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Modeling 13 Archimedean solids by an
object-oriented language®

Modelado de los 13 solidos de Arquimedes
con un lenguaje de programacion orientado
a objetos

S. Alejandro Sandoval-Salazar,* Jimena M. Jacobo-Fernandez,*
J. Abraham Morales-Vidales,* Alfredo Tlahuice-Flores*'

ABSTRACT: The computational study of structures with chemical relevance is preceded by its
modeling in such manner that no calculations can be submitted without the knowledge of their
spatial atomic arrangement. In this regard, the use of an object-oriented language can be helpful
both to generate the Cartesian coordinates (.xyz file format) and to obtain a ray-traced image.
The modeling of chemical structures based on programming has some advantages with respect
to other known strategies. The more important advantage is the generation of Cartesian coordi-
nates that can be visualized easily by using free of charge software. Our approach facilitates the
spatial vision of complex structures and make tangible the chemistry concepts delivered in the
classroom. In this article an undergraduate project is described in which students generate the
Cartesian coordinates of 13 Archimedean solids based on a geometrical/programming approach.
Students were guided along the project and meetings were held to integrate their ideas in a few
lines of programmed codes. They improved their decision-making process and their organization
and collecting information capabilities, as much as their reasoning and spatial depth. The final
products of this project are the coded algorithms and those made tangible the grade of learning/
understanding derived of this activity.

KEYWORDS: Archimedean solids, pov-ray, programming, geometrical study, modeling.

RESUMEN: El estudio computacional de estructuras con relevancia en la quimica es precedido
por el modelado de las mismas; no se pueden realizar calculos sin el conocimiento del arreglo
espacial atdmico. El uso de un lenguaje de programacion orientado a objetos ayuda a generar
las coordenadas cartesianas (archivos .xyz) y obtener una imagen a partir de un modelo 3D. El
modelado de estructuras quimicas basadas en programacion tiene algunas ventajas respecto a
otras estrategias conocidas. La mayor ventaja es la generacion de coordenadas que pueden ser
visualizadas facilmente usando un software libre. Nuestro enfoque facilita la vision espacial de
estructuras complejas y hace entendibles los conceptos de quimica vistos en clase. En este
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articulo describimos un proyecto desarrollado por estudiantes de licenciatura en el cual obtu-
vieron las coordenadas cartesianas de los 13 s6lidos de Arquimedes, usando un enfoque
geométrico y de programacion. Los estudiantes fueron orientados a lo largo del proyecto, se
realizaron reuniones para compartir ideas y codigos con pocas lineas. También mejoraron la
toma de decisiones y su ejecucion, sus capacidades para organizar y reunir informacion, asi
como su razonamiento y profundidad espacial. El producto final de este proyecto son los algo-
ritmos codificados y el aprendizaje y entendimiento derivado de esta actividad.

PALABRAS CLAVE: solidos de Arquimedes, pov-ray, programacion, estudio geométrico, mode-
lado.

Introduction

The importance of the study of nanostructures with chemical relevance based
on regular shapes relies on the gain of a simple vision or explanation of their
featured complexity (i.e., metal clusters, metal-organic frameworks, complex
metallic alloys, and so on). The process of structural simplification can be fu-
eled by using symmetry elements, and the visualization might be facilitated
by an object-oriented language. In materials science and structural chemis-
try, the spatial vision is recognized as valuable in the understanding of bond-
ing and structure. Certainly, the training of second-year undergraduate stu-
dents requires the use of programming tools to facilitate the assimilation of
concepts as topology, bonding, and all covered subjects in materials chemis-
try and computational chemistry courses (Morales-Vidales et al., 2020). In
other words, the study of regular shapes is inherent to structural chemistry,
where a simplification of complex structures is done by using polyhedral
building blocks. In literature the use of regular shapes to describe the bond-
ing in Boron clusters is plenty and they have been modeled/determined with
octahedral and tetrahedral symmetries (Hayami and Otani, 2011; Wang,
2016). Interestingly, the snub Archimedean solids (snub cube and snub do-
decahedron) features the property of chirality depending on the direction of
applied rotation. For example, the B60 molecule was proposed as a chiral dis-
torted snub dodecahedron (Zope y Baruah, 2011). Another interesting sys-
tems displaying regular shapes (Platonic, Archimedean and Catalan solids)
are gold nanoparticles whose morphology depends on the content of water
and a capping agent known as poly(vinyl pyrrolidone) (Kim et al., 2010). The
Archimedean solids have also been realized as candidates of carbon struc-
tures, and the proposal of a C;,, molecule based on the truncated icosido-
decahedron was reported in 1985 (Haymet, 1985). Other amazing structures
were explained in terms of concentric shells describing dodecahedron and
icosidodecahedron polyhedral shapes (Kong et al., 2007; Niu et al., 2014).
However the truncated octahedron (Ni et al., 2005), truncated tetrahedron
(Leininger et al., 2000), truncated cuboctahedron (Eddaoundi et al., 2001),
cuboctahedron (Tomiaga et al., 2004), Rhombicuboctahedron (Qui et al.,
2019), and snub cube (Xiong et al,. 2010; Gupta and Corbett, 2012; Hudson,
2010) have also been reported.
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The study of the coordination number in face centered cubic (FCC) gold
structures, grant us with the first sight of an Archimedean solid; the cuboc-
tahedron which is formed among 12 first neighbors linked to one central
atom (figure 1a). Second neighbor’s analysis of the gold atoms arrangement
(figure 1b), let us visualize the shape of an octahedron with surrounding
atoms located at the cell parameter value (approx. acube = 4.07 A). Further
analysis shows us another fascinating atomic arrangement: a distorted
rhombicuboctahedron formed by 24 neighboring atoms, which are located
at circa 4.98 A (acube*sqrt (6)/2 distance value). More recently, it was re-
ported that the thiolated gold clusters can be described using distorted tet-
rahedron and octahedron building blocks. It attests the distortion induced
by the sulfur atoms to the gold-gold bonds with the size reduction on clus-
ters. The polyhedral approach is interesting because it maintains the idea of
compactness when it refers to metal clusters (Tlahuice-Flores, 2019).

The literature related to geometrical studies of metal clusters included
cuboctahedron, icosahedron, body centered cubic and simple cubic structures
providing us with formulas to determine the number of constituting atoms, co-
ordination numbers and so on (Montejano-Carrizales, 1997). Recently, some
of us have published the study of Aug, cluster modeled as one snub dodecahe-
dron in its neutral charge state. Obtaining degenerated frontier orbitals in ac-
cordance with its displayed I-symmetry (Jacobo-Fernandez et al., 2021). This
example, clearly attests the importance of an orientated to objects code to fa-
cilitate the generation of cartesian coordinates of structures with chemical rel-
evance, being this the first step to simulate related structures.

In this article, we describe a project devoted to the study of 13 Archime-
dean solids carried out by undergraduate students; the used methodology is
described, and the obtained results are summarized.

Figure 1. (a) The nearest 12 neighbors in a metal with FCC structure are displayed. Central atom (in
green color) is surrounded by atoms (in red color) describing a cuboctahedron. (b) Second neighbors in
FCC structure are forming an octahedral arrangement. (c) The distorted rhombicuboctahedron arran-
gement of 24 third neighbors are shown. The rest of the atoms forming the FCC structure are displayed
in glass texture.

a. b. c.

