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Resumen 

Esta investigación está enfocada en mejorar los resultados de segmentación de imágenes de 

cultivos mediante el uso de descriptores morfológicos adaptativos, en lugar de algoritmos 

clásicos o el uso del operador top-hat utilizando descriptores morfológicos predefinidos como el 

disco y el diamante. Una de las técnicas más utilizadas para la segmentación de imágenes de 

cultivos es el algoritmo K-Means. Sin embargo, este algoritmo tiene el inconveniente de llegar a 

diferentes resultados de segmentación en la misma imagen, dada su inicialización aleatoria. 

Adicionalmente, el tiempo requerido para segmentar imágenes de tamaño considerable, como lo 

son las fotografías de cultivos adquiridas principalmente mediante drones, es significativo. Los 

resultados obtenidos con la técnica propuesta son comparados contra los obtenidos por el 

algoritmo K-Means así como los resultados que se obtuvieron al utilizar descriptores 

morfológicos con formas predeterminadas de la literatura. 
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Introducción 

La segmentación de imágenes digitales por medio de la computadora es una de las tareas más 

difíciles ya que, factores como el ruido dentro de la imagen, nitidez, contraste y forma irregular 

de los objetos influyen significativamente en los resultados que se obtienen. En la literatura actual 

se pueden encontrar diversos métodos para la segmentación de imágenes. Por ejemplo, para la 

detección de arterias, existen métodos que tratan de aproximar la forma de las arterias a 

estructuras tubulares, las cuales son rotadas durante el proceso de detección. Otros métodos, 

utilizan los eigenvalores obtenidos de la segunda derivada de una función gaussiana con el fin de 

obtener una métrica que permita clasificar los pixeles que forman parte de las arterias de aquellos 

que conforman el resto de la imagen (Frangi, 1998; Wang, 2012). Aun cuando las técnicas como 

la anterior han dado resultados óptimos, no ha sido así en la segmentación de imágenes de 

cultivos debido a que es muy difícil aproximar las formas de los cultivos a estructuras tubulares o 

curvas continuas. Por tal motivo, el algoritmo K-Means se ha utilizado ampliamente para dicho 

fin (Jaware, 2012, 190; Patil, 2016). Adicionalmente, existe otra técnica de segmentación de 

imágenes, la cual está basada en el concepto de morfología matemática (Eiho, 1997, p. 696). La 

segmentación de imágenes utilizando morfología matemática hace uso de descriptores 

morfológicos, también llamados elementos estructurantes, los cuales están definidos por medio 

de forma y tamaño, haciendo a su vez, uso de un operador denominado top-hat. Actualmente, esta 

técnica es ampliamente utilizada y, elementos estructurantes como el disco y el diamante son 

utilizados ampliamente, obteniendo resultados satisfactorios. Sin embargo, en la segmentación de 

imágenes de cultivos, los resultados han podido mejorarse al utilizar elementos estructurantes 

adaptativos en lugar de las formas clásicas como el disco y el diamante. Los elementos 

estructurantes adaptativos se generan utilizando el Algoritmo de Distribución Marginal 

Univariado conocido por sus siglas en inglés como UMDA (Guerrero-Turrubiates, 2017, p. 1; 

Hauschild, 2011, p. 111). Los resultados obtenidos al aplicar esta técnica son mejores que 

utilizando el algoritmo K-Means así como la misma morfología matemática cuando se emplean 

las formas clásicas de disco y rombo, tal y como se describe en la sección de resultados y 

discusión. 

 

Abstract 



This research is focused on the segmentation improvement of crop images by using adaptive 

morphologic descriptors instead of classic algorithms like K-means and the top-hat operator 

using predefined shapes like disk or diamond. Obtained results shows that using an adaptive 

morphologic descriptor improves the segmentation performance against the classic shapes like 

disc and diamond. In order to measure the process a set of 60 crop images was used including 

their respective ground-truth images. The images were segmented using the K-Means algorithm 

and the top-hat operator with the disk and diamond shapes at different sizes into a range to 

validate their performance. In order to generate the adaptive morphologic descriptor, the 

