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Resumen 

En este trabajo mostramos cómo el reordenamiento RCM puede aplicarse a los lados y a los 

elementos de una malla no estructurada (tetraedros/triángulos) para reducir el ancho de banda de 

las matrices de esfuerzos para las formulaciones de elementos finitos definidas sobre lados o sobre 

elementos. Los generadores de malla han sido diseñados principalmente para elementos finitos 

nodales, sus salidas son una lista de nodos (2d/3d) y un arreglo de la conectividad de los elementos 

(triángulos/tetraedros). Sin embargo, para las formulaciones de elementos finitos basados en los 

lados se requiere una enumeración de los lados de la malla. Reportamos observaciones realizadas 

con los generadores de mallas Triangle y Tetgen y las estructuras esparcidas de las matrices de 

esfuerzos obtenidas en formulaciones sobre los lados y sobre elementos. El RCM es un algoritmo 

de re-enumeración tradicionalmente aplicado a los nodos de la malla. Así para aplicar este 

algoritmo de re-enumeración al caso de elementos finitos sobre lados y elementos, definimos los 

grafos de los lados y el grafo de los elementos. Obtenemos así una noTable reducción de ancho de 

banda de las matrices de esfuerzos, lo que se traduce en reducción de tiempo de ejecución en la 

multiplicación de matrices esparcidas por un vector. Usamos matrices comprimidas por filas e 

implementamos la multiplicación de matriz esparcida por vector en una rutina en paralelo usando 

OpenMp. 

 

Abstract 

Reverse Cuthill McKee (RCM) reordering can be applied to either edges or elements of 

unstructured meshes (triangular/tetrahedral), in accordance to the respective finite element 

formulation, to reduce the bandwidth of stiffness matrices. Grid generators are mainly designed for 
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nodal based finite elements. Their output is a list of nodes (2d or 3d) and an array describing 

element connectivity, be it triangles or tetrahedrons. However, for edge-defined finite element 

formulations a numbering of the edges is required. Observations are reported for Triangle/Tetgen 

Delaunay grid generators and for the sparse structure of the assembled matrices in both edge- and 

element-defined formulations. The RCM is a renumbering algorithm traditionally applied to the 

nodal graph of the mesh. Thus, in order to apply this renumbering to either the edges or the elements 

of the respective finite element formulation, graphs of the mesh were generated. Significant 

bandwidth reduction was obtained. This translates to reduction in the execution effort of the sparse-

matrix-times-vector product. Compressed Sparse Row format was adopted and the matrix-times-

vector product was implemented in an OpenMp parallel routine.  

 

 

Introduction 

The finite element method is one of the most popular general purpose techniques for computing 

accurate solutions to partial differential equations (pdes). Since pdes form the basis for many 

mathematical models in the physical sciences and other fields, it is not hard to realize the 

importance of the finite element method. The finite element method reduces a boundary value 

problem for a partial differential equation or system of pdes to a system of linear equations, written 

in a matrix form KU f  that can be solved numerically. In many cases the stiffness  K  matrix 

is symmetric and sparse, with the sparse structure highly influenced by the node (nodal finite 

element method [21], edge (edge elements [10]), and element (discontinuous finite element method 

[4, 3]) numberings provided by the grid generator. 

Here, sparse matrix techniques are preferable since the storage required increases as  0 N  

where N  denotes the degrees of freedom of the problem. Storage can be reduced by storing only 

the nonzero elements with a compress sparse row format. Sparse matrix-vector multiplication is an 

important kernel in many iterative solvers; with parallel implementations 

We can obtain a solution in a reasonable amount of time but they suffer from low cache 

utilization due to unstructured data access patterns. [7, 2] proposed to reorder sparse matrices using 

a bandwidth reduction technique in order to reduce the number of cache misses to improve the 

memory-system performance of the sparse matrix-vector multiplication. Sometimes it is not easy 

to assemble the stiffness matrix and reorder its elements since the matrix is assembled at running 
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time, or if it is too large it must be split among different processors. Here we discuss how to use 

RCM to reorder nodes, edges and elements of the mesh in order to reduce the bandwidth of the 

assembled matrices. The work is organized as follows: section 2 introduces the edge- and element-

defined finite element formulations employed, in section 3  the different meshes used in our 

numerical computations and the influence of the edge and element ordering in the sparse structure 

of the finite element matrices are presented, then section 4 introduces the RCM renumbering of 

edge and elements graphs, with some numerical experiments also included, and finally section 5 

establishes the conclusions of this work. 

