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Homogeneización de materiales compuestos de inclusiones elipsoidales periódicas 

Resumen 
Los materiales compuestos son de vital importancia para el ser humano desde sus primeros 

tiempos, en la actualidad el empleo de estos materiales ha proliferado en la industria debido a la 

presencia de propiedades físicas que no están presentes en ninguno de sus componentes. El hecho 

de conocer previamente las propiedades de los materiales compuestos es unos de los problemas a 

los que se enfrenta la ciencia. Los métodos de homogeneización se emplean para calcular las 

propiedades efectivas de materiales compuestos. En el presente trabajo se plantea la formulación 

del método de homogeneización asintótica para compuestos tridimensionales y la transformación 

de los problemas locales a partir de las simetrías presentes en un compuesto de inclusiones 

elipsoidales periódicas. Se formula la resolución de los problemas locales por el método de 

elementos finitos utilizando elementos tetraédricos de cuatro nodos en la discretización del 

problema. Se realizan los cálculos numéricos para la obtención de los coeficientes efectivos en un 

material de inclusiones elipsoidales periódicas de aluminio embebidas en una matriz. La matriz 

es a su vez un compuesto del mismo aluminio con inclusiones esféricas de carburo de silicio con 

distribución cuadrada. Se muestran algunos de los resultados obtenidos para este compuesto 

variando la fracción volumétrica de aluminio para distintas razones de aspecto de las inclusiones 

elipsoidales. Se observa que en el caso de constituyentes isotrópicos, con una geometría del 

compuesto que presente una dirección predominante, el material resultante pierde esta propiedad. 
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Abstract 
Composites are vital to humans since the earliest time; today the use of these materials has 

proliferated in the industry due to the presence of physical properties not present in any of its 

components separately. One of the problems facing modern science is previously know the 

composites properties. Homogenization methods are used to calculate the effective properties of 

composite materials. In this paper the formulation of asymptotic homogenization method for 

three-dimensional composites and transformation of local problems from the symmetries present 

in a composite with periodical ellipsoidal inclusions are presented. The local problems resolution 

is formulated by finite element method using four-node tetrahedral elements in the problem’s 

discretization. Numerical calculations for obtaining the effective coefficients in material with 

periodical ellipsoidal aluminum inclusions embedded in a matrix are made. The matrix is a 

composite of periodical esferical silicon carbide inclusions in an aluminum matrix. Some 

obtained results for this composite by varying the volume fraction of silicon carbide for different 

aspect ratios of the ellipsoidal inclusions are shown. It is observed that in the case of isotropic 

constituents, with a composite’s geometry having a predominant direction, the resulting material 

loses isotropic property. 

                       

Keywords: composites, homogenization method, finite element method, effective properties 
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Introducción 

Los materiales compuestos se conforman por la unión de dos o más materiales, quedando 

separados éstos por regiones o dominios. Estos materiales son utilizados por el hombre desde la 

antigüedad en la construcción de sus viviendas. En la actualidad se emplean para cubrir un 

sinnúmero de aplicaciones, desde elementos estructurales y arquitectónicos en construcción, 

hasta las aplicaciones más avanzadas en la industria aeroespacial, automotriz y electrónica 

(Mieres, 2003). 

 

Entre los métodos de homogeneización, uno de los más empleados es el de 

homogeneización asintótica. Entre los trabajos más destacados en este tema se encuentra el de J 

Bravo-Castillero, en el que se encuentran los coeficientes efectivos de un compuesto 

multilaminado termo-magneto-electro-elástico (Bravo-Castillero et al., 2009). En laminados, 

destaca asimismo, el de J Hernández Cabanas, donde se estudia la influencia de la dirección de 

polarización en un laminado magneto-electro-elástico (Cabanas et al., 2010). Además, entre los 

trabajos en compuestos fibrosos se encuentra el de J Bravo-Castillero, en el que se estudian los 

compuestos periódicos de distribución cuadrada y hexagonal (Bravo-Castillero et al., 2012). Se 

tiene en fibras, también el de R Rodríguez-Ramos, en el que se estudian celdas con forma de 

paralelogramo tanto de manera analítica como numérica con el uso de elementos finitos con 

comparaciones de ambos métodos con resultados teóricos (Rodríguez-Ramos et al., 2010). En la 

obtención de coeficientes efectivos por el método de homogeneización asintótica destaca 

asimismo el trabajo de AV Georgiades, KS Challagulla y AL Kalamkarov. En éste se presenta la 

homogeneización de un material inteligente que es una lámina compuesta por una rejilla de fibras 

ortotrópicas inmersa en una matriz. Este trabajo se divide en dos partes, la primera es un estudio 

teórico (Challagulla et al., 2010) y en la segunda se presentan algunas aplicaciones de este 

material (Georgiades et al., 2010). Por otra parte, DA Hadjiloizi, AV Georgiades y AL 

Kalamkarov, desarrollan un modelo de homogeneización asintótica a múltiple escala para 

compuestos termo-magneto-electro-elásticos (Hadjiloizi et al., 2012). En 2013, JA Otero, 

presenta un método semi-analítico de homogeneización para la obtención de coeficientes 

efectivos elásticos en un compuesto con contacto imperfecto (Otero et al., 2013). MRE Nasution 

y otros, en 2014, presentan un nuevo modelo de homogeneización asintótica, para trabajar 
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propiedades termodinámicas en compuestos 3D con espesor finito, donde toman en cuenta las 

bondades de la homogeneización 2D (Nasution et al., 2014). 

 

En otro orden de importancia, relacionado con el método de homogeneización asintótica, 

el trabajo de U Gabbert, se vincula el método de elementos finitos con la homogeneización para 

la resolución del problema inverso de buscar la distribución a microescala que optimice, a nivel 

de macroescala, las propiedades deseadas para una aplicación (Gabbert et al., 2010). Aunque el 

trabajo que más destaca es el de AL Kalamkarov, IV Andrianov y VV Danishevs’kyy, donde se 

hace una revisión del estado del arte en los métodos de homogeneización, así como un estudio de 

cuales son más convenientes utilizar en dependencia del caso de estudio, además de la 

presentación de nuevas aproximaciones (Kalamkarov et al., 2009). 