Univariated Marginal Distribution Algorithm was used with no constraints by exploring a range 

of different sizes. Also, performance metrics like receiver operating characteristic and accuracy 

rate were applied to the generated data in order to assess the results. 
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Introduction 

 

 

Automated image segmentation to detect domain-specific objects and elements is a challenging 

task in the image processing field because of high noise levels, low contrast and non-regular 

object shapes. Most state of the art methods segment images applying techniques focused into 

find predefined forms close to the shape of the searched objects. For example, for vessels 

detection in angiographic images, some methods try to approximate retinal arteries as tubular 

structures that are rotated at different orientations on the process. Other methods use the 

eigenvalues of a second order derivative of a Gaussian function in order to compute a vesselness 

measure to classify the vessel-like structures (Frangi, 1998; Wang, 2012). Due of the second 

derivative, detection process is highly sensitive to noise into the image. Even though the previous 

techniques has proven achieve good results, they are not optimal for crop detection since it is 



difficult to approximate crop shapes as tubular structures or continuos curves. For that reason, K-

Means has been used widely into the crop image segmentation field (Jaware, 2012, p. 190; Patil, 

2016). However, there exists other technique to segment images based on a concept called 

mathematical morphology. That method was proposed by Eiho and Qian and is widely used since 

it is governed by the parameters of size and shape of a structuring element (SE) (Eiho 1997, 696). 

This method uses the top-hat operator to enhance certain structures. Actually, the technique is 

well-known and canonical structuring elements like disk or rhombus are widely used. Due to the 

use of top-hat operator, this method has proved achieve good results in coronary vessels detection 

(Bouraoui, 2008, p. 1059; Sun and Sang, 2008). Also, performance and effectiviness of the 

original technique can be improved by using stochastic strategies like Genetic Algorithms (GAs) 

or Estimation of Distribution Algorithms (EDAs) (Cruz, 2015, p. 297; Guerrero-Turrubiates 

2017, p. 1; Hauschild, 2011, p. 111). The morphological top-hat operator achieves a suitable 

performance for enhancing specific-domain objects; however, the process to determine the size 

and shape of the SE involves a trial-and-error stage or a selection based on an expert knowledge. 

To overcome the a-priori knowledge about the form and shape of the structuring element, an 

evolutive morphological descriptor is used in order to obtain a highly accurate SE by introducing 

the Univariate Marginal Distribution Algorithm (UMDA) for its design and the obtained results 

are better than K-Means technique and the Top-Hat operator using canonical shapes like disc and 

rhombus.  

 

 

Method 

 

 

Image Dataset. To measure the SE performance of the proposed method the crop-weed dataset 

was used. It contains a set of 60 crop image files with their respective ground-truth images 

(Haugh 2015, 105). 

K-Means. The K-Means algorithm is a widely known unsupervised classification algorithm. It 

was proposed in 1967 by MacQueen (MacQueen, 1967). This technique requires a-priori to know 

the k value since it represents the number of clusters or classes to be formed by the process. On 



the successive steps, the technique initializes randomly k points that will be moved by an iterative 

process in order to form the final clusters automatically as described in Algorithm 1. 

 

Algorithm 1 K-Means Algorithm 

Require:  k = number of clusters to be formed 

 Initialize k-points (called means) randomly 

repeat 

1. re(assign) each object to the closest centroid 

2. Update the cluster means, i.e, calculate the mean value of the objects for each cluster 

until no change 

 

Fig. 1 shows an example of the classes (clusters) found by K-Means algorithm.  

 
Fig. 1. Example of clusters formed by K-Means using k=3. On the left side the 

original dataset is represented. The right side shows the clustered data by the K-

Means algorithm. 

 

Main advantage of K-Means relies in the automatic classification made by an iterative process 

starting from several initial points called centroids wich are placed randomly across the data 

space and after moved or reallocated to their respective new clusters centers after each iteration. 

The process ends when centroids are not moved anymore. Although the algorithm is easy to 

implement, it could achieve to different classification results with the same data because of its 

stochastic centroids initialization. 