Source: Author’s elaboration.
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Archimedean solids and their construction

It is important to know that Archimedean solids were named after Archime-
des work (287-212 BCE). There are 13 Archimedean solids and they can be
constructed from the Platonic solids. Each Archimedean solid is comprised by
same type of regular faces sharing common vertices; thus, each vertex islinked
to the same type of faces, and it looks similar from a close-up view. Moreover,
only Platonic solids containing triangular faces (tetrahedron, icosahedron and
octahedron) can produce three of the Archimedean solids by truncation of one
third of their edges (truncated icosahedron, truncated octahedron, truncated
tetrahedron). In the case of truncation at the middle point of the Platonic so-
lid edges, the icosidodecahedron (starting from the icosahedron/dodecahe-
dron) and the cuboctahedron (from the cube) are generated. The other eight
Archimedean solids require correction operations such as translation (trunca-
ted cube, truncated cuboctahedron, rhombicuboctahedron, rhombicosidode-
cahedron, truncated icosidodecahedron, and truncated dodecahedron) (Ball
and Coxeter, 1987) and rotation of their faces to produce the same length of
their edges (snub cube and snub dodecahedron) (Wells, 1991).

Methodology

We started our study by proposing new algorithms in the Pov-Ray* langua-
ge to model the 13 Archimedean solids. Pov-Ray is a powerful tool to code
related mathematical algorithms and to generate 3D models (initial confi-
gurations). In this opportunity, our programmed truncation algorithms to
model Platonic solids were not enough and new algorithms to select, trans-
late and rotate faces were implemented. Such algorithms were used to co-
rrect the truncated structures sustaining not equal edge lengths (table 1).
With respect to Pov-Ray codes, the use of macros was mandatory to reduce
the repetition of code lines and to reduce the size of related programs. An
introductory use of macros is provided in the supporting information with
one example. In table 2 are included geometrical features of 13 Archime-
dean solids.

It is important to mention that the truncated octahedron is the unique
Archimedean solid whose repetition in the space can fill it with no gaps. In
solid state this shape is assumed by the Wigner Seitz cell of FCC structure
(Kittel, 1996).

Learning objetives

In this project, second year undergraduate students were devoted to the geo-
metrical study of Archimedean solids and their relationship with Platonic so-

! http://www.povray.org
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Table 1. Description of the used operations to produce the Archimedean solids starting from related
either Archimedean or Platonic solids.

Archimedean solid From the Archimedean/ Operation
Platonic solid
Cuboctahedron Cube/Octahedron Truncation of edges in two equal parts
Truncated cube Cuboctahedron Perpendicular translation of triangular
Cube faces
Irregular truncation of square faces
Truncated cuboctahedron Truncated cube/ Truncation of triangular faces and
Cuboctahedron/ translation/truncation in three equal parts

Rhombicuboctahedron | of the triangular faces and translation/
translation outwards of square faces

Rhombicuboctahedron Cube/Octahedron/ Perpendicular translation of square
Cuboctahedron faces/perpendicular translation of
triangular faces/Truncation of edges in
two equal parts

Snub cube Rhombicuboctahedron |Rotation of square faces of
rhombicuboctahedron

Rhombicosidodecahedron Dodecahedron/ Translation of dodecahedron/

Icosahedron icosahedron faces

Snub dodecahedron Rhombicosidodecahedron | Rotation of pentagonal faces of
rhombicosidodecahedron

Truncated tetrahedron Tetrahedron Truncation of edges in three equal parts

Truncated octahedron Octahedron Truncation of edges in three equal parts

Truncated icosahedron Icosahedron Truncation of edges in three equal parts

Truncated icosidodecahedron |Icosidodecahedron/ Truncation and translation of hexagonal

Truncated dodecahedron/ |faces/translation of decagons/
Truncated Icosahedron translation of hexagonal faces

Truncated dodecahedron Dodecahedron/ Irregular truncation and perpendicular
Icosidodecahedron translation of triangular faces/
translation of triangular faces
Icosidodecahedron Dodecahedron/ Truncation of edges in two equal parts
Icosahedron

Source: Author's elaboration.

lids. All the obtained models can be considered as part of their training to fur-
ther study of electronic properties of nanostructures of boron, carbon or gold.

As part of this project, students learnt about translation and rotation
operations to generate some of 13 Archimedean solids. They applied their
previous knowledge on an object-oriented language with the goal of gene-
rate new irregular solids. All the work is oriented to model chemical struc-
tures with relevance in areas as materials science. In the process, it was ne-
cessary to introduce the use of macros to reduce/adapt the code included in
this publication. The effectiveness and compliance of our project goals is co-
rroborated by the final written reports, the discussion of algorithms and the

final codes herein delivered.
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Table 2. Geometrical features of 13 Archimedean solids.

Archimedean solid Type of face Number of Numberof Number of
faces edges vertices

Cuboctahedron 8 triangles; 6 squares 14 24 12
Truncated cube 8 triangles; 6 octagons 14 36 24
Truncated cuboctahedron 12 squares; 8 hexagons; 26 72 48

6 octagons
Rhombicuboctahedron 8 triangles; 18 squares 26 48 24
Snub cube 32 triangles; 6 squares 38 60 24
Rhombicosidodecahedron 20 triangles; 30 squares; 62 120 60

12 pentagons
Snub dodecahedron 80 triangles; 12 pentagons 92 150 60
Truncated tetrahedron 4 triangles; 4 hexagons 8 18 12
Truncated octahedron 6 squares; 8 hexagons 14 36 24
Truncated icosahedron 12 pentagons; 20 hexagons 32 90 60
Truncated icosidodecahedron |30 squares; 20 hexagons; 62 180 120

12 decagons
Truncated dodecahedron 20 triangles; 12 decagons 32 90 60
Icosidodecahedron 20 triangles; 12 pentagons 32 60 30

Source: Author’s elaboration.

Conceptual orientation

Operations to generate Archimedean solids

The modeling of various Archimedean solids was based on the implementa-
tion of new algorithms to make some operations as:

1. Selection of regular faces. It implies to find each perpendicular vector
to every face of the solid. The use of cross vector/dot product opera-
tion among two vectors sharing a vertex and forming a pair of edges
was necessary. The centered cube (centered at 0,0,0) is related to va-
rious Archimedean solids whose perpendicular vectors are directed
along the cube diagonals.

2. Translation of selected faces. It is obtained by adding a perpendicular
vector to each vertex forming a face. For example, this operation
produces the perpendicular displacement (k) applied to the square
faces of the cube to produce the rhombicuboctahedron.

3. Rotation of selected faces. It is easily done by using the perpendicu-
lar vector to each face and finding numerically the proper rotation
angle.

4. Location of vertices along one edge where no regular truncation is possi-
ble. This operation was implemented as a macro and it yields the
proportional displacement to truncate the Platonic solids in order
to obtain 5 of the 13 Archimedean solids.
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It is important to note that various of the parameters used to build the
Archimedean solids were calculated numerically, for example, in the case of
the rhombicuboctahedron, the calculation of the magnitude of the perpen-
dicular vector (k) to one square face of the cube was done by adding up a
fraction of the perpendicular vector to each vertex of the cube and the dis-
tance among the translated positions was used to stop the search.