 

Finite Element formulations 

Edge-element formulation 

For the edge-element formulation let us consider the problem of calculating resonant frequencies 

of cavities ([8, 1]). The nodal formulation is: 

 

21
0c r

r

E k E


 
    

 
      (1) 

Where ˆ ˆ ˆ
x y zE E x E y E z   ,   and r  are the material permittivity and permeability respectively. 

The finite element formulation is given by 

 

    21
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          (2) 

The electric field in a single triangular/tetrahedral element is represented as 
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         (3) 

 

Here  
1 2 2 1m m m m m mW l L L L L    , ml  is the length of edge m  that connects nodes 1m  and 2m ; 

1mL  

and 
2mL  are the simplex coordinates associated with nodes 1m  and 2m . Some other applications of 

edge finite elements in electromagnetics include wave propagation in both closed and open 

structures, such as metallic waveguides, open and shielded microstrip transmission lines, and 

optical waveguides or fibres. 
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Discontinuous formulation 

For discontinuous formulation ([4], [3]) we consider the conservation laws 

 

  0,
du

F u x
dt

          (4) 

At each time  0,t T  the approximate solution is sought in the finite element space of 

discontinuous functions 

 

  : | ,h h h T hV v L v P k T       

Where h  is the triangular discretization of ,  P k  is the local space of polynomials of degree

k . The weak formulation of (4) is 

 

       , 0
T T e

e T

d
u x t x dx F u dx F u n ds

dt
  



        (5) 

Where   is a smooth function, n  is the outward unit normal to face e  of elementT . In the above 

expression we replaced u  by its approximation ku , the first two terms correspond to volume 

integrals, and the last term requires the evaluation of numerical fluxes. 

 

Sparse Structure and Bandwidth of Finite Element Matrices 

Meshes 

The most popular element shapes employed for two and three dimensional applications are 

triangles and tetrahedra respectively; this is due to the fact that they are the simplest tessellation 

shapes for modeling arbitrary two and three dimensional geometries and they are also well suited 

for automatic mesh generation. To investigate the influence of the edge and element numbering in 

the structure of the stiffness matrix, we employ the grid generators Triangle [18] and Tetgen [19], 

which are two and three dimensional mesh generators that use Ruppert’s Delaunay refinement. 

These grid generators, in addition to providing nodes and elements, compute edges and 

neighbors of the elements (which is very convenient for element-defined and edge-defined finite 

element formulations). 
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We consider two simple geometries; for the two-dimensional case a circle with three 

interior circles removed, and for the three-dimensional case, a cylinder with three interior cylinders 

removed. An unstructured triangular mesh is generated by Triangle, whereas an unstructured 

tetrahedral mesh is obtained with Tetgen. Figures 1-2 show with a few elements the meshes 

considered. Also Figure 3 shows a two-dimensional view of the three-dimensional domain. 

Table (1) shows the information for the meshes. Here n-nodes, n-elements and n-edges denote 

number of nodes, elements and edges respectively. 

 

Table 1. Meshes information. 

Mesh  n-nodes  n-elements  n-edges 

2D  18686  36888  55576 

3D  10720  43119  61369 

 

 

Figure 1. Two dimensional mesh for computational calculations. 

 

 

 
Figure 2. Three dimensional mesh for computational calculations mesh. 
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Figure 3. Two dimensional view of the three dimensional domain for computational calculations 

 

Sparse Structure of edge-defined and element-defined formulations 

In this section we discuss how the numbering of edges and elements affect the sparse structure of 

the stiffness matrix. 

The structure of the three-dimensional case is discussed in detail and some notes are stated 

for the two-dimensional case. Let us introduce the following 3d sample mesh. 