Morphological top-hat operator. The morphological top-hat operator (Meyer, 1977) for 

grayscale images is part of the basic toolbox of mathematical morphology operators (Soille, 

1999). Its function is to detect contrasted objects on non-uniform backgrounds. For grayscale 

images, there are two versions: the white top-hat which extracts bright structures and the black 

top-hat extracts dark structures. White top-hat operator is defined as the difference between an 

input image f and its opening as stated in equation (1). 



 

𝝆(𝒇) = 𝒇 − 𝜸(𝒇) (1) 

 

Where γ(f) denotes the opening operation. 

On this research, the white top-hat was used since crops tends to be brighter than their 

surroundings and in addition, it corrects nonuniform lighting condition and make obvious 

contrast between background and objects. The performance of the top-hat operator depends on 

two factors: the shape and the size of the structuring element that is used. Fig. 2 shows a crop 

image with their corresponding ground-truth image outlined by a specialist on first column. 

Remaining columns shows the response of the top-hat operator using different shapes and sizes. 

 

 
Fig. 2. First column: Original crop image on first row and their corresponding 

ground-truth on second row. Second column: On first row, the top-hat response; on 

second row the diamond shape (with size = 5) used as structuring element. Third 

column: On first row, the top-hat response; on second row, the diamond shape (with 

size=127) used as structuring element. Fourth column: On first row, the top-hat 

response; on second row, the disk shape (with size=5) used as structuring element. 

Fifth column: On first row, the top-hat response; on second row, the disk shape 

(with size=127) used as structuring element. For purposes of better visualization, 

contrast was improved on images placed in first row from columns 2 to 5. 

 

Univariate Marginal Distribution Algoritm. UMDA is a population technique-based like 

Genetic Algorithms (GA) (Heinz, 2001, p. 135). Instead of the population recombination and 

mutation concepts, UMDA use the frequency of components in a population of candidate 

solutions in the construction of new candidate solutions. Each individual in the population is 

formed by a bit-string and it is denoted as: 𝒙𝒊 = [𝑥𝑖,1, 𝑥𝑖,2, … , . 𝑥𝑖,𝐷] and each element 𝑥𝑖,𝑗 is called a 

gene. An array of vectors 𝑋 = [𝑥1,  𝑥2, … , 𝑥𝑛𝑝𝑜𝑝
] is called a population. On this approach, the 



population evolves on each generation (iteration) t and the current population is denoted as 𝑋𝑡. 

On each iteration UMDA samples a subset 𝑛𝑠𝑒𝑡with the individuals representing the best 

solutions. With the 𝑛𝑠𝑒𝑡 sample a new population (generation) is created based on a probabilistic 

model using the genes in the individuals. This iterative process ends when an error criterion is 

accomplished, or a maximum value of generations is reached. Unlike other population-based 

techniques, UMDA only requires three parameters to operate: population size, stopping criterion 

and population selection ratio. UMDA pseudocode is described in Algorithm 2. 

 

Algorithm 2 Univariate Marginal Distribution Algorithm 

Require:  D = dimensions of the problem 

 𝑛𝑝𝑜𝑝 = Population size 

𝑁𝑔𝑒𝑛 = Number of maximum generations 

𝑛𝑠𝑒𝑙   = Selected set size 

Initialize 𝑡 = 0, 𝑋𝑡~ 𝑈(0, 1) 

Evaluate 𝐹𝑡 =  𝑓(𝑋𝑡) 

[𝑥𝑏𝑒𝑠𝑡 , 𝑋𝑡] = 𝑠𝑜𝑟𝑡 𝑋𝑡 according to objective values 

while stop_criterion ≠ true do 

    for i = 1...D do 

        𝑝𝑖 =  ∑ 𝑥𝑖,𝑗
𝑛𝑠𝑒𝑙
𝑗  

    end for 

    Set 𝑃 = [𝑝1, 𝑝2, … , 𝑝𝐷] 

    Sample 𝑋𝑡+1 ~ 𝑃 

    Elitism 𝑋𝑡+1 =  [𝑋1:(𝑛𝑝𝑜𝑝−1)
𝑡+1 , 𝑥𝑏𝑒𝑠𝑡] 

    𝑡 = 𝑡 + 1 

    Evaluate 𝐹𝑡 = 𝑓(𝑋𝑡) 

    [𝑥𝑏𝑒𝑠𝑡 , 𝑋𝑡] = 𝑆𝑜𝑟𝑡 𝑋𝑡 according to objective values 

end while 

return 𝑥𝑏𝑒𝑠𝑡 

 

Adaptive Morphological Descriptor. Based on the methods described above, a morphologic 

descriptor is generated in the form of a structuring element (SE) that is used with the top-hat 

operator in order to segment crop images. Main advantage of this approach relies in the 

construction of a SE based on the crop image features rather than a predefined or empirical shape. 