The use of macros in an object-oriented programming language

The use of macros is recommended when there exist lines that are repeated
through the code. The syntaxis to declare a macro is defined in the Box 1.
Tokens refer to any number of Pov-Ray keywords, or punctuation marks
which are the body of the macro. In such manner that it contains the code
that is repeated, and it is pretended to replace it. In the supporting informa-
tion is given an example of a macro.

Box 1. Commands in Pov-Ray Language to declare a Macro
#macro Identifier (parameters)

Tokens

#end

The algorithm to make an irregular truncation

In table 2 are found 5 Archimedean solids whose names include the word trun-
cated. Among them, the truncated tetrahedron, truncated octahedron, and
truncated icosahedron are obtained by a regular truncation (truncation of one
third of their edges) of the related Platonic solids. Conversely, the truncated
cube and truncated dodecahedron, cannot be truncated in an easy form and
one new algorithm was proposed to make this possible. In the following is ex-
plained the algorithm used to truncate 5 Platonic solids and to obtain related
Archimedean solids. In addition, in figure 2 is illustrated the algorithm.

1. Location of three points P1, P2 and P3 forming a pair of equal edges
with a common vertex (P1).

2. Calculation of a pair of vectors: V1 = P3-P1 and V2 = P2-P1 to defi-
ne the direction of the displacement.

3. Two new positions P4 and P5 are created along the V1 vector and
one position P6 along the V2 vector. Look at figure 2a.

4. Translation of the P4 and P5 positions resulting in TP4 = P1+h*V1

and TP5 = P3- h*V1, being h the magnitude of the displacement.

Translation of the P6 position by using TP6 = P1+h*V2.

6. Calculation of the distance among translated point TP4 and TP6.
When distance among TP6 and TP4 equals the distance among
TP4 and TP5, the displacement is known, and it represents the
proportion of truncation. See figure 2b for a final look of the algo-

rithm.
[
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The algorithm can be easily implemented for solids with edges forming
an angle different of 90° used in figure 2.

Figure 2. The illustration of the algorithm used to truncate five Platonic solids and to generate the
related Archimedean solids. (a) It starts with three vertices and two edges sharing a common vertex
(P1) and placing a pair of new vertices (P5 and P4) along the direction given by the vector P2-P1. The
position along the P3-P1 edge is used to conditionate the small displacement applied to P4 and P5
vertices. (b) The correct displacement is reached when the distance among TP6 and TP4 equals the
distance in the other edge (TP4-TP5).

a. b.

P3 P3
P6 P5 Pe

P1 p2 P1 )
P4 P5

Source: Author’s elaboration.

The given algorithm was coded as a macro and in the Box 2 is delivered.

Box 2. Macro for an irregular truncation of Platonic solid
edges. It determines the displacement to be applied to
vertices forming the truncated Archimedean solids
#macro Found_inc(Angle)

#declare P1=<0,0,0>;

#declare P2=<1,0,0>;

#declare P3=vaxis_rotate(P2,<0,0,1>,Angle);

#declare P4=P1;

#declare P5=P2;

#declare P6=P1;

#declare inc=0.27;

#declare h=0.00001;

#declare Cad="Au

#while (VDist(P4,P5)>VDist(P4,P6))

#declare P4=inc*P2;

#declare P5=(1-inc)*P2;

#declare P6=inc*P3;

#declare inc=inc+h;

#end
#end

Results and discussions

The Archimedean solids can be generated starting from various related po-
lyhedral solids as can be seen in table 1. In the next section, we discuss about

the chosen path and the algorithm; also, we provide the programmed codes
of each Archimedean solid.

The truncated tetrahedron from tetrahedron
The truncated tetrahedron consists of 4 hexagons, 4 triangles, 12 vertices
and 18 edges. Despite the regular truncation is done by reducing the original
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tetrahedron edge to one third, we proved the effectiveness of our proposed
algorithm by finding the same proportion. See figure 3 for the structure, and
the code is given in Box 3.

Figure 3. Truncated tetrahedron obtained by using the macro included in Box 2. Thin cylinders corres-
pond with the parent tetrahedror

Source: Author’s elaboration.

Box 3. POV-Ray code to make a truncated cube
// Insert here the last definition of libraries,
// light_source, camera, and background
#declare Pos= array[8]; // Cube positions
#declare TC= array [24]; // Truncated cube vertices
#declare acube=1; // Cube edges length
#declare Pos[0]= <acube/2, acube/2, acube/2>;
#declare Pos[1]= <-acube/2, -acube/2, -acube/2>;
#declare Pos[2]= <-acube/2, acube/2, acube/2>;
#declare Pos[3]= <acube/2, -acube/2, acube/2>;
#declare Pos[4]= <acube/2, acube/2, -acube/2>;
#declare Pos[5]= <-acube/2, -acube/2, acube/2>;
#declare Pos[6]= <-acube/2, acube/2, -acube/2>;
#declare Pos[7]= <acube/2, -acube/2, -acube/2>;
#declare L=acube+0.1;
#fopen CT “TruncatedCube.xyz” write
Found_inc(90)
//Call the macro to know the fraction to truncate the
square face.
#declare cont=0;
#declare i=0;
#while(i<7)
#declare j=i+1;
#while (j<8)
#declare Distan=VDist(Posl[i],Pos]j]);
#declare Desp=Pos]j]-Poslil;
#if(Distan<L)
#declare TC[cont ]=Posl[i]+inc*Desp;
#declare TC[cont+1]=Pos[i]+(1-inc)*Desp;
//There are 2 points in the edge: the closer to Pos[i] and
the closer to Pos][j]
#write (CT,Au”, “ “vstr(3, TC[cont ],” “,3,5),"\n")
#write (CT,"Au”, “ “,vstr(3, TC[cont+1],” “,3,5),"\n”)

sphere{TC[cont],0.2 texture {pigment{color Blue}}}
sphere{TC[cont+1],0.2 texture {pigment{color Blue}}}
#declare cont=cont+2;
#end
#declare j=j+1;

#end

#declare i=i+1;

#end

[
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The truncated cube from cube

The truncated cube has 6 octagons, 8 triangles, 24 vertices and 36 edges. The
truncation of cube is not regular, and the proportion of truncation was deter-
mined as approx. 0.293 times the cube edge length (Ni et al., 2005). See figure
4 for the structure of the truncated tetrahedron, and its code is given in Box 4.

Figure 4. Truncated cube obtained with our proposed macro. Evidently the truncation is not regular,
and it was necessary to implement a new algorithm (Box 2).

Source: Author’s elaboration.