 

7 8 18 

0 0 1 

1 0 0 

0 1 0 

-1 0 0 

0 -1 0 

0 0 0 

0 0 -1 

1 6 2 3 -1 5 0 2 4 

1 6 3 4 -1 6 0 3 1 

1 6 4 5 -1 7 0 4 2 

1 6 5 2 -1 8 0 1 3 

3 6 2 7 -1 8 0 6 1 

4 3 7 6 -1 5 7 2 0 

5 4 7 6 -1 6 8 3 0 

2 6 5 7 -1 7 0 5 4 

1 2 

1 3 

1 4 

1 5 

1 6 

5 6 

2 6 
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3 6 

4 6 

6 7 

2 7 

3 7 

4 7 

5 7 

2 5 

2 3 

3 4 

4 5 
 

This mesh file contains information of nodes, elements and edges. It can be obtained from the node, 

element, edges, and neighbors files provided by the grid generator Tetgen (two-dimensional 

versions of these files can be obtained by using Triangle). Its first line contains n-nodes, n-element 

and n-edges (number of nodes, elements and edges respectively), the following n-nodes lines 

contain the nodes coordinates (two or three), and the next n-elements lines contain the element 

node connectivity (nodes that define each element).  

For triangles there are three nodes, a boundary marker and its three neighbors. For 

tetrahedral: four nodes, a boundary marker and its four neighbors. Finally n edges lines that contain 

the nodes that define each edge. Figure (4) shows the 3d simple mesh with its nodal, edge and 

element numberings. 

 

 
Figure 4. Three dimensional sample mesh with nodal, edge and element numberings. 
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In order to assemble the stiffness matrices in nodal, edge and element formulations we need the 

corresponding element-node, element-edge and element-neighbors connectivity Tables. The 

element-node and element neighbor’s Tables are obtained directly from the mesh files, but the 

element-edge needs to be computed from the element node connectivity and the list of edges. In 

[14] two methods to compute an element-edge Table were discussed. 

Let us start our discussion of the assembly process considering first the nodal case with 

linear elements. In the literature there are several works reporting how the RCM reordering has 

been applied to the nodal case, and we mention it here for completeness of our discussion; from 

the element to node connectivity Table provided by the grid generator we can get the structure of 

the finite element matrix K . A loop over the n elements rows of this Table says that for the row i  

the matrix K  has nonzero elements on     ,1 , ,2K table i table i ,     ,1 , ,3K table i table i , 

    ,1 , ,4K table i table i ,     ,2 , ,3K table i table i ,      ,2 , ,4K table i table i  and 

    ,3 , ,4K table i table i ,where of course we have to take into account the elements of the 

diagonal (each node is related to itself) and the symmetries of the matrix. 

 

Table 2. Element to node connectivity Table of our 3d sample mesh. 

1 6 2 3 

1 6 3 4 

1 6 4 5 

1 6 5 2 

3 6 2 7 

4 3 7 6 

5 4 7 6 

2 6 5 7 

 
 

Table 3. Element to edge connectivity Table of our sample mesh. 

1 6 1 2 1 3 2 6 2 3 3 6  5 1 2 7 16 8 

1 6 1 3 1 4 3 6 3 4 4 6 5  2  3  8  17  9 

1 6 1 4 1 5 4 6 4 5 5 6  5  3  4  9  18  6 

1 6 1 5 1 2 5 6 2 5 2 6  5 4 1 6 15 7 

3 6 2 3 3 7 2 6 2 7 6 7  8 16 12 7 11 10 

3 4 4 7 4 6 3 7 6 7 4 6  17 13 9 12 10 8 

4 5 5 7 5 6 4 7 6 7 4 6  18 14 6 13 10 9 

2 6 2 5 2 7 5 6 5 7 6 7  7 15 11 6 14 10 
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Now for the edge-element formulation with linear elements, the finite element matrix can be built 

in a similar way as it was built in the nodal case. Here an element-to-edge Table is required. Table 

3 shows the element-to-edge connectivity Table for the sample mesh. The last six columns contain 

the numbering of each element-edge. A loop over the n-elements rows of this element-edges Table 

says that for the row i the matrix K  has nonzero elements on     ,1 , ,2K table i table i , 

    ,1 , ,3K table i table i ,     ,1 , ,4K table i table i ,     ,1 , ,5K table i table i , 

    ,2 , ,3K table i table i ,     ,2 , ,4K table i table i ,     ,2 , ,6K table i table i , 

    ,3 , ,5K table i table i ,     ,3 , ,6K table i table i ,     ,4 , ,5K table i table i , 

    ,4 , ,6K table i table i ,     ,5 , ,6K table i table i , where we also consider the elements of the 

diagonal (each edge is related to itself) and the symmetries of the matrix. 

At [14] the local number of edges is specified and also more implementation details are 

included. 