This method is focused in the generation of the best suitable SE by exploring the search space 

delimited by its size and finding the best pixels distribution along them. Also, the UMDA is used 

with a wide range of SE sizes to determine the best suitable morphologic descriptor avoiding an 

empirical trial and error procedure. Using this approach, the method can find and determine the 



shape and size of the SE in an automated way. In Fig. 3, six different SE’s generated by UMDA 

are presented. 

 

 
Fig. 3. Six different structuring elements generated by the UMDA. Sizes in pixels 

from left to right and up to down: 3x3, 13x13, 23x23, 49x49, 96x96 and 127x127. 

 

 

Thresholding Otsu Method 

 

 

Thresholding is an important technique in image segmentation applications. The basic idea of 

thresholding is to select an optimal gray-level threshold value for separating objects of interest in 

an image from the background based on their gray-level distribution. While humans can easily 

differentiable an object from complex background and image thresholding is a difficult task to 

separate them (Vala, 2013). Otsu method is type of global thresholding in which it depends only 

gray value of the image. Otsu method was proposed by Scholar Otsu in 1979. Otsu method is 

global thresholding selection method, which is widely used because it is simple and effective 

(Qu, 2010). The Otsu method requires computing a gray level histogram before running. 

However, because of the one-dimensional which only consider the gray-level information, it does 

not give better segmentation result. So, for that two-dimensional Otsu algorithms was proposed 

which works on both gray-level threshold of each pixel as well as its Spatial correlation 

information within the neighborhood. For that reason, Otsu algorithm can obtain satisfactory 

segmentation results when it is applied to the noisy images (Jian-zhuang 1991). 



Once the image was segmented by using the top-hat operator a thresholding process is 

necessary in order to classify in a deterministic way those pixels belonging to conform crops 

from those that does not.  

 

 

Evaluation Metrics 

 

 

In order to asses the performance of the proposed method and select the best SE achieved by it, 

the receiver operating characteristic (ROC) curve graph and measures of sensitivity, specificity 

and accuracy were used (Zhu 2010). Also, the True-Positive Rate (FPR), True-Negative Rate 

(TNR), False-Positive Rate (FPR) and False-Negative Rate (FNR) metrics are used to measure 

the classifiers performance. 

The TPR represents the fraction of elements that are positives and the classifier mark 

them as positives. The TNR represents the fraction of elements that are negatives and the 

classifier mark them as negatives. The FPR represent the fraction of elements that are negatives 

and the classifier mark them as positives. Fnially, the FNR represent the fraction of elements that 

are positives and the classifier mark them as negatives.  

For this research the TPR represents the fraction of the crop pixels outlined by the 

specialist that are correctly detected by the method. The false-positive rate (FPR) is used to 

measure the proportion of actual negatives (non-crop pixels) that are incorrectly classified as 

positives (crop pixels). The TPR along the SE size provides information about how the SE shape 

and size is related with its performance to detect positive crops pixels.  

By using TPR and FNR factors, the Sensitivity measure can be calculated by applying Eq. 

(2).  

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃𝑅

𝑇𝑃𝑅 + 𝐹𝑁𝑅
 (2) 

 

Eq. (3) is used to measure the the Specificity, which represents the non-crop pixels (background 

pixels) that are correctly detected as such by the method. 



 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁𝑅

𝑇𝑁𝑅 + 𝐹𝑃𝑅
 (3) 

 

Accuracy represents the fraction of crop and non-crop pixels correctly detected by the method 

and is the most used measure to evaluate binary classification, which is defined in Eq.(4). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃𝑅 + 𝑇𝑁𝑅

𝑇𝑃𝑅 + 𝐹𝑃𝑅 + 𝑇𝑁𝑅 + 𝐹𝑁𝑅
 , (4) 

 

Where TPR and TNR represent the fractions of crop and non-crop pixels correctly segmented, and 

FPR and FNR the fractions of incorrectly classified pixels. 