Box 4. POV-Ray code to make a truncated tetrahedron
// Insert here the last definition of libraries,
//light_source, camera, and background

//Insert here the macro to find the displacement of the
tetrahedron positions

#declare atetra=1; // Tetrahedron edges length
#declare L=atetra*sqrt(2)+0.1;
#declare PosTetra= array[4]; // Tetrahedron positions
#declare TT=array [12];  // Truncated tetrahedron vertices
#declare PosTetra[0]=<atetra/2, atetra/2, atetra/2>;
#declare PosTetra[1]=<-atetra/2, -atetra/2, atetra/2>;
#declare PosTetra[2]=<-atetra/2, atetra/2, -atetra/2>;
#declare PosTetra[3]=<atetra/2, -atetra/2, -atetra/2>;
#fopen TTf “TruncatedTetrahedron.xyz” write
Found_inc(60)
//Call the macro to know the proportion to truncate an
equilateral triangular face.
#declare cont=0;
#declare i=0;
#while(i<3)
#declare j=i+1;
#while (j<4)
#declare Distan=VDist(PosTetrali],PosTetralj]);
#declare Desp=PosTetralj]-PosTetralil;
#if(Distan<L)
#declare TT[cont ]=PosTetra[i]+inc*Desp;
#declare TT[cont+1]=PosTetra[i]+(1-inc)*Desp;
//There are 2 points in the edge: the closer to PosTetrali]
and the closer to PosTetral[j]
#write (TTf,’Au”, “ “,vstr(3, TT[cont ],” “,3,5),"\n")
#write (TTf,’Au”, “ “,vstr(3, TT[cont+1],” “,3,5),”"\n")
sphere{TT[cont],0.2 texture {pigment{color Blue}}}
sphere{TT[cont+1],0.2 texture {pigment{color Blue}}}
#declare cont=cont+2;
#end
#declare j=j+1;
#end
#declare i=i+1;
#end

¢
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The truncated octahedron from octahedron

The regular truncation of an octahedron results in the truncated octahe-
dron. It shows 8 hexagons, and 6 squares; it has 24 vertices and 36 edges.
See Box 5 for code, and figure 5 for the structure.

Figure 5. Truncated octahedron and its relationship with the octahedron. The truncation of the octahe-
dron produces a truncated octahedron with an edge of one third of the original one.

Source: Author’s elaboration.

Box 5. POV-Ray code to make a truncated octahedron
// Insert here the last definition of libraries,
// light_source, camera, and background

//Insert here the macro included in Box 2.

#declare aoct=sqrt(2); // Octahedron edges length

#declare L=aoct*sqrt(2)/2+0.1;

#declare PosOct= array[6]; // Octahedron positions

#declare TO= array [24]; // Truncated tetrahedron vertices

#declare PosOct[0]=<aoct/2, 0, 0>;

#declare PosOct[1]=<-aoct /2, 0, 0>;

#declare PosOct[2]=<0, aoct/2, 0>;

#declare PosOct[3]=<0, -aoct/2, 0>;

#declare PosOct[4]=<0, 0, aoct/2>;

#declare PosOct[5]=<0, 0, -aoct/2>;

#fopen TOf “TruncatedOctahedron.xyz” write

Found_inc(60)

//Call the macro to find what fraction we have to translate in
an equilateral triangular face.

#declare cont=0;
#declare i=0;
#while(i<5)
#declare j=i+1;
#while (j<6)
#declare Distan=VDist(PosOct[i],PosOct[j]);
#declare Desp=PosOct[j]-PosOct[il;
#if(Distan<L)
#declare TO[cont ]=PosOct[i]+inc*Desp;
#declare TO[cont+1]=PosOct[i]+(1-inc)*Desp;
//There are 2 points in the edge: the closer to PosOct[i] and
the closer to PosOctl[j]
#write (TOf,"Au”, “ “,vstr(3, TO[cont ],” “,3,5),"\n")
#write (TOf,"Au”, “ “,vstr(3, TO[cont+1],” “,3,5),"\n”)
sphere{TO[cont],0.2 texture {pigment{color Blue}}}
sphere{TO[cont+1],0.2 texture {pigment{color Blue}}}
#declare cont=cont+2;
#end
#declare j=j+1;
#end
#declare i=i+1;
#end

@
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The truncated dodecahedron from dodecahedron

This Archimedean solid is comprised by 12 decagons, 20 triangles, 60 verti-
ces and 90 edges. It can be obtained by an irregular truncation of the dode-
cahedron to form the decagons and to obtain the triangles. The fraction to
truncate the pentagonal faces was calculated as 0.276 times the edge length
of the dodecahedron. In Box 6 is provided the code to generate the truncated
dodecahedron (figure 6) based on the macro showed in Box 2.

Figure 6. Truncated dodecahedron. The thin cylinders feature the edges of the original dodecahedron.

Source: Author’s elaboration.

Box 6. POV-Ray code to make a truncated dodecahedron
from dodecahedron

// Insert here the last definition of libraries,

// light_source, camera, and background

//Insert here the macro included in Box 2.

#declare n=20;

#declare dode=array[n]

#declare acube=1;

#declare L=0.7;

#declare fi=(sqrt(5)-1)/2;

// Dodecahedron vertices

#declare dode[0]= (acube/2)*<1+f,0,f>;
#declare dode[1]= (acube/2)*<-(1+f1),0,-fi>;
#declare dode[2]= (acube/2)*<1+f1,0,-fi>;
#declare dode[3]= (acube/2)*<-(1+f1),0,f1>;
#declare dode[4]= (acube/2)*<0,fi,1+fi>;
#declare dode[5]= (acube/2)*<0,f,-(1+f1)>;
#declare dode[6]= (acube/2)*<0,-fi,1+fi>;
#declare dode[7]= (acube/2)*<0,-fi,-(1+f1)>;
#declare dode[8]= (acube/2)*<f1,1+f1,0>;
#declare dode[9]= (acube/2)*<fi,-(1+1),0>;
#declare dode[10]= (acube/2)*<-f1,1+f1,0>;
#declare dode[11]= (acube/2)*<-fi,-(1+f1),0>;
#declare dode[12]= (acube/2)*<1, 1, 1>;
#declare dode[13]= (acube/2)*<-1, -1, -1>;
#declare dode[14]= (acube/2)*<-1, 1, 1>;
#declare dode[15]= (acube/2)*<1, -1, 1>;
#declare dode[16]= (acube/2)*<1, 1, -1>;
#declare dode[17]= (acube/2)*<-1, -1, 1>;
#declare dode[18]= (acube/2)*<-1, 1, -1>;
#declare dode[19]= (acube/2)*<1, -1, -1>;
#fopen DTf “TruncatedDodecahedron.xyz” write
Found_inc(108)

//Call the macro to find the truncation value over the
edges of pentagonal faces.
#declare cont=0;
#declare PosT=array[60];
#declare i=0;
#while(i<n-1)
#declare j=i+1;
#while (j<n)
#declare Distan=VDist(dode[i],dode[j]);
#declare Desp=dodelj]-dodelil;
#if(Distan<L)
#declare PosT[cont]=dode[i] +inc*Desp;
#write (DTf,"Au”, “ “,vstr(3, PosT[cont],” “,3,5),"\n”)
#write (DTf,’Au”, “ “,vstr(3, PosT[cont],” “,3,5),"\n”)
sphere { PosT[cont], 0.1 pigment{color Red} }
#declare cont=cont+1;
#declare PosT[cont]=dode[i]+(1-inc)*Desp;
sphere { PosT[cont], 0.1 pigment{color Red} }
#declare cont=cont+1;
#end
#declare j=j+1;
#end
#declare i=i+1;
#end

@
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The truncated icosahedron from icosahedron

In Chemistry, this is the most famous Archimedean solid given the fact that
Cgo molecule was confirmed experimentally (Kroto et al., 1985). Just like the
other two Platonic solids previously discussed (tetrahedron and octahedron)
the icosahedron is formed only by 20 triangular faces. This means that trun-
cated icosahedron, can be easily obtain by dividing the 30 edges of the icosa-
hedron into three equal parts (two new positions located at each icosahe-
dron edges). The structure of truncated icosahedron is depicted in figure 7
and the programmed code is given in Box 7.