Finally in an element wise finite element formulation (finite volume or high order 

discontinuous Galerkin); we need the neighbors of each element. Table 4 shows the element to 

node connectivity Table with their four neighbors (three for triangles) for the 3d sample mesh. Here 

a zero means that the element does not have a neighbor (its edge/face is on the boundary). From 

the element to neighbors connectivity Table we can get the structure of the finite element matrix 

K  in the discontinuous case; a loop over the rows of the Table says that for the row i the matrix 

K  have nonzero elements on   , ,1K i table i ,   , ,2K i table i ,   , ,3K i table i  and 

  , ,4K i table i  where of course we consider only the nonzero elements of the neighbors 

connectivity Table and again we take into account the elements of the diagonal and the symmetries 

of the matrix. Note that the numbering of edges and elements is given by the order as they appear 

at the files provided by the grid generators. 
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Table 4. Element to neighbors Table of our sample mesh. 

16 2 3  5 0 2 4 

1 6 3 4  6  0  3  1 

1 6 4 5  7  0  4  2 

1 6 5 2  8  0  1  3 

3 6 2 7  8  0  6  1 

4 3 7 6  5  7  2  0 

5 4 7 6  6  8  3  0 

2 6 5 7  7  0  5  4 

 
 

Reordering and Numerical Experiments 

Nodal Renumbering 

Traditionally, bandwidth reduction is obtained by a reordering of nodes of the finite element mesh. 

Some of the most common used algorithms include: Reverse Cuthill McKee [5], and Gibbs-Poole 

[15]. TRIANGULATION RCM and TET MESH RCM are programs which compute the reverse 

Cuthill-McKee reordering for nodes in triangular/tetrahedral meshes; they are freely available in 

C++, FORTRAN90 and MATLAB versions [12]. The nodal renumbering scheme is directly 

applied to the node graph. It is desirable that grid generators incorporate node renumbering 

algorithms.  

 

Edge renumbering 

In ([13, 14]) two edge-numbering schemes provided by Jin [8] were tested for two- and three-

dimensional implementations respectively. Numerical experiments there showed that if the node 

labels are close enough, a good edge-numbering scheme (low bandwidth) can be  defined by using 

an indicator to each edge (the indicator was 1 2i i  with 1i  and 2i  denoting the end nodes of the edge) 

with the array of indicators rearranged by a sorting algorithm very similar to the edge-reordering 

scheme used in [6]. In this work we use a different approach. Our starting point is any edge 

numbering, for example the one provided by Tetgen or Triangle. 

To fix the ideas, let us refer to our 3d sample mesh from Figure 4. The last six (three for 

triangles) columns of element-to-edge connectivity Table (3) define the connectivity of what we 
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call the Edge-Graph. A graphical representation of this mesh can be generated by joining the 

middle points of edges of the original Node-Mesh, Figure 5 shows this graph. This is our main 

contribution; because once we have defined the connectivity of the Edge-Graph we proceed to 

apply a renumbering algorithm as RCM. 

 

Figure 5. Nodal, Edge and Element Graphs. 

 

Elements Renumbering 

For the discontinuous formulation, in addition to the description of the elements by the connectivity 

of their nodes, a list of the neighbors of each element is required. Both grid generators Triangle 

and Tetgen provide the neighbors for triangles and tetrahedra respectively. In our 3d sample mesh, 

the last four (three for triangles) columns of Table (4) define the connectivity of what we call the 

Element-Graph. This is our main contribution because once we have defined the Element-Graph 

we can apply the renumbering algorithm to its connectivity Table. Notice that we can generate its 

graphical representation by joining the barycenters of the elements of the original node graph. 

Figure 5 shows this graph. 

 

Numerical Experiments 

We use meshes generated by the grid generators Triangle and Tetgen to assemble the matrices for 

the edge and discontinuous formulations given in section 2.  

Let us make some comments about the edge-element formulation. Figure 6 shows a sparse 

matrix structure obtained by using the original edge-numbering provided by the grid generator [14], 

whereas the matrix structure showed at Figure 7 was assembled using a node-reordered mesh 

(RCM) followed by the S1 edge-numbering scheme, and finally the matrix structure showed in 
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Figure 8 was assembled using the RCM applied to the Edge-Graph. As mentioned in [14], scheme 

S1 is a good edge-numbering provided the nodes are close enough numbered, but the best result is 

obtained by directly applying the RCM reordering to the Edge-graph. In fact, after using a node-

reordered mesh with the edge-numbering S1 the original bandwidth was reduced in a 332%, but 

when a RCM-renumbering is directly applied to the edge graph the bandwidth is reduced in a 

610%.  