ROC graphs are another way besides confusion matrices to examine the performance of 

classifiers (Swets 1988, 1285). A ROC graph is a plot with the false positive rate on the x-axis 

and the true positive rate on the y-axis. The point (0,1) is the perfect classifier: it classifies all 

positive cases and negative cases correctly. It is (0,1) because the FPR is 0 (none), and the TPR is 

1 (all). The point (0,0) represents a classifier that predicts all cases to be negative, while the point 

(1,1) corresponds to a classifier that predicts every case to be positive. Point (1,0) is the classifier 

that is incorrect for all classifications. In many cases, a classifier has a parameter that can be 

adjusted to increase TPR at the cost of an increased FPR or decrease FPR at the cost of a decrease 

in TPR. Each parameter setting provides a (FPR, TPR) pair and a series of such pairs can be used 

to plot a ROC curve. A non-parametric classifier is represented by a single ROC point, 

corresponding to its (FPR, TPR) pair. 

 

 

Experiment 

 

 

Since the top-hat operator is governed by the size and shape of the SE, a wide range of sizes were 

used on the performed tests starting with a 1x1 up to 127x127 pixels. In order to measure how the 

shape of an auto-generated SE influences the result, the UMDA was performed 30 times on each 



test image selecting the best achieved solution for each of them. The UMDA parameters were set 

as: 30 individuals, 30 generations and a selection rate of 0.70. The number of genes for each 

individual was set on 1, 9, 25, …, 16129, as each test was varying the SE size beginning with a 

size of 1x1 and finishing with a size of 127x127. These values were determined according to the 

best tradeoff between detection performance and computational time (Alba, 2006, p. 242; Cruz, 

2015, p. 297; Hisashi, 2003, p. 112; Marler, 2010, p. 853; Topon, 2003, p. 1259). The final black 

and white image was obtained using the Otsu method. To assess the obtained results, the 

corresponding ground-truth for each test image was used. Ground-truth images are created from 

their corresponding originals and outlined by specialists. Since main goal of automated 

computing processing is trying to emulate human intelligence, the ground-truth elements provide 

an initial base to compare results obtained by automated computing algorithms. However, there 

does not exists a unique “truth” since two different human experts can achieve different results 

for the same problem or element. In the process of attempting to evaluate several recognition 

algorithms an uncovered number of serious hurdles with the ground-truthing elements are 

present. This problem may, in fact, be much more dificult than it appears. Ground-truthing is so 

hard, including the notions that there may exist more than one acceptable “truth” and/or 

incomplete or partial “truths” (Hu, 2001). Even though expert outlined ground-truth images could 

not represent a complete “truth”, they provide an initial base to measure automated computing 

results. This is the main reason why the ground-truth images provided by the dataset were used to 

assess the results. 

The tests were performed over an Intel i7-4770 processor at 3.40 GZ with 8GB of RAM. 

All the tests were programmed on Matlab. The mentioned hardware and software was provided 

by the Universidad Tecnológica de León. 

 

 

Results 

 

 

After tests execution important results were obtained, and they are explained on this section.  



The performance results obtained for each image segmentation using the SE’s generated by 

UMDA are described in Table 1. 

 

Table 1. Performance results obtained for each segmented image using the SE’s 

generated by UMDA. 
File Accuracy TPR TNR FPR FNR 

001_Image.png 0.9445 0.7590 0.9843 0.0157 0.2410 
002_Image.png 0.9424 0.7865 0.9624 0.0376 0.2135 

003_Image.png 0.9495 0.7992 0.9631 0.0369 0.2008 

004_Image.png 0.9518 0.8005 0.9712 0.0288 0.1995 
005_Image.png 0.8338 0.8728 0.8314 0.1686 0.1272 