 

El presente trabajo presenta el método semianalítico de homogeneización asintótica para 

compuestos tridimensionales. Éste se basa en el empleo del método de homogenización asintótica 

con resolución numérica de los problemas locales mediante el método de elementos finitos. Se 

calculan los coeficientes efectivos de un compuesto de inclusiones elipsoidales de aluminio 

embebidas periódicamente en distribución ortoédrica en una matriz de carburo de silicio. Al ser 

los elementos constituyentes materiales isotrópicos y la geometría del compuesto tener una 

dirección diferenciada, es de esperar que el compuesto resultante pierda esta propiedad. Se 

presentan algunos de los resultados numéricos obtenidos, que muestran la variación de sus 

coeficientes efectivos al variar la fracción volumétrica de las inclusiones para distintas razones de 

aspecto de los elipsoides, además de mostrar que el compuesto pierde la isotropía. 

 

Modelación del problema en compuestos 3D 

Se considera un medio heterogéneo que ocupa un volumen 3Ω∈ℜ  con fronteras 

1 2∂Ω = ∂ Ω ∂ Ω  y consistente en un material de dos fases, donde las inclusiones elipsoidales y la 

matriz son materiales isotrópicos. Las inclusiones elipsoidales tienen una distribución periódica a 

lo largo de los ejes 1OX , 2OX  y 3OX , como se puede apreciar en la sección del compuesto que 

se muestra en la figura 1(a). Dichas inclusiones son elipsoides de revolución sobre un eje paralelo 

al eje 3OX  por lo que presentan dos ejes de igual longitud a  y otro menor que estos en el eje 

Revista Electrónica Nova Scientia, Nº 14 Vol. 7 (2), 2015. ISSN 2007 - 0705. pp: 286 – 313 
- 290 -                                            



Homogeneización de materiales compuestos de inclusiones elipsoidales periódicas 

3OX  de longitud b  tal y como muestra la figura 1(b). La razón de aspecto de estos elipsoides se 

calcula por la relación entre el eje menor y el eje mayor b
a

. 

 

   
(a)      (b) 

Figura 1. Sección de la distribución periódica del compuesto y celda unitaria 

 

Las ecuaciones que gobiernan el problema elástico heterogéneo son 

0, en ,ij

jx
σ∂

= Ω
∂

          (1) 

1

2

0, en ,
0, en ,

i

ij j

u
nσ

= ∂ Ω
= ∂ Ω

          (2) 

donde , 1, 2,3i j =  y ijσ , iu , jn  son las componentes del tensor de esfuerzos, del vector 

desplazamiento y del vector unitario normal a 2∂ Ω , respectivamente. Las ecuaciones 

constitutivas y las componentes del vector deformación klε  están dadas por 

( ) ,ij ijkl klCσ ε= x           (3) 

1 .
2

k l
kl

l k

u u
x x

ε
 ∂ ∂

= + ∂ ∂ 
          (4) 

 

Los coeficientes de elasticidad ( )ijklC x  ( , , , 1, 2,3i j k l = ) son funciones periódicas. La 

celda periódica S  se toma como un ortoedro tal que 1 2S S S= ∪  con 1 2S S∩ =∅ , donde el 

dominio 2S  está ocupado por la matriz y su complemento 1S  es la inclusión elipsoidal de 
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revolución sobre el eje 3OY  y centro en el origen O . La interfase de contacto entre el elipsoide y 

la matriz es denotada por .Γ  Los valores asociados a la matriz y la inclusión serán señalados 

mediante superíndices en paréntesis (2) y (1) respectivamente. Asumiendo contacto ideal entre 

las fases, se puede expresar dicha condición mediante 
(1) (2)

(1) (1) (2) (2)

i i

ijkn ij j ijkn ij j

u u

c n c nσ σ
Γ Γ

Γ Γ

=

=
         (5) 

 

Método 
 

Método de Homogeneización Asintótica 

El método de homogeneización asintótica a doble escala se basa en el empleo de dos variables, 

una global o lenta x  sobre el compuesto y otra local o rápida y  sobre la celda. La relación entre 

éstas es /α=y x , donde α  es un parámetro lo suficientemente pequeño que expresa la relación 

entre las dimensiones de la celda periódica y las dimensiones características del compuesto. La 

otra característica de este método es plantear un desarrollo asintótico de la variable involucrada 

en el problema para a partir de éste, y utilizando la periodicidad del problema, obtener las 

soluciones mediante integración. Es posible encontrar expresiones homogeneizadas de las 

ecuaciones involucradas en el problema a resolver. 

 

Se plantea el desarrollo asintótico de la componente del vector desplazamiento de la 

siguiente forma 
(0) (1) 2 (2)( ) ( , ) ( , ) ,i i i iu u u uα α= + + +x x y x y         (6) 

donde 1,2,3i = . Sustituyendo (6) en (3) y (4) se obtienen 
(0) (1)( , ) ( , ) ,ij ij ijσ σ ασ= + +x y x y          (7) 

(0) (1)( , ) ( , ) ,ij ij ijε ε αε= + +x y x y          (8) 

donde 
(0) (1)

(0) ( ) ( , )( , ) ( ) ( ) ,k k
ij ijkl ijkl

l l

u uC C
x y

σ ∂ ∂
= +

∂ ∂
x x yx y y y       (9) 
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(1) (2)
(1) ( , ) ( , )( , ) ( ) ( ) ,k k
ij ijkl ijkl

l l

u uC C
x y

σ ∂ ∂
= +

∂ ∂
x y x yx y y y       (10) 

(0) (1)(0) (1)
(0) ( ) ( , )( ) ( , )1 1( , ) ,

2 2
j ji i

ij
j i j i

u uu u
x x y y

ε
   ∂ ∂∂ ∂

= + + +      ∂ ∂ ∂ ∂   

x x yx x yx y     (11) 

(1) (2)(1) (2)
(1) ( , ) ( , )( , ) ( , )1 1( , ) .

