Sea. Butterworth-Heineman,
2003.

A. H. Eden and R. Turner, “Problems in the Ontology of Computer
Programs,” Applied Ontology, Vol. 2, No. 1, Amsterdam, IOS Press, pp.
13-36, 2007.

A. C. B. Garcia, J. Kunz, M. Ekstrom and A. Kiviniemi, “Building a
Project Ontology with Extreme Collaboration and Virtual Design &
Construction,” CIFE Technical Report # 152, Stanford university, 2003.
A. Gelbukh and G. Sidorov, “Approach to construction of automatic
morphological analysis systems for inflective languages with little
effort,” Lecture Notes in Computer Science, N 2588, Springer-Verlag,
pp. 215-220, 2003.

A. Gelbukh and G. Sidorov, “Morphological Analysis of Inflective
Languages Through Generation,” J. Procesamiento de Lenguaje Natural,
No 29, Sociedad Espafiola para el Procesamiento de Lenguaje Natural
(SEPLN), Spain, pp. 105-112, September 2002.

A. Gelbukh, G. Sidorov, E. Lavin-Villa and L. Chanona-Hernandez,
“Automatic Term Extraction using Log-likelihood based Comparison
with General Reference Corpus,” Lecture Notes in Computer Science
6177, pp. 248-255, 2010.

N. Guarino, “Formal Ontology and Information Systems” in Proc. of
FOIS’98, Trento, Italy, 1998, Amsterdam, IOS Press, pp. 3-15.

N. Guarino, “Understanding, Building, And Using Ontologies,”
Human-Computer Studies, Volume 46 , Issue 2-3, pp. 293-310, 1997.
N. Guarino, D. Oberle and S. Staab, “What is an Ontology?” in S. Staab
and R. Studer (eds.), Handbook on Ontologies, Second Edition.
International handbooks on information systems. Springer Verlag, pp. 1-
17, 20009.

M. Ikeda, K. Seta, O. Kakusho and R. Mizoguchi, “Task ontology:
Ontology for building conceptual problem solving models,” in Proc. of

(1]

[12]

Polibits (42) 2010



Petr Sosnin

[13]

[14

=

[15

—_

[18]

ECAI98 Workshop on applications of ontologies and problem-solving
model, 1998, pp. 126-133.

F. Karray, M. Alemzadeh, J. A. Saleh and M. N. Arab, “Human-
Computer Interaction: Overview on State of the Art,” Smart sensing and
intelligent systems, vol. 1, No. 1, pp. 138-159, 2008.

P. Kroll and Ph. Kruchten, The Rational Unified Process Made Easy: A
Practitioners Guide to the RUP. Addison-Wesley, 2003.

Software Intensive systems in the future. Final peport ITEA 2
Symposium, 2006, 68 p. Available: http://symposium.itea2.org/
symposium2006/ main/publications/ TNO_IDATE study
ITEA_SIS in_the future Final Report.pdf.

P. Sosnin, “Question-Answer Means for Collaborative Development of
Software  Intensive  Systems,” Complex Systems  Concurrent
Engineering. Part 3, Springer London, pp. 151-158, 2007.

P. Sosnin, “Question-Answer Expert System for Ship Collision
Avoidance,” in Proc. 51th International Symposium ELMAR, Zadar,
2009, pp. 185-188.

The Standish Group. Available: http://www.standishgroup.com.

Polibits (42) 2010

58