006_Image.png 0.9632 0.7421 0.9879 0.0121 0.2579 

007_Image.png 0.9486 0.7708 0.9830 0.0170 0.2292 

008_Image.png 0.9446 0.7581 0.9644 0.0356 0.2419 

009_Image.png 0.9607 0.8120 0.9749 0.0251 0.1880 

010_Image.png 0.9509 0.8358 0.9593 0.0407 0.1642 
011_Image.png 0.9510 0.7853 0.9641 0.0359 0.2147 

012_Image.png 0.7952 0.9574 0.7899 0.2101 0.0426 

013_Image.png 0.9484 0.7597 0.9647 0.0353 0.2403 
014_Image.png 0.9515 0.8745 0.9550 0.0450 0.1255 

015_Image.png 0.8608 0.7804 0.8660 0.1340 0.2196 
016_Image.png 0.9472 0.7867 0.9625 0.0375 0.2133 

017_Image.png 0.9558 0.8029 0.9641 0.0359 0.1971 

018_Image.png 0.9553 0.7746 0.9711 0.0289 0.2254 
019_Image.png 0.8437 0.8903 0.8416 0.1584 0.1097 

020_Image.png 0.7456 0.9428 0.7421 0.2579 0.0572 

021_Image.png 0.8131 0.8900 0.8113 0.1887 0.1100 
022_Image.png 0.9447 0.8023 0.9536 0.0464 0.1977 

023_Image.png 0.9673 0.7874 0.9805 0.0195 0.2126 

024_Image.png 0.9686 0.8111 0.9784 0.0216 0.1889 

025_Image.png 0.9125 0.8505 0.9170 0.0830 0.1495 

026_Image.png 0.9499 0.6633 0.9648 0.0352 0.3367 

027_Image.png 0.9351 0.8163 0.9444 0.0556 0.1837 
028_Image.png 0.9519 0.7575 0.9760 0.0240 0.2425 

029_Image.png 0.9324 0.7422 0.9775 0.0225 0.2578 

030_Image.png 0.8057 0.9448 0.8025 0.1975 0.0552 
031_Image.png 0.9075 0.5584 0.9639 0.0361 0.4416 

032_Image.png 0.9464 0.7941 0.9630 0.0370 0.2059 

033_Image.png 0.9606 0.7840 0.9775 0.0225 0.2160 
034_Image.png 0.9540 0.7703 0.9761 0.0239 0.2297 

035_Image.png 0.9410 0.7553 0.9562 0.0438 0.2447 

036_Image.png 0.9470 0.7093 0.9808 0.0192 0.2907 
037_Image.png 0.8675 0.8861 0.8667 0.1333 0.1139 

038_Image.png 0.9340 0.7390 0.9620 0.0380 0.2610 

039_Image.png 0.8688 0.8489 0.8695 0.1305 0.1511 
040_Image.png 0.9141 0.6601 0.9487 0.0513 0.3399 

041_Image.png 0.9642 0.8056 0.9732 0.0268 0.1944 

042_Image.png 0.9627 0.8078 0.9698 0.0302 0.1922 

043_Image.png 0.8842 0.8911 0.8840 0.1160 0.1089 

044_Image.png 0.9731 0.7626 0.9797 0.0203 0.2374 

045_Image.png 0.9597 0.7823 0.9742 0.0258 0.2177 
046_Image.png 0.9792 0.8663 0.9820 0.0180 0.1337 

047_Image.png 0.9446 0.8329 0.9483 0.0517 0.1671 

048_Image.png 0.9340 0.8443 0.9378 0.0622 0.1557 
049_Image.png 0.9585 0.7636 0.9661 0.0339 0.2364 

050_Image.png 0.7643 0.9525 0.7612 0.2388 0.0475 

051_Image.png 0.9534 0.7643 0.9871 0.0129 0.2357 
052_Image.png 0.9475 0.8136 0.9648 0.0352 0.1864 

053_Image.png 0.9085 0.7174 0.9206 0.0794 0.2826 

054_Image.png 0.9637 0.8040 0.9830 0.0170 0.1960 
055_Image.png 0.9584 0.8197 0.9732 0.0268 0.1803 

056_Image.png 0.9464 0.7746 0.9691 0.0309 0.2254 

057_Image.png 0.9413 0.7808 0.9604 0.0396 0.2192 
058_Image.png 0.9443 0.7848 0.9718 0.0282 0.2152 

059_Image.png 0.9487 0.8020 0.9677 0.0323 0.1980 



060_Image.png 0.9648 0.7965 0.9857 0.0143 0.2035 

 

In Table 2, is presented a summarized set of records containing the calculations of TPR and FPR 

that conforms the ROC for the two classic and the adaptive SE. Table rows were summarized to 

present the most significant SE sizes were the curve changes their behavior and takes their final 

stability.  