2 2
j ji i

ij
j i j i

u uu u
x x y y

ε
   ∂ ∂∂ ∂

= + + +      ∂ ∂ ∂ ∂   

x y x yx y x yx y    (12) 

Usando entonces (6) y (7) en (1), y reagrupando términos según el exponente de α , se tiene para 
1α−  y 0α  respectivamente 

(0) ( , )
0,ij

jy
σ∂

=
∂

x y
          (13) 

(0) (1)( , ) ( , )
0.ij ij

j jx y
σ σ∂ ∂

+ =
∂ ∂

x y x y
         (14) 

Sustituyendo (9) en (13) se tiene 
(1) (0) ( )( , ) ( )( ) ,ijklk k

ijkl
j l l j

Cu uC
y y x y

∂ ∂ ∂∂
= − ∂ ∂ ∂ ∂ 

yx y xy       (15) 

donde la función (1) ( , )ku x y  puede ser expresada mediante 

(0)
(1) ( )

( , ) ( ) ,p
k pq k

q

u
u N

x
∂

=
∂

x
x y y          (16) 

siendo ( )pq kN y  ( , , 1, 2,3)k p q =  las componentes Y-periódicas de los seudo-desplazamientos 

locales. 

 

Los problemas locales pq  en la celda periódica pueden obtenerse mediante la sustitución 

de (16) en (15). Obteniendo de esta forma 

( ) ( )
,pq ij ijpq

j j

C
y y
τ∂ ∂

= −
∂ ∂

y y
         (17) 

donde las componentes del tensor de los esfuerzos locales están dadas por 

( )
( ) ( ) .pq k

pq ij ijkl
l

N
C

y
τ

∂
=

∂

y
y y          (18) 

Sustituyendo (16) en las ecuaciones (9) y (11) se obtienen 
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( )
(0)

(0) ( )
( , ) ( ) ( ) ,p

ij ijpq pq ij
q

u
C

x
σ τ

∂
= +

∂

x
x y y y        (19) 

(0) (0)(0)
(0) ( ) ( ) ( ) ( )( )1 1( , ) .

2 2
j pq i pq j pi

ij
j i j i q

u N N uu
x x y y x

ε
   ∂ ∂ ∂ ∂∂

= + + +      ∂ ∂ ∂ ∂ ∂   

x y y xxx y    (20) 

Se define el operador promedio sobre la celda como 

( )1• • ,
Y

dy
Y

= ∫           (21) 

donde Y  es el volumen de la celda. Promediando la expresión (10) y utilizando la periodicidad 

de (1)
ijσ , el problema estático homogéneo es obtenido en la forma 

(0) ( )
0,ij

jx
σ∂

=
∂

x
           (22) 

siendo entonces  las ecuaciones constitutivas del problema homogéneo  
(0)

(0) (0) * ( )
( ) ( , ) ,p

ij ij ijpq
q

u
C

x
σ σ

∂
= =

∂

x
x x y        (23) 

y 
* ( ) ( ) ,ijpq ijpq pq ijC C τ= +y y          (24) 

son los coeficientes elásticos efectivos. Aplicando el operador promedio en la expresión (20) y 

usando la periodicidad de ( )pq N y , el tensor de deformaciones homogéneo es 

(0)(0)
(0) (0)  

( )( )1( ) ( , ) .
2

ji
ij ij

j i

uu
x x

ε ε
 ∂∂

= = +  ∂ ∂ 

xxx x y       (25) 

Asimismo las condiciones de contorno dadas en (2) son transformadas en 
(0)

1
(0)

2

( ) 0, en ,

( ) 0, en .
i

ij j

u

nσ

= ∂ Ω

= ∂ Ω

x

x
         (26) 

 

El problema de la obtención de los coeficientes efectivos radica en la obtención de 

soluciones periódicas en S , de seis problemas locales pq L , en términos de la variable local y , 

donde , 1, 2,3p q = . Cada problema se desacopla en un conjunto independiente de ecuaciones. En 

la Tabla 1 se muestra la correspondencia entre los coeficientes efectivos y los problemas locales. 
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Tabla 1. Coeficientes efectivos relacionados a cada problema local 

11 L  22 L  33 L  23 L  13 L  12 L  
*
1111C  *

1122C  *
1133C  0 0 0 

*
2211C  *

2222C  *
2233C  0 0 0 

*
3311C  *

3322C  *
3333C  0 0 0 

0 0 0 *
2323C  0 0 

0 0 0 0 *
1313C  0 

0 0 0 0 0 *
1212C  

 

Los problemas locales se pueden plantear de la siguiente forma: 

 

• Problemas 3 Lλ , con , 1, 2λ β =  y λ β≠  

 

3 1 3 2 3 3 3 3

1 2 3 3

3 31 3 32 3 33 3 3

1 2 3

3 1 3 2 3 3

1 2 3

,

,

0.

C
y y y y

C
y y y y

y y y

λ λ λ λ λ λ λ λ

λ λ λ λλ

λ

λ β λ β λ β

τ τ τ

τ τ τ

τ τ τ

∂ ∂ ∂ ∂
+ + = −

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

+ + = −
∂ ∂ ∂ ∂

∂ ∂ ∂
+ + =

∂ ∂ ∂

       (27) 

 

• Problemas Lββ , con 1,2,3β =  

 

11 12 13 11

1 2 3 1

21 22 23 22

1 2 3 2

31 32 33 33

1 2 3 3

,

,

.