Figure 7. Truncated icosahedron. The icosahedron edge is divided among three in such manner that
the 30 edges generate the 60 vertices of this Archimedean solid. Thin cylinders represent the icosa-
hedron edges.

Source: Author’s elaboration.

Box 7. POV-Ray code to make a truncated icosahedron #while (i<n-1)

with length 1 #declare j=i+1;

// Insert here the last definition of libraries, #while (j<n)

// light_source, camera, and background #declare IcoDist= VDist(icoli], ico[j]);

#declare ico= array[12]; // Icosahedron positions #if( I[coDist<=ladolco+0.1)

#fopen ITf “TruncatedIcosahedron.xyz” write #declare IcoTrun[kC60]= icoljl;

#declare fi=(sqrt(5)-1)/2; #declare IcoTrun[kC60 |=icoli]+ (ico[jl-icolil)/3;

#declare acube=3/fi; #write (ITf,"Au”, “ “,vstr(3, IcoTrun[kC60 ],”
“3,5),"\n")

// Icosahedron coordinates

#declare ico[0]= (acube/2)*<1,0,fi>; sphere {IcoTrun [kC60], RIc pigment{color Cyan}

#declare ico[1]= (acube/2)*<-1,0,-fi>; finish{phong 1}}

#declare ico[2]= (acube/2)*<1,0,-fi>; #write (Icotrunc,”Au”, “ “,vstr(3, IcoTrun [kC60 ],”

#declare ico[3]= (acube/2)*<-1,0,fi>; “3,5),"\n”)

#declare ico[4]= (acube/2)*<0,f1,1>; #declare IcoTrun[kC60]= icolil+ 2*(icoljl-

#declare ico[5]= (acube/2)*<0,fi,-1>; icoli])/3;

#declare ico[6]= (acube/2)*<0,-fi,1>; sphere { IcoTrun [kC60], RIc pigment {color

#declare ico[7]= (acube/2)*<0,-fi,-1>; Cyan} finish{phong 1}}

#declare ico[8]= (acube/2)*<f1,1,0>; #write (Icotrunc,”Au”, “ “,vstr(3, IcoTrun [kC60],”

#declare ico[9]= (acube/2)*<fi,-1,0>; “3,5),"\n”)

#declare ico[10]= (acube/2)*<-f1,1,0>; #declare kC60=kC60+1;

#declare ico[11]= (acube/2)*<-f1,-1,0>; #end

// This block is to calculate the distances among vertices #declare j=j+1;

// of icosahedron #end

#declare RIc=0.1; #declare i=i+1;

#declare i=0; #end

#declare n=12; // vertices of icosahedron

#declare ladoIco=acube*fi;

#declare kC60=1; // counter

#fopen Icotrunc “TruncatedIcosahedron.xyz” write
#declare IcoTrun= array[60];

-
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The cuboctahedron from a cube

It has 8 triangular and 6 square faces with 12 vertices. It is obtained by divi-
ding the cube edges (acube = 1) in two halves. The position vectors of the
cube vertices are perpendicular to the triangular faces while the unitary i, j,
and k vectors are perpendicular to its square faces. The edge length of cuboc-
tahedron equals sqrt (2)/2. Figure 8 shows the cuboctahedron and its rela-
tionship with the cube.

Figure 8. A cuboctahedron obtained by truncation of the cube edges. The cuboctahedron edges have a
length of sqrt (2)/2. The thin cylinders feature the parent cube.

Source: Author’s elaboration.

— —
P2, 4. —P1

P_i = P_icube + 2—‘“179 (1)

cuboctahedron

The algorithm to truncate the cube edges in two halves is given by the
formula 1, which is used to obtain the positions of the cuboctahedron. Box
8 contains the programmed code to obtain the cuboctahedron from the cube
and it implies to calculate the middle point among a pair of vertices sepa-
rated by the length of the cube (acube).

Box 8. POV-Ray code to make a cuboctahedron

// Insert here the last definition of libraries,

// light_source, camera, and background

#declare acube=2/sqrt(2); //cube edges length
#declare Pos= array[8]; // cube positions
#declare cuboc= array [12]; // cuboctahedron vertices

// Cube positions (Box 3)
#fopen cuboct “cuboctahedron.xyz” write

// This block is to calculate the distances among vertices
// and to define edges
//Calculating the center of cube edges

#declare i=0;

#declare ncub=0;

#declare n=8;

#while (i<n-1)

#declare j=i+1;

#while (j<n)
#declare L= VDist(Posli],Poslj]);
#if(L< acube+0.1)
#declare cuboc[ncub]=Pos[i]+0.5*(Posl[j]- Posl[il);
sphere{cuboc[ncub], 0.25 pigment{color Red}}
#write (cuboct,”Au”, “ “,vstr(3, cuboc[ncub],” “,3,5),”"\n”)
#declare ncub=ncub+1;
#end
#declare j=j+1;
#end
#declare i=i+1;
#end

[
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The icosidodecahedron from the icosahedron

This solid has 32 faces, 20 of them are triangles and 12 are pentagons. It has
30 vertices and 60 edges (figure 9). Just like the cuboctahedron, which can
be obtain both from the cube or its dual (the octahedron) the icosidodecahe-
dron can be obtain by locating a vertex in the middle point of the edges of
either the dodecahedron or its dual. In other words, the icosidodecahedron
is obtained by regular truncation of the icosahedron edges. In such manner
that we can reuse the code to obtain the cuboctahedron. However, the initial
vertices, will form the icosahedron instead of a cube. Evidently, formula 1 is

also applied to this code (see Box 9).

Figure 9. Icosidodecahedron. It was obtained by finding the middle point of the icosahedron edges.
The thin and blue sticks correspond with the icosahedron.

Source: Author’s elaboration.

Box 9. POV-Ray code to make an icosidodecahedron

// Insert here the last definition of libraries,

// light_source, camera, and background

#declare ico= array[12];  //Icosahedron positions
#declare icosi= array [30]; // Icosidodecahedron vertices
#declare fi=(sqrt(5)-1)/2;

#declare acube=1*f1; //Icosahedron edges

#fopen Icf “Icosidodecahedron.xyz” write

// Icosahedron coordinates
#declare ico[0]= (acube/2)*<1,0,fi>;
#declare ico[1]= (acube/2)*<-1,0,-fi>;
#declare ico[2]= (acube/2)*<1,0,-fi>;
#declare ico[3]= (acube/2)*<-1,0,fi>;
#declare ico[4]= (acube/2)*<0,f1,1>;
#declare ico[5]= (acube/2)*<0,fi,-1>;
#declare ico[6]= (acube/2)*<0,-f1,1>;
#declare ico[7]= (acube/2)*<0,-fi,-1>;
#declare ico[8]= (acube/2)*<f1,1,0>;
#declare ico[9]= (acube/2)*<f1,-1,0>;
#declare ico[10]= (acube/2)*<-f1,1,0>;
#declare ico[11]= (acube/2)*<-f1,-1,0>;
#declare ladoIco=acube*fi;
// This block is to calculate the distances among vertices
// and to define edges
//Calculating the middle point of icosahedron edges