As it has been widely reported, RCM applied to nodes of a mesh reduces the bandwidth of 

assembled matrices in nodal finite elements formulation. In order to obtain a bandwidth reduction 

in finite volume or discontinuous Galerkin formulations, we defined the Element Graph and applied 

the RCM reordering of elements. Figures 9 shows the sparse matrix structure for the element-

defined formulations for both the original tetrahedral mesh and the graph element RCM reordered. 

 

 
Figure 6. Original edge formulation, as provided by the grid generator. 

 

 
Figure 7. Edges formulation, RCM ordered nodes with S1 numbering scheme. 
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Figure 8. Edges formulation, Graph edges ordered by RCM. 

 

We observed similar results in two and three dimensions for nodes and elements. 

Figure 9 shows the sparse structure of the matrix of the element wise finite element formulation 

for the original numbering of the elements and the RCM reordering of the elements graph. 

 

 
Figure 9. Element formulation, original and RCM renumbered. 

 

In time domain formulation with edge-elements to simulate transient electromagnetic fields in 3d 

diffusive earth media [20] and high-order Navier-Stokes simulations using a Discontinuous 

Galerkin Method [17] both of them reduce to a sparse-matrix-times-vector product operation 

employed by the time solvers. Thus, a simple OpenMp code was implemented to multiply the 

assembled matrix sparse storage times a vector, and the execution time is reported. 

 

void SPARSE::Matrixvector(real vect[],real vectprod[]) 

{ 

long long int k; 

unsigned int i; 
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int chunnk=1000; 

{ 

#pragma omp for private(k,i) schedule(static,chunk) 

for ( i = 0; i ¡ dim; i++) 

{ 

vectprod[i]=0.0; 

for ( k = IA[i]; k ¡ IA[i+1]; k++) 

vectprod[i] += AA[k-1]*vect[JA[k-1]-1]; 

} 

}} 

 

Figure 10 shows the execution time of the sparse-matrix-times-vector product as a function of the 

number of iterations. Here original refers to edge-numbering provided by the grid generator 

whereas reordered refers to the reordered edge graph. For iterations between 200 and 600 the 

execution time is reduced by an average of 27.5%. The OpenMp code sparse-matrix-times-vector 

products were performed in an Intel Core CPU 2.90 GHz 8 processors workstation. Figure 11 

reports execution times for both the originally numbered and the reordered element-graphs 

corresponding to the element-wise formulation. It is desirable that grid generators include the RCM 

renumbering for nodes, edges and elements in order to avoid the post processing of the mesh or the 

reordering of the assembled matrix in the different finite element formulation. The bandwidth 

reduction obtained by edge or element reordering reduces the cache misses, improving the 

execution time of the sparse-matrix-vector product which is the main kernel of iterative solvers as 

BCG, QMR, etc. [11] 

 

Figure 10. Matrix times vector execution time as a function of the number of iterations, edge 

elements formulation. 
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Figure 11. Matrix times vector execution time as a function of the number of iterations, 

elements formulation. 

 

Conclusions 

Bandwidth reduction of matrices produced by nodal edge and element-defined finite element 

formulations were obtained. 

To apply a renumbering scheme like RCM (originally designed for nodal) we have defined the 

N and Element-Graph. The optimal mesh obtained (node-reordered, edge-reordered, and element-

reordered) can be very valuable. Some methods, for example those that combine nodal and edge-

defined finite element formulations [9] or those that combine nodal finite element and finite volume 

methods [16] could directly benefit from these reorderings. We suggest that grid generators should 

incorporate nodal, edge and element renumbering of the produced meshes in order to reduce 

bandwidth of assembled finite element matrices, avoiding the preprocessing of the mesh or the post 

processing of the assembled finite element matrix (sometimes quite difficult because the matrix is 

assembled at execution time or distributed over different processors). Moreover, the bandwidth 

minimization renumbering scheme that has been discussed reduces the cache misses improving the 

execution time in the sparse-matrix-times-vector product implemented on OpenMp. Matrix-vector 

multiplication is one of the main kernels in the iterative solvers. In this work we have discussed 

first order nodal and (CT/LN) edge finite elements, and a future work is due to investigate high 

order nodal and edge elements beside extended stencil finite volume formulations (extended 

neighborhoods for high order finite volume formulations). 
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