C
y y y y

C
y y y y

C
y y y y

ββ ββ ββ ββ

ββ ββ ββ ββ

ββ ββ ββ ββ

τ τ τ

τ τ τ

τ τ τ

∂ ∂ ∂ ∂
+ + = −

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

+ + = −
∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

+ + = −
∂ ∂ ∂ ∂

       (28) 

 

• Problema 12 L  
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12 1312 11 12 12 1212

1 2 3 2

12 2312 21 12 22 2112

1 2 3 1

12 31 12 32 12 33

1 2 3

,

,

0,

C
y y y y

C
y y y y

y y y

ττ τ

ττ τ

τ τ τ

∂∂ ∂ ∂
+ + = −

∂ ∂ ∂ ∂
∂∂ ∂ ∂

+ + = −
∂ ∂ ∂ ∂
∂ ∂ ∂

+ + =
∂ ∂ ∂

       (29) 

 

En el presente problema, la celda unitaria presenta las simetrías propias del grupo puntual 

4hD , según la teoría de grupos (Landau et al., 1977), por lo que presenta simetría respecto a los 

planos coordenados. Además, los coeficientes elásticos 1 2 3( ) ( , , )ijkl ijklC C y y y≡y  son funciones 

pares respecto a 1y , 2y  y 3y , por lo que satisfacen las condiciones 

0, si es impar
h h

pq i hi hp hqy d
N δ δ δ

=
= + +        (30) 

0, si 1 es impar
h h

pq hi hi hp hqy d
τ δ δ δ

=
= + + +       (31) 

donde , , , 1, 2,3h i p q = , { }0,h hd l=  siendo hl  la semi-longitud de la celda en la dirección hy   y 

1 si
.

0 sihi

h i
h i

δ
=

=  ≠
          (32) 

 

Utilizando las condiciones (30) y (31) los problemas locales pq L  sobre la celda unitaria 

pueden ser transformados en problemas de contorno sobre 1/ 8  de la celda periódica (Bakhvalov 

et al., 1989), esta sección de la celda se presenta en la figura 2. Se pasan ahora los problemas 

locales pq L  a la nueva variable pq kM  según 

,pq k pq k p kqN M y δ= −           (33) 

donde , , 1, 2,3p q l = . La ecuación (18) puede ser escrita como 

( ) ( ) ( ).pq ij pq ij ijpqCτ σ= −y y y          (34) 

Para esto se ha denotado 

( )
( ) ( ) ,pq k

pq ij ijkl
l

M
C

y
σ

∂
=

∂

y
y y         (35) 

y las ecuaciones (17) y (24) se transforman en 
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( )
0,pq ij

jy
σ∂

=
∂

y
          (36) 

y 
* 8 ( ) .ijpq pq ijC σ= y           (37) 

 

 
Figura 2. Sobre la octava parte de la celda los problemas locales pueden convertirse en problemas de contorno. 

 

Finalmente, los problemas locales pq L  pueden ser escritos en esta forma, utilizando la no-

tación abreviada para los coeficientes elásticos ijklC . Se tiene que el problema local sobre 1/8 de 

la celda se expresa por 
( ) ( ) ( )
11 12 13

1 2 3
( ) ( ) ( )
21 22 23

1 2 3
( ) ( ) ( )
31 32 33

1 2 3

0,

0,

0,

pq pq pq

pq pq pq

pq pq pq

y y y

y y y

y y y

σ σ σ

σ σ σ

σ σ σ

ϒ ϒ ϒ

ϒ ϒ ϒ

ϒ ϒ ϒ

∂ ∂ ∂
+ + =

∂ ∂ ∂

∂ ∂ ∂
+ + =

∂ ∂ ∂

∂ ∂ ∂
+ + =

∂ ∂ ∂

        (38) 

donde 
( ) ( )
3 2( ) ( ) ( )

23 32 44
2 3

,pq pq
pq pq

M M
C

y y
σ σ

ϒ ϒ
ϒ ϒ ϒ

 ∂ ∂
= = +  ∂ ∂ 

      (39)  

( ) ( )
3 1( ) ( ) ( )

13 31 55
1 3

,pq pq
pq pq

M M
C

y y
σ σ

ϒ ϒ
ϒ ϒ ϒ

 ∂ ∂
= = +  ∂ ∂ 

      (40)  
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( ) ( )
2 1( ) ( ) ( )

12 21 66
1 2

,pq pq
pq pq

M M
C

y y
σ σ

ϒ ϒ
ϒ ϒ ϒ

 ∂ ∂
= = +  ∂ ∂ 

      (41)  

( ) ( ) ( )
1 2 3( ) ( ) ( ) ( )

1 2 3
1 2 3

,pq pq pq
pq

M M M
C C C

y y yββ β β βσ
ϒ ϒ ϒ

ϒ Υ Υ Υ∂ ∂ ∂
= + +

∂ ∂ ∂
     (42)  

siendo , 1, 2λ ϒ =  y 1, 2,3β = . 

 

Las condiciones de contorno se expresan, con { }0,h hd l= , de las siguientes maneras: 

 

• Problema 11 L  

 

1 1 2 3

1 1 2 3

1 2 2 3

1 2 3 3

( ) ( )
11 12 11 13 , ,

( )
11 1 1, ,

( ) ( ) ( )
11 21 11 2 11 23 , ,

( ) ( ) ( )
11 31 11 31 11 3 , ,

, 0,

,

, , 0,

, , 0,

y d y y

y d y y

y y d y

y y y d

M d

M

M

σ σ

σ σ

σ σ

ϒ ϒ

= ∈ϒ ∈ϒ

ϒ

= ∈ϒ ∈ϒ

ϒ ϒ ϒ

∈ϒ = ∈ϒ

ϒ ϒ ϒ

∈ϒ ∈ϒ =

=

=

=

=

       (43) 

 

 

 

• Problema 22 L  

 