#declare i=0;

#declare nicos=0;

#declare n=12;

#while (i<n-1)

#declare j=i+1;
#while (j<n)
#declare L= VDist(icoli],ico[j]);
#if(L< ladoIco+0.1)
#declare icosi[nicos]=ico[i]+0.5*(icolj]- icolil);
#write (Icf,”Au”, “ “,vstr(3, icosi[nicos],” “,3,5),"\n”)
sphere{icosi[nicos], 0.25 pigment{color Red}}
#declare nicos=nicos+1;
#end
#declare j=j+1;
#end
#declare i=i+1;
#end

(518
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The truncated icosidodecahedron from the truncated icosahedron

Itis also known as great rhombicosidodecahedron and it is the largest Archi-
medean solid. The structure is built by 30 squares, 20 hexagons and 12 deca-
gons. It has 120 vertices and 180 edges. It can be constructed by dividing the
icosidodecahedron edges in three equal parts and a further translation along
a perpendicular vector of the formed hexagons (i.e., related dodecahedron
vertices). However, we chosen to start from a truncated icosahedron (figure
7), whose hexagonal faces were translated along the dodecahedron vertices.
The selection of hexagonal faces implies to calculate the dot product among
the face vertices and its perpendicular vector. [t was determined that a value
of circa 0.875 (i.e., k = 0.875) for the dot product allows to select the hexago-
nal faces. The translation vector k was calculated as circa 1.40 times the
hexagon edge (Williams, 1979). The described algorithm is given in terms of
formulas 2 and 3. See figure S1(annex) for more geometrical details.

Vp = 15) dode (2)
QnTrunc»icosi = Pnhexagun + kﬁdade (3)

Where ﬁzhexagon corresponds with hexagonal faces of truncated icosahe-
dron. Formula 2 indicates the magnitude of each perpendicular vector, that
is along one related position vector of the dodecahedron.

_, Formula 3 stands for the translation of the obtained hexagonal faces
(QN7uncicost)-

In Box 10 the programmed code is included, and it contains in the last
part the algorithm to select and translate vertices. The structure is displayed
in figure 10.

Figure 10. Truncated icosidodecahedron or great rhombicosidodecahedron. The hexagonal faces of
the truncated icosahedron are translated along perpendicular vectors, it means along the dodecahe-
dron vertices. The truncated icosahedron is displayed in blue color.

=

e i

Source: Author’s elaboration.
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Box 10. POV-Ray code to make a truncated icosidodecahe-
dron from a truncated icosahedron
// Insert here the last definition of libraries,
// light_source, camera, and background
// icoTrun array contains the Truncated icosahedron vertices
// Calculation of the vertices of dual of the icosahedron
// Copy here Box 9
#declare n=12;
#declare conter=0;
#declarei=0;
#while (i < n-1)
#declarej=i+1;
#while (j < n)
#declarek =j + 1;
#while (k < n)
#declare L1= VDist(ico[i], ico[j]);
#declare L2= VDist(icoli], ico[k]);
#declare Angulo= VAngleD(icolj]-ico[i], ico[k]-icol[i]);
// Angle formed among edges
#if (L1=a & L2=a & Angulo=60)
#declare dode[conter]= (ico[i] +ico[j]+ico[k])/3;
#declare conter=conter+1;
#end
#declarek=k + 1;
#end
#declarej=j +1;
#end
#declarei=i+ 1;
#end

#fopen out3 “seleccion2.dat” write

#fopen out5 “TruncatedIcosidodecahedron.xyz” write

// Selection and Translation of hexagonal faces
#declare counter1=0;

#declare i=0;
#while(i<60)
#declare j=0;
#while (j<20)
// vdot is 0.8710180527 for hexagons and their perpendicular
vectors
#if ( vdot(icoTrunli], dodelj] ) < (0.89) & vdot(icoTrunli],
dodelj] )>(0.84))
#declare icosit[counter1]=icoTrunli]
+1.4011*a/3*vnormalize(dodel[j]);
#write(out3, icosit[counterl], “\n”)
#write(out5,”’Au”, “ “,vstr(3,icosit[counterl], “ ,3,5),"\n")
sphere { icosit[counter1], 0.05 pigment{color Red} finish {phong
13

#declare counterl=counterl+1;
#end
#declare j=j+1;
#end
#declare i=i+1;
#end
//Truncated icosidodecahedron model
#declare i=0;
#while(i<118)
#declare j=i+1;
#while(j<119)
#declare dist6=VDist(icosit[i],icosit[j]);
#if (dist6<0.5 & dist6>0.3)
cylinder{ icosit[i] icosit[j] 0.03 pigment{color Green}}
#end
#declare j=j+1;
#end
#declare i=i+1;
#end

The rhombicuboctahedron from a cube

The rhombicuboctahedron is constituted by 18 square faces, 8 triangular faces
and 24 vertices, being the same edge length in both type of faces. It is an Archi-
medean solid formed by the outward translation of the vertices forming each
square face of a cube. The translation of each square face is along its respective
perpendicular vectors (they can be calculated using the formula 4). In the case of
one centered cube with an edge of acube, <acube/2,0,0>, <-acube/2,0,0>, <0,acu-
be/2,05, <0,-acube/2,0>, <0,0,acube/2> and <0,0,-acube/2> represent perpen-
dicular vectors to each square face. The magnitude of the perpendicular vectors
can be analytically calculated and it corresponds with the acube/sqrt(2) value
(i.e. k = 0.7071*acube in formula 5). We calculate numerically the k value by
adding up successively a fraction of a pair of perpendicular vectors (for example
<1,0,0> and <0,0,-1>) to the same cube vertex and attesting that at certain
translation, the distance among new created positions equals the cube edge. See
supporting information (figure S1 in annex) for more details and the used code.

Vp = (P_S)cube - P_icube) ® (P_écube - P_])-cube) (4)
@Rhom = ﬁ)cube + k‘_ip (5)

-
Where Pn,,;, represent the position vectors of the nth vertex of a cube,
and Qn gy, are the position vectors of the translated vertices forming the

@
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rhombicuboctahedron. Figure 11 contains a graphical explanation of the given
formulas.

Figure 11. Rhombicuboctahedron obtained from a cube. All vertices of cube are translated along a
perpendicular vector (Vp). Q position is obtained from translation of P position. The triangular faces
are formed after the translation of the square faces of the parent cube (red color).

Source: Author’s elaboration.

It is also worth to notice that rhombicuboctahedron can also be obtain
from the dual of a cube, i.e., the octahedron. The triangular octahedron’s
faces must be translated b*0.8660. Being b the length of the octahedron’s
edge (b = acube/sqrt(2), and acube the edge of the cube where the octahedron
is inscribed). On the other hand, an angle of circa 1.23 radians is comprised
between both perpendicular translation vectors, which originate from the
octahedron’s vertices. And the angle between the perpendicular vector and
the octahedron’s edge is of 0.9547 radians. The same proportion is found
when we try to obtain the truncated cube from the cuboctahedron. A full de-
duction of this is included in the supporting information (figure S3 in annex).