Table 2. Summary of TPR and FPR calculations for the disk, diamond and autogenerated 

SE shapes. Summary was formed with the first 5 records containing SE size in a range from 1 to 

9, second set of 5 rows contains SE size in a range from 65 to 73 and, last set of 5 rows contains 

SE size from 119 to 127. 

 

SE Size 

Disc Diamond Adaptive 

Accuracy TPR FPR Accuracy TPR FPR Accuracy TPR FPR 

1 0.7625 0.1922 0.1875 0.7625 0.1922 0.1875 0.9198 0.0000 0.0000 

3 0.8101 0.2393 0.1387 0.8191 0.2362 0.1283 0.8000 0.1570 0.1437 

5 0.8663 0.2547 0.0782 0.8716 0.2641 0.0730 0.8308 0.2017 0.1135 

7 0.8902 0.3481 0.0596 0.8875 0.3299 0.0611 0.8604 0.2324 0.0827 

9 0.8991 0.4109 0.0554 0.8974 0.3934 0.0557 0.8799 0.2722 0.0647 

65 0.9098 0.8319 0.0790 0.9145 0.8276 0.0737 0.9261 0.8005 0.0594 

67 0.9079 0.8321 0.0810 0.9135 0.8286 0.0749 0.9253 0.8050 0.0607 

69 0.9084 0.8328 0.0804 0.9121 0.8287 0.0763 0.9253 0.8068 0.0609 

71 0.9077 0.8331 0.0813 0.9110 0.8295 0.0775 0.9240 0.8115 0.0625 

73 0.9074 0.8342 0.0817 0.9111 0.8300 0.0774 0.9232 0.8133 0.0635 

119 0.9033 0.8304 0.0853 0.9053 0.8322 0.0837 0.9116 0.8322 0.0771 

121 0.9047 0.8294 0.0838 0.9046 0.8323 0.0843 0.9116 0.8335 0.0774 

123 0.9035 0.8301 0.0851 0.9038 0.8322 0.0850 0.9108 0.8347 0.0783 

125 0.9043 0.8302 0.0843 0.9029 0.8315 0.0860 0.9105 0.8340 0.0785 

127 0.9040 0.8297 0.0846 0.9028 0.8314 0.0860 0.9101 0.8345 0.0790 

 

Fig. 4 shows the performance averages for the accuracy and the SE size in a range from 1 to 127. 

 

 
Fig. 4. Performance of different SE sizes, from 1x1 to 127x127 (x-axis) and 

Accuracy mean (y-axis). 



 

In Fig. 5 the performance for each shape is presented separately. 

 
Fig. 5. Performance for different SE sizes, from 1x1 to 127x127 (x-axis) and 

Accuracy mean (y-axis) for each shape type. 

 

In Fig. 6 the ROC curve is shown in order to know the best structuring SE size by contrasting 

TPR and FPR factors for different types of SE’s. The studied parameter to measure the classifier 

performance was the SE size. 

 



 
Fig. 6. ROC curves graph using SE sizes from 1x1 to 127x127. The SE size was the 

varying parameter used to study the classificatory performance. The FPR and TPR 

are represented on the x-axis and y-axis, respectively. 

 

By contrasting Accuracy and ROC performances, the best result was obtained with a SE of 65x65 

pixels. Fig. 7 shows a sample of the best SE’s achieved by UMDA. 

 

 

Fig. 7. Best SE achieved by UMDA. 

 

In Fig. 8 the Accuracy comparison between the K-Means algorithm and the top-hat operator with 

their SE variants is shown. 

 



 

Fig. 8. Accuracy chart for the evaluated methods for each image. The x-axis contains 

each image ID. The y-axis contains the best achieved accuracy value by each 

method. 