1 1 2 3

1 2 2 3

1 2 2 3

1 2 3 3

( ) ( ) ( )
22 1 22 12 22 13 , ,

( ) ( )
22 21 22 23 , ,

( )
22 2 2, ,

( ) ( ) ( )
22 31 22 31 22 3 , ,

, , 0,

, 0,

,

, , 0,

y d y y

y y d y

y y d y

y y y d

M

M d

M

σ σ

σ σ

σ σ

ϒ ϒ ϒ

= ∈ϒ ∈ϒ

ϒ ϒ

∈ϒ = ∈ϒ

ϒ

∈ϒ = ∈ϒ

ϒ ϒ ϒ

∈ϒ ∈ϒ =

=

=

=

=

       (44) 

 

• Problema 33 L  
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1 1 2 3

1 2 2 3

1 2 3 3

1 2 3 3

( ) ( ) ( )
33 1 33 12 33 13 , ,

( ) ( ) ( )
33 21 33 2 33 23 , ,

( ) ( )
33 31 33 31 , ,

( )
33 3 3, ,

, , 0,

, , 0,

, 0,

,

y d y y

y y d y

y y y d

y y y d

M

M

M d

σ σ

σ σ

σ σ

ϒ ϒ ϒ

= ∈ϒ ∈ϒ

ϒ ϒ ϒ

∈ϒ = ∈ϒ

ϒ ϒ

∈ϒ ∈ϒ =

ϒ

∈ϒ ∈ϒ =

=

=

=

=

       (45) 

 

• Problema 23 L  

 

1 1 2 3

1 2 2 3

1 2 2 3

1 2 3 3

( ) ( ) ( )
23 1 23 12 23 13 , ,

( ) ( )
23 1 23 22 , ,

( )
23 3 2, ,

( ) ( ) ( )
23 1 23 2 23 33 , ,

, , 0,

, 0,

,

, , 0.

y d y y

y y d y

y y d y

y y y d

M

M

M d

M M

σ σ

σ

σ

ϒ ϒ ϒ

= ∈ϒ ∈ϒ

ϒ ϒ

∈ϒ = ∈ϒ

ϒ

∈ϒ = ∈ϒ

ϒ ϒ ϒ

∈ϒ ∈ϒ =

=

=

=

=

       (46) 

 

• Problema 13 L  

 

1 1 2 3

1 1 2 3

1 2 2 3

1 2 3 3

( ) ( )
11 13 2 , ,

( )
13 3 1, ,

( ) ( ) ( )
13 21 13 2 13 23 , ,

( ) ( ) ( )
13 1 13 2 13 33 , ,

, 0,

,

, , 0,

, , 0.

y d y y

y d y y

y y d y

y y y d

M

M d

M

M M

σ

σ σ

σ

ϒ ϒ

= ∈ϒ ∈ϒ

ϒ

= ∈ϒ ∈ϒ

ϒ ϒ ϒ

∈ϒ = ∈ϒ

ϒ ϒ ϒ

∈ϒ ∈ϒ =

=

=

=

=

       (47) 

 

• Problema 12 L  

 

1 1 2 3

1 1 2 3

1 2 2 3

1 2 3 3

( ) ( )
12 11 12 3 , ,

( )
12 2 1, ,

( ) ( ) ( )
12 1 12 22 12 3 , ,

( ) ( ) ( )
12 31 12 32 12 3 , ,

, 0,

,

, , 0,

, , 0,

y d y y

y d y y

y y d y

y y y d

M

M d

M M

M

σ

σ

σ σ

Υ Υ

= ∈Υ ∈Υ

Υ

= ∈Υ ∈Υ

Υ Υ Υ

∈Υ = ∈Υ

Υ Υ Υ

∈Υ ∈Υ =

=

=

=

=

       (48) 
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Los coeficientes efectivos se pueden calcular mediante (37), quedando de la forma: 

 

• Problema 11 L  

 

* 11 311 1 11 2
11 11 12 13

1 2 3

8 ,MM MC C C C
y y y

∂∂ ∂
= + +

∂ ∂ ∂
      (49)  

* 22 322 1 22 2
12 11 12 13

1 2 3

8 ,MM MC C C C
y y y

∂∂ ∂
= + +

∂ ∂ ∂
      (50) 

* 33 1 33 2 33 3
13 11 12 13

1 2 3

8 ,M M MC C C C
y y y

∂ ∂ ∂
= + +

∂ ∂ ∂
      (51) 

 

• Problema 22 L  

 

* 11 311 1 11 2
21 12 22 23

1 2 3

8 ,MM MC C C C
y y y

∂∂ ∂
= + +

∂ ∂ ∂
      (52) 

* 22 322 1 22 2
22 12 22 23

1 2 3

8 ,MM MC C C C
y y y

∂∂ ∂
= + +

∂ ∂ ∂
      (53) 

* 33 1 33 2 33 3
23 12 22 23

1 2 3

8 ,M M MC C C C
y y y

∂ ∂ ∂
= + +

∂ ∂ ∂
      (54) 

 

 

 

 

 

• Problema 33 L  

 

* 11 311 1 11 2
31 13 23 33

1 2 3

8 ,MM MC C C C
y y y

∂∂ ∂
= + +

∂ ∂ ∂
      (55) 
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* 22 322 1 22 2
32 13 23 33

1 2 3

8 ,MM MC C C C
y y y

∂∂ ∂
= + +

∂ ∂ ∂
      (56) 

* 33 1 33 2 33 3
33 13 23 33

1 2 3

8 .M M MC C C C
y y y

∂ ∂ ∂
= + +

∂ ∂ ∂
      (57) 

 

• Problema 23 L  

 

* 23 3 23 2
44 44

2 3

8 .M MC C
y y

 ∂ ∂
= + ∂ ∂ 

        (58)  

 

• Problema 13 L  

 

* 13 3 13 1
55 55

1 3

8 ,M MC C
y y

 ∂ ∂
= + ∂ ∂ 

        (59)  

 

• Problema 12 L  

 

* 12 1 12 2
66 66

2 1

8 .M MC C
y y

 ∂ ∂
= + ∂ ∂ 

        (60) 

 