The code given in Box 11 can be simplified by using the function Vperp_
To_Plane (V1, V2) where V1 and V2 are along the edges of the polyhedral
face. This operation is given by the formula 4. However, we considered im-
portant to provide the readers with code that is easy to visualize and to be
related to the above given formulas 4 and 5.

The truncated cube from a cuboctahedron

In addition to the irregular truncation of the cube edge (Box 3), in this sec-
tion is explained another form to truncate the cube. The truncated cube is
built by 8 triangular and 6 octagonal faces, linking 24 vertices. It can be ob-
tained by the selection and the outward translation of the triangular faces of
the cuboctahedron. This operation is simplified by knowing that position
vector of each cube’s vertex is perpendicular to triangular faces of the cuboc-
tahedron. The procedure to translate each triangular face of the cuboctahe-
dron is given in formula 6, where three vertices of the truncated cube are ob-
tained by adding one position vector of the cube to three vertices of the
cuboctahedron. This operation is repeated to translate outward all 8 triangu-

¢
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Box 11. POV-Ray code to make a rhombicuboctahedron
with edge of 1

// Insert here the last definition of libraries, // light_
source, camera, and background

#declare acube=1; // cube edges length
#declare Pos= array[8]; // cube positions
#declare Rho= array [24]; // Rhombicuboctahedron

vertices

// Insert here cube positions given as (+acube/2, + acube/2,
+ acube/2)

// Calculation of center of cube faces (perpendicular
// vectors)

#declare i=0;

#declare Center=array[6];

#declare counter=0;

#declare n=8;

#declare j=1;

#while (j<n)

#declare L= VDist(Pos[0],Poslj]);
#if(L=acube*sqrt(2) )

#declare Center[counter]= Pos[0]+(Pos[j]-Pos[0])/2;
#declare Center[counter+1]= -1*Center[counter];
#declare counter=counter+2;

#end

#declare j=j+1;

#end

//selecting vertices to translate on each square face

#declare i=0;

#declare lado= acube*sqrt(2)/2;

#declare coun=0

#while (i<counter)

#declare j=0;

#while (j<n)

#if(VDist(Center[i],Posl[j])= lado)
#declare Rho[coun]=Pos]jl;
#declare coun=coun+1;

#end

#declare j=j+1;

#end
#declare i=i+1;
#end
//Translation of square faces
#fopen out “Rhombicuboctahedron.xyz” write
#declare i=0;
#declare n=24;
#while(i<n)
#declare Rho[i]=Rho[i]+ 0.7071*acube
*vnormalize((Center[i/4]));
#declare Rhol[i+1]=Rho[i+1]+0.7071*acube
*vnormalize((Center[i/4]));
#declare Rhol[i+2]=Rhol[i+2]+0.7071*acube
*vynormalize((Center[i/4]));
#declare Rho[i+3]=Rhol[i+3]+0.7071*acube
*vnormalize((Center[i/4]));
#write (out,’Au”, “ “,vstr(3,Rholi], “*3,5),"\n”")
#write (out,’Au”, “ “,vstr(3,Rholi+1], ““3,5),"\n")
#write (out,’Au”, “ “,vstr(3,Rholi+2], ““3,5),"\n")
#write (out,’Au”, “ “,vstr(3,Rholi+3], ““3,5),"\n")
#declare i= i+4;
#end

// Drawing the model with spheres
#declare h=pow(10,-3);
#declare i=0;
#while (i<n-1)
sphere {Rhol[i],0.2 texture { pigment { color Red} }}
#declare j=i+1;
#while(j<n)
#if (VDist(Rholi],Rho[j])<acube+2*h &
VDist(Rholi],Rho[j])>acube-2*h )
cylinder {Rholi], Rho[j], 0.1 texture {pigment { color
Yellow} }}
#end
#declare j=j+1;
#end
#declare i=i+1;
#end

lar faces constituting the cuboctahedron. The magnitude of perpendicular
translation (k vector magnitude) was numerically calculated and it is defined
as acube*sqrt(3)/2 (i.e,. acube*0.8660). Figure 12 includes the discussed
structure of the truncated cube, and Box 12 has the implemented code.

— — -
PTrun-Cube = Pcuhoctahedron + kPCuhe (6)

Figure 12. Making a truncated cube from a cuboctahedron. Each triangular face of the cuboctahedron
is translated along one diagonal of the cube. The translated vertices constituting the truncated cube
are linked by cylinders featured in green color. Thin red cylinders correspond with the cube.

Source: Author’s elaboration.
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Box 12. POV-Ray code to make a truncated cube

// Insert here the last definition of libraries,

// light_source, camera, and background

#declare acube=1; // cube edges length
#declare Pos= array[8]; // cube positions

#declare cuboc= array [12]; // Cuboctahedron vertices
// Insert here cuboctahedron code given in Box 8

#fopen out “truncatedcube.xyz” write

// Selecting triangular faces using the distance to the
center of faces
#declare i=0;
#declare nsele=0;
#declare TC= array [24]; // selected cuboctahedron vertices
#while (i<8)
#declare j=0;
#while (j<ncub)
#if( VDist(Posli],cuboc[j]) < sqrt(2)/2 )
#declare TC[nsele]=cuboclj];

#declare nsele=nsele+1;
#end
#declare j=j+1;
#end
#declare i=i+1;
#end#declare nsele=0;
#declare lado= sqrt(2)/2;
#declare TC= array [24]; //selected cuboctahedron vertices
#while (i<ncen)
#declare j=0;
#while (j<ncub)
#if( VDist(Posli],cuboc[j]) < lado )
#declare TC[nsele]=cubocljl;
#end
#declare i=i+1;
#end

//Translation of triangular faces
#declare i=0;
#while(i<nsele)
#declare TC[i ]=TC[i]+ 0.8660*(sqrt(2)/2)
*vnormalize((Pos[i/3]));
#declare TC[i+1]=TC[i+1]+0.8660*(sqrt(2)/2)
*ynormalize((Pos[i/3]));
#declare TC[i+2]=TC[i+2]+0.8660*(sqrt(2)/2)
*vnormalize((Pos[i/3]));
#write (out,’Au”, “ “,vstr(3,TC[i], “*3,5),"\n")
#write (out,’Au”, “ “,vstr(3,TC[i+1], ““3,5),"\n")
#write (out,’Au”, “ “,vstr(3,TC[i+2], ““3,5),"\n")
#declare i=i+3;
#end

// Final model
#declare h=pow(10,-3);
#declare i=0;
#while (i<nsele-1)
sphere {TC[i],0.2 texture {pigment { color Red} }}
#declare j=i+1 ;
#while(j<nsele)
#if (VDist(TC[i], TC{]) < (sqrt(2)/2)+2*h &
VDist(TC[i], TC[j])> (sqrt(2)/2)-2*h )
cylinder {TC[i],TC[j], 0.1 texture { pigment { color
Yellow} }}
#end
#declare j=j+1;
#end
#declare i=i+1;
#end

The truncated cuboctahedron from a truncated cube

It is also named as great rhombicuboctahedron (Williams, 1979), and it is
constituted by 12 square faces, 8 hexagonal faces, 6 octagonal faces and 48
vertices (figure 13). It can be built by the truncation of triangular faces of
the truncated cube in three equal parts to generate the hexagonal faces
(formulas 2 and 3). However, further inward translation of hexagons along
the perpendicular vectors (cube vertices is necessary to obtain a truncated
cuboctahedron with equal edges. The algorithm to construct this Archime-
dean solid includes a conditional to verify that the edges of the hexagonal
faces (one third of the cuboctahedron) equal the distance among neighbo-
ring hexagonal faces. In formula 9, the perpendicular vector has a magnitu-
de 0.985 times the edge of the cuboctahedron, and the sign indicates an in-
ward translation. Moreover, each perpendicular vector to one hexagonal
face is along the position vector of respective cube vertices. See Box 13 for
the code.