 

The Fig. 9 presents the accuracy results separated by each method. 



 
Fig. 9. Accuracy chart of results obtained by each method and image. The x-axis 

contains each image ID. The y-axis contains the best achieved accuracy value. 

 

 



Discussion 

 

 

After test execution, the best performance was achieved by the top-hat operator using the UMDA 

generated structuring elements and it was verified contrasting the ROC curve graph with the 

performance data. Figs. 10 and 11 shows a subset of 5 images with their respective ground-truth 

and responses by the various methods applied for its segmentation. 

 

 
Fig. 10. Subset of segmented images applying the K-Means method and the top-hat 

operator. From left to right, first column shows the original crop image; second 

column shows the ground-truth image; third column shows the K-Means 

segmentation result; fourth column shows the top-hat operator response using a disk 

SE with size of 65x65; fifth column shows the top-hat operator response using a 

diamond SE with size of 65x65; last column shows the top-hat operator response 

using the adaptive SE generated by UMDA with size of 65x65. 



 

Fig. 11. Subset of segmented images applying the K-Means method and the top-hat 

operator. From left to right, first column shows the original crop image; second 

column shows the ground-truth image; third column shows the K-Means 

segmentation result; fourth column shows the top-hat operator response using a disk 

SE with size of 65x65; fifth column shows the top-hat operator response using a 

diamond SE with size of 65x65; last column shows the top-hat operator response 

using the adaptive SE generated by UMDA with size of 65x65. 

 

The segmentation results achieved by K-Means shows difficulties to segment crop images with 

low contrast obtaining high rates of false-positives in most of them. The top-hat operator with 

disk and diamond shapes perform better than K-Means algorithm however, most of crops has an 

uneven shape and size including a low contrast with the background. For that reason, the adaptive 

shape improves all performance factors under a certain SE size as presented in Fig. 5. Since white 

top-hat operator removes objects with less size than the structuring element, the UMDA was able 

to evaluate multiple combinations of shapes and sizes, selecting the best overall size for the 

structuring elements. Also, the structuring elements builded by UMDA performs better removing 

non-crop pixels than classic shapes as it was illustrated in Figs. 10 and 11 in the last column. As 

presented in Fig. 12, the adaptive SE achieved a better result than rest of techniques because it 

was able to remove more non-crop pixels in the original image. 



 

Fig. 12. Example of a crop image with low contrast and its segmentation results. 

From left to right and up to down: the original crop image; the ground-truth delined 

by an specialist; the result achieved by K-Means; the result achieved using the top-

hat operator with 65x65 disk SE; the result using the top-hat operator with 65x65 

diamond SE; the result using the top-hat operator using a 65x65 adaptive SE. 

 

According with ROC curve graph presented in Fig. 5, the adaptive SE appears to achieve better 

results and, considering the original image resolution that is 1296x966 pixels, the differences 

with other methods become more significant. Also, the the accuracy performance was contrasted 

with the ROC curve since considering only the accuracy measure can conduct to wrong results 

and missinterpretations as described by (Zhu, 2010). For example, one of the highest accuracy 

performances was achieved using an adaptive SE with size of 1x1. However, making a closer 

view in data presented at Table 2 and contrasting with ROC curve presented in Fig. 6, the true-

positive fraction was very low compared with a SE with size of 65x65 were the true-positive 

fraction assesses the accuracy factor. 

Also, it is important to realize about the SE shapes and their content. For example, disk 

and diamond SE’s are solid shapes unlike those generated by UMDA since it has not restrictions 

in any way. This means for example, that disk and diamond shapes has not empty regions inside 

unlike those achieved by UMDA. Due to the presence of empty regions inside of the adaptive 

SE’s the removal or keeping of certain elements inside the image could be done in a wrong way 

by the processes of erosion and dilation performed by the top-hat operator.  This is an important 



issue to be addressed and studied on future research works since it could conduct to improve the 

results by adding shape restrictions to the UMDA. Based on this study, future work will be 

related to reduce the decay rates by adding constraints to the search strategy in order to overcome 

current issues and also, as a mean to generate a robust set of structuring elements that could be 

applied to a wide variety of sizes and sizes of crops into digital images. 
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