Resolución de los problemas locales por el método de elementos finitos 

En muchas ocasiones, la solución exacta de los problemas locales del método de 

homogeneización es imposible de obtener mediante métodos analíticos. Solamente para 

geometrías muy específicas de las inclusiones es posible obtener las soluciones analíticas. Una 

solución alternativa es el empleo de métodos numéricos aproximados como el método de las 

diferencias finitas y el método de elementos finitos. Por esta razón se utiliza el método de 

elementos finitos  a partir del principio de mínima energía potencial. La energía potencial para un 

sólido elástico puede ser expresada mediante 
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1 .
2

T T T T
i i

iV V S

dV u f dV u T dS u Pσ εΠ = − − −∑∫ ∫ ∫       (61) 

 

En esta expresión se encuentran relacionadas la energía de deformación por unidad de 

volumen del cuerpo, la energía potencial asociada a las fuerzas sobre el cuerpo f , a las fuerzas 

de tracción t  y a las cargas puntuales iP  respectivamente. En el caso presente se tiene que 

0if T P= = = . 

 

Las relaciones (38 - 42) pueden expresarse en forma matricial como 

,pq pqσ ε= D            (62) 

donde 

11 22 33 23 13 21 ,
T

pq pq pq pq pq pq pqσ σ σ σ σ σ σ =        (63)  

11 22 33 23 13 12

T

pq pq pq pq pq pq pqε ε ε ε ε ε ε =        (64) 

1 2 3 2 3 1 3 1 2

1 2 3 3 2 3 1 2 1

,
T

pq pq pq pq pq pq pq pq pqM M M M M M M M M
y y y y y y y y y

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
= + + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 

11 12 13

12 22 23

13 23 33

44

55

66

0 0 0
0 0 0
0 0 0

.
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

C C C
C C C
C C C

C
C

C

 
 
 
 

=  
 
 
 
  

D        (65)  

 

La región de estudio que sería en este caso 1/ 8  de la celda unitaria es dividida en un 

número finito de elementos tetraédricos. Cada uno de estos elementos se define mediante 4 nodos 

ubicados en sus vértices. Los seudo-desplazamientos, para cada punto del elemento, pueden 

expresarse en función de los valores de éstos en los nodos, a través de las funciones de 

interpolación, como 

,pq M = Ψq            (66) 

donde 
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1 2 3 4

1 2 3 4

1 2 3 4

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

ψ ψ ψ ψ
ψ ψ ψ ψ

ψ ψ ψ ψ

 
 Ψ =  
  

    (67)  

[ ]11 21 31 12 22 32 13 23 33 14 24 34
Tq q q q q q q q q q q q q=    (68) 

siendo ijq  es la i -ésima componente del seudo-desplazamiento en el j -ésimo nodo y las 

funciones iψ  son las funciones de interpolación del elemento dadas en coordenadas naturales 

1

2

3

4

,
,
,

1 .

ψ ξ
ψ η
ψ ζ
ψ ξ η ζ

=
=
=
= − − −

              (69) 

La relación entre las deformaciones y los seudo-desplazamiento (64) puede ser escrita de la 

forma 

1

1

1

11 12 13 2

21 22 23

31 32 33 2

31 32 33 21 22 23

31 32 33 11 12 13 2

21 22 23 11 12 13

3

3

3

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0

0 0 0
0 0 0

pq

pq

pq

pq

pq
pq

pq

pq

pq

pq

M

M

M

M

M

M

M

M

M

ξ

η

ζ

ξ

ε
η

ζ

ξ

η

ζ

ℑ ℑ ℑ
ℑ ℑ ℑ

ℑ ℑ ℑ
ℑ ℑ ℑ ℑ ℑ ℑ

ℑ ℑ ℑ ℑ ℑ ℑ
ℑ ℑ ℑ ℑ

∂
 ∂
 ∂

∂
∂

∂
∂ 

  ∂ 
  ∂

=  
∂ 

  ∂
 

∂  
∂

∂
∂

∂

∂

ℑ ℑ

∂

,






 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  (70) 

donde ijℑ  son los coeficientes de la matriz inversa del Jacobiano J  de la transformación 
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1
31 2

1
11 12 13 11 12 13

1 31 2
21 22 23 21 22 23

31 32 33 31 32 33
31 2

.

xx x

J J J
xx xJ J J

J J J
xx x

ξ ξ ξ

η η η

ζ ζ ζ

−

−

−

 ∂∂ ∂
 ∂ ∂ ∂    
 ∂∂ ∂   = = =      ∂ ∂ ∂     

ℑ ℑ ℑ
ℑ ℑ ℑ
ℑ ℑ ℑ    ∂∂ ∂

 ∂ ∂ ∂ 

J    (71) 

Utilizando las relaciones (66) y (70) las deformaciones se pueden escribir en forma matricial 

como sigue 

,ε = Bq            (72) 

donde B  es la matriz  de la relación entre las deformaciones y los seudo-desplazamientos del 

elemento 

( )

11 12 13

21 22 23

31 32 33

31 32 33 21 22 23

31 32 33 11 12 13

21 22 23 11 12 13

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,
0 0 0

0 0 0
0 0 0

ℑ ℑ ℑ
ℑ ℑ ℑ

ℑ ℑ ℑ
ℑ ℑ ℑ ℑ ℑ ℑ

ℑ ℑ ℑ ℑ ℑ ℑ

 
 
 
 

= ∆ Ψ 
 
 

ℑ ℑ


ℑ ℑ ℑ  ℑ

B     (73) 

( ) ( )
ξ
η
ζ

∂ ∂ 
 ∆ Ψ = ∂ ∂ Ψ 
 ∂ ∂ 

          (74) 

2 4

2 4

2 4

2 4

2

1

1

1

1

4

2 4

2 4

1

1

4

1

1 4

21

2

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

ψ ξ ψ ξ ψ ξ
ψ η ψ η ψ η
ψ ζ ψ ζ ψ ζ

ψ ξ ψ ξ ψ ξ
ψ η ψ η ψ η
ψ ζ ψ ζ ψ ζ

ψ ξ ψ ξ ψ ξ
ψ η ψ η ψ η
ψ ζ ψ ζ ψ ζ

∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂
= ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂




















 
 
 
 
 
 
 
 
 
 
 
 
 

. 

Al ser las funciones de interpolación iψ  tan sencillas y sus derivadas son 1 o -1, al desarrollar 

( )∆ Ψ  se obtiene una matriz que toma valores 1, 0 o -1, por lo que la matriz B  quedaría 

explícitamente como 
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11 12 13 1

21 22 23 2

31 32 33 3

31 21 32 22 33 23 3 2

31 11 32 12 33 13 3 1

21 11 22 12 23 13 2 1

ˆ

ˆ

ˆ

ˆ

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
,

0 0 0 0

0 0 0 0

0

ˆ ˆ

ˆ0 0ˆ0

ˆ

ℑ ℑ ℑ ℑ

ℑ ℑ ℑ ℑ

ℑ ℑ ℑ ℑ

ℑ ℑ ℑ ℑ ℑ ℑ ℑ ℑ

ℑ ℑ ℑ ℑ ℑ ℑ ℑ ℑ

ℑ

 
 
 
 
 =  


ℑ ℑ ℑ ℑ ℑ ℑ


 
 
 ℑ 

B  

donde 1 2 3
ˆ

i i i iℑ = −ℑ −ℑ −ℑ , para 1, 2,3i = . 

 

Ahora es necesario calcular las tensiones para cada uno de los elementos. Usando las 

relaciones (64) y (72) se obtiene 

.σ = DBq            (75) 

La energía de deformación asociada a un elemento e  se obtiene 

1 .
2

e T
S

e

dVσ εΠ = ∫           (76) 

Sustituyendo (64) y (63) en (76) se obtiene la energía de deformación en la forma 

1 ,
2

e T e
S SΠ = q K q           (77) 

donde e
SK  es la matriz de rigidez del elemento 

(1 ) (1 )1

0 0 0

det( ) .e T
s d d d

ζ η ζ

ξ η ζ
− − −

= ∫ ∫ ∫K B DB J        (78) 

Tomando en consideración la contribución de todos los elementos a la energía potencial de 

deformación del sistema se obtiene 

1 1 ,
2 2

e T e T
S S S S

e e
Π = Π = =∑ ∑ q K q Q K Q        (79) 

donde SK  es la matriz de rigidez global y Q  es el vector seudo-desplazamiento global. 

 

La sustitución de los /ipq jM y∂ ∂  correspondientes, (66) y (70) en (49-50) se obtiene la 

contribución del elemento e  en el coeficiente efectivo del material como 
(1 ) (1 )1

*

0 0 0

8 det( ) .ij
e C d d d

ζ η ζ

ξ η ζ
− − −

= ∫ ∫ ∫ DBq J        (80) 
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siendo en cada caso: 

 

• Problemas Lββ  

 

11 12 13

21 22 23

31 32 33

e e e

e e e

e e e

C C C
C C C
C C C

 
 



= 


D           (81) 

11 12 13 1

21 22 23 2

31 32 33 3

ˆ0 0 0 0 0 0 0 0
ˆ0 0 0 0 0 0 0 0

ˆ0 0 0 0 0 0 0 0

ℑ 
 

=

ℑ ℑ ℑ

ℑ 
 


ℑ ℑ ℑ

ℑ ℑ  ℑ ℑ

B    (82) 

 

• Problema 23 L  

 

44
e C=D             (83) 

31 21 32 22 33 23 3 2
ˆ ˆ0 0 0 0ℑ ℑ ℑ ℑ ℑ = ℑ ℑ ℑB     (84) 

 

• Problema 13 L  

 

55
e C=D             (85) 

31 11 32 12 33 13 3 1
ˆ ˆ0 0 0 0ℑ ℑ ℑ ℑ ℑ ℑ ℑ= ℑ  B     (86) 

 

• Problema 12 L  

 

66
e C=D             (87) 

21 11 22 12 23 13 2 1
ˆ0 0 0 0ˆℑ ℑ ℑ ℑ ℑ ℑ ℑ ℑ =  B     (88) 
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Tomando en consideración las aportaciones de cada elemento al coeficiente efectivo, éste 

queda de la forma 
* *.e
ij ij

e
C C=∑            (89) 

 

Resultados 

Para la obtención de los resultados se utilizan las propiedades de los constituyentes obtenidas por 

Sabina y otros colaboradores en 1993, mostradas en la Tabla 2 (Sabina et al., 1993). En el caso 

del cálculo mediante el uso del método de elementos finitos, se hace una discretización del 

espacio en elementos tetraédricos definidos por 4 nodos ubicados en los vértices de los 

elementos. En la figura 3 se muestra un ejemplo de esta discretización. 

 

Tabla 2. Propiedades de los materiales constituyentes. 

Material Al Al-SiC 

11C  1.105×1011 2.653×1011 

12C  0.571×1011 0.837×1011 

44C  ( )11 12 2C C−  

 

 
Figura 3. Ejemplo de mayados para 1/8 de la celda 

 

Se realizaron cálculos para diferentes valores de la fracción volumétrica en varias razones 

de aspecto de las inclusiones de aluminio y se comprobó que los resultados obtenidos en los 
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compuestos perdían la propiedad isotrópica de los materiales constituyentes. Los resultados 

obtenidos muestran en todos los casos que los compuestos presentan isotropía solo en las 

direcciones de los ejes 1OX  y 2OX , siendo posible apreciarlo en los valores que se muestran a 

modo de ejemplo en la Tabla 3. En ésta se comprueba que los coeficientes 12C , 33C  y 66C  se 

diferencian de los coeficientes a los que son iguales en el caso de los materiales isotrópicos, 

mientras que el resto de las igualdades se mantiene, con lo cual se puede verificar dicha pérdida 

de isotropía, principalmente con la diferenciación de 11C  y 22C  con 33C . 

 

Tabla 3. Valores de los coeficientes efectivos para algunos de los cálculos realizados. 

Razón de 
Aspecto 

1
1.5

 
1

2.5
 

1
3.5

 
1

4.5
 

Fracción 
Volumétrica 0.03141592654 0.08726646260 0.08552113335 0.1060287521 

11C  2.586116166×1011 2.481441534×1011 2.498355492×1011 2.470324585×1011 

21C  8.279647462×1010 8.099672265×1010 8.096160908×1010 8.030339063×1010 

31C  8.259718398×1010 8.042983599×1010 8.039251312×1010 7.918136569×1010 

12C  8.279647462×1010 8.099672265×1010 8.096160908×1010 8.030339063×1010 

22C  2.586115541×1011 2.481442264×1011 2.498355111×1011 2.470324614×1011 

32C  8.259731559×1010 8.042950178×1010 8.039264201×1010 7.918135798×1010 

13C  8.259718398×1010 8.042983599×1010 8.039251312×1010 7.918136569×1010 

23C  8.259731559×1010 8.042950178×1010 8.039264201×1010 7.918135798×1010 

33C  2.586418454×1011 2.462454641×1011 2.421662352×1011 2.348745984×1011 

66C  8.781446935×1010 8.304675156×1010 8.411203114×1010 8.302625042×1010 

55C  8.748684791×1010 8.117103084×1010 8.052835409×1010 7.703239741×1010 

44C  8.748682633×1010 8.117117881×1010 8.052852871×1010 7.703259974×1010 

 
La variación de los coeficientes efectivos, y la pérdida de la propiedad de isotropía se 

pueden apreciar al comparar las gráficas de los valores de los coeficientes que son iguales en un 

material isotrópico. En las figuras 4 y 5 pueden verse estas gráficas para la comparación de los 

Revista Electrónica Nova Scientia, Nº 14 Vol. 7 (2), 2015. ISSN 2007 - 0705. pp: 286 – 313 
- 308 -                                            



Homogeneización de materiales compuestos de inclusiones elipsoidales periódicas 

coeficientes 11C - 33C , 12C - 13C  y 44C - 66C  en las subfiguras (a), (b) y (c) respectivamente en cada 

una. Se aprecia que los coeficientes 33C , 13C  y 44C  se hacen menores al perder la isotropía por 

ser el eje menor del elipsoide de revolución coincidente con la dirección del eje 3OY . La 

variación de los coeficientes que provoca la pérdida de la isotropía de los constituyentes en el 

compuesto, es mediante la diferenciación de los coeficientes que involucran la dirección 

diferenciada, en este caso justamente los tres coeficientes mencionados más los que por la 

simetría del compuesto son iguales a éstos como el 23C , 55C  y los simétricos a ellos. 

0.05 0.1 0.15 0.2 0.25 0.32

2.1

2.2

2.3

2.4

2.5

2.6x 1011

Fracción Volumétrica

 

 

C11
C33

 
0.05 0.1 0.15 0.2 0.25 0.37.2

7.4

7.6

7.8

8

8.2x 1010

Fracción Volumétrica

 

 

C12
C13

 
(a)            (b) 

0.05 0.1 0.15 0.2 0.25 0.36

6.5

7

7.5

8

8.5x 1010

Fracción Volumétrica

 

 

C44
C66

 
(c) 

Figura 4. Variación de los coeficientes efectivos dependiendo de la fracción volumétrica para una razón de aspecto 

de 
1

4.5
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Figura 5. Variación de los coeficientes efectivos dependiendo de la fracción volumétrica para una razón de aspecto 

de 
1
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(c)            (d) 
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(e)            (f) 

Figura 6. Variación de los coeficientes efectivos dependiendo de la fracción volumétrica de carburo de silicio 
variando la razón de aspecto de la inclusión de aluminio. 

 

En la figura 6 se muestran los gráficos de los coeficientes efectivos obtenidos en función 

de la variación de la fracción volumétrica. En cada subfigura se graficaron estos valores para 

cada una de las razones de aspecto trabajadas en curvas diferentes para su comparación. Es 

apreciable, salvo en el caso del coeficiente 12C , que los valores de éstos varían al variar la razón 

de aspecto a pesar de que no haya una coincidencia en las fracciones volumétricas utilizadas para 

el cálculo en cada curva. De esta forma es posible ver que al aumentar la deformación de los 

elipsoides, los coeficientes 11C  y 66C  aumenten también, figuras 6(a) y 6(f), mientras que 13C , 

33C  y 44C  disminuyen su valor, figuras 6(c), 6(d) y 6(e). Esto enfatiza aún más la diferencia 

descrita anteriormente en la tabla 2 y las figuras 4 y 5, donde se mostraba que los coeficientes que 

involucran la dirección diferenciada disminuían con respecto a los otros, que como muestran los 

gráficos, tienden a aumentar marcando aún más esta diferencia. 

 

Conclusiones 

En el presente trabajo queda mostrado explícitamente el método semianalítico de 

homogeneización asintótica, desde su formulación hasta el desarrollo de su solución. Se muestra 

que, si los componentes son materiales isotrópicos y la geometría del compuesto presenta una 

dirección diferencial manteniendo las otras dos iguales entre sí, el compuesto resultante pasará de 

tener un comportamiento isotrópico a tener solamente isotropía en las direcciones de los ejes 

1OX  y 2OX . Además, se muestra cómo van variando los coeficientes efectivos del compuesto de 

inclusiones elipsoidales periódicas al variar la fracción volumétrica y la razón de aspecto de las 
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inclusiones. Se aprecia cómo se diferencian los coeficientes efectivos provocando la pérdida de la 

propiedad de isotropía y cómo disminuyen o aumentan al variar la razón de aspecto, según se 

relacionen con la dirección diferenciada o no. 
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