PTrun-Cubuctahedron = PTrun-Cube-hex —kx PCube (7)

&
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Figure 13. Truncated cuboctahedron from a truncated cube. The triangular faces of the truncated cube
are truncated in three equal parts and the new hexagonal faces (orange/red sticks) are translated
along vectors oriented on the diagonal of the cube indicated in red color. The translated vertices cons-

tituting the truncated cuboctahedron are linked by cylinders in orange color.

Source: Author’s elaboration.

Box 13. Pov-Ray Code To Make a Truncated Cuboctahedron
// Insert here the last definition of libraries,
//light_source, camera, and background

#declare acube=1; // cube edges length
#declare Pos= array[8]; // cube positions
#declare cuboc= array [12]; // Cuboctahedron vertices

// Insert here code to make the truncated cube included in Box
12. TC[24] represents the positions of truncated cube.
#declare hexal= array [48];
#declare kon=0;
#declare i=0;
#while (i<nsele)
#declare j=i+1;
#while (j<nsele)
#declare V1= TC[j]-TC[i];
#declare k=j+1;
#while (k<nsele)
#declare V2= TC [k]-TC[il;
#declare Dd= VDist(TC [i],TC[j]);
#declare Dd1= VDist(TC [i], TC[k]);
#declare angulo= VAngleD(V1,V2);

//finding edges with a common vertex; edge equals sqrt(2)/2

#if((Dd<0.8 & Dd>0.7) & (Dd1<0.8 & Dd1> 0.7) &
(angulo>59 & angulo<61))

#declare hexallkon ]= TC[i]+ (TC[j]-TClil)/3;
#declare hexal[kon+1]=TC[i]+2*(TC[j]-TC[i])/3;
#declare hexal[kon+2 ]=TC[i]+ (TC[k]-TC[i])/3;
#declare hexal[kon+3]= TC[i]+2*(TC[k]-TC[i])/3;
#declare hexal[kon+4 ]=TC[j]+ (TC[k]-TC[j])/3;
#declare hexallkon+5]= TC[jl+ 2*(TC[k]-TC[j])/3;

#declare kon=kon+6;
#end
#declare k=k+1;
#end
#declare j=j+1;
#end
#declare i=i+1;
#end
//Selection of hexagons and normal vectors to translate them
#declare Thex= array[480];
#declare ladoCuboc= acube*sqrt(2)/2; //Cuboctahedron edge
#fopen TrCubocta “Truncated-cuboc.xyz” write
#declare konter=1;
#declare i=0;
#while(i<48)
#declare j=0;
#while (j<8)

#if (vdot(hexalli],Pos[j])<(1+0.2) & vdot(hexalli], Pos[j] )>
(1-0.2))
#declare Thex[konter]=hexal[i]-0.985* ladoCuboc
*vnormalize((Pos[j]));
sphere {Thex[konter], 0.3 pigment {rgb <1,0,0>} }
#write (TrCubocta,”H”, “ “,vstr(3, Thex[konter ],” “,3,5),"\n")
#declare konter=konter+1;
#end
#declare j=j+1;
#end
#declare i=i+1;
#end

The snub cube from the rhombicuboctahedron

This Archimedean solid is comprised by 6 squares, and 32 equilateral triangles.
It has 24 vertices and 60 edges. The rotation of the square faces of the rhombi-
cuboctahedron is included in the algorithm given in Box 14. Depending on the
rotation (clockwise or counter-clockwise) a pair of enantiomers are produced (it
is a chiral structure) (Ball and Coxeter, 1987). If a rotation of circa 16 degrees is
applied on each square face, then the square faces of the rhombicuboctahedron

@
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seem to rotate in contrary directions when they are seen perpendicular to those
square faces. In figure 14, the structure of the snub cube is provided.

Figure 14. Snub cube from a rhombicuboctahedron. The square faces of the rhombicuboctahedron
(blue color) are rotated with respect to perpendicular vectors passing through the cube faces. The rota-
ted vertices constituting the snub cube are linked by cylinders (green color). Left structure corresponds
with a counter-clockwise rotation. Both enantiomers are related by a mirror symmetry operation.

Source: Author’s elaboration.

Box 14. POV-Ray code to make a snub cube with edge length
of1

// Insert here the last definition of libraries,

// light_source, camera, and background

#declare acube=1; // cube edges length

#declare Pos= array(8]; // cube positions

#declare cuboc= array [12]; // Cuboctahedron vertices

// Insert here the rhombicuboctahedron included in Box 11.
Center[counter] represents the center of cube faces. Rho
is the array containing 24 vertices of
rhombicuboctahedron

// Selection of square faces and their rotation
#write (SnubCub,”24”,"\n”)
#write (SnubCub,””,"\n")

#declare konter3=0;

#declare angulo=16.47 ;

#declare i=0;

#while(i<24) // vertices

#declare j=0;

#while (j<6) // centers

#if (vdot(Rholi],Center[j])<(0.6036+0.1) & vdot(Rholi],
Centerlj] )> (0.6036-0.1) )

#declare Snubcu[konter3]= vaxis_rotate(Rhol[i], ~Center][j],
angulo) ;
sphere {Snubculkonter3], 0.1 pigment {color Blue} }

#write (SnubCub,”’Au”, “ “,vstr(3, Snubculkonter3 ],”

“3,5),"\n")
#declare konter3=konter3+1;

#end

#declare j=j+1;
#end

#declare i=i+1;

#end

It is important to note that we are using the dot product to select square
faces of the rhombicuboctahedron. Rotations are carried out by using the

-2
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command axis_rotate (V1, V2, angle), being V1 the rhombicuboctahedron
vertices array and V2 the centers array. The twist angle was determined nu-
merically, and it is of circa 16.47° (WolframMathworld, http://mathworld.
wolfram.com/SnubCube.html). On the other hand, the calculated dot pro-
duct among the perpendicular vector and one vertex of the rhombicosidode-
cahedron was calculated as 0.6036*acube?. This value is included in our algo-
rithm to select vertices forming a square face and to rotate them with respect
to the related perpendicular vector.

The rhombicosidodecahedron from the dodecahedron

This structure has been found comprising the structure of one I-Au, 4, cluster,
and it represents a distorted 60-shell atoms where the gold atoms are separa-
ted and they are linked to an inner gold core (Tlahuice-Flores et al., 2013). The
rhombicosidodecahedron is an Archimedean solid built by 20 triangles, 30
squares and 12 pentagons. It has 60 vertices and 120 edges. To generate it, we
selected each pentagonal face of dodecahedron (12 pentagonal faces) and
translated it outwards along a perpendicular vector. The perpendicular vectors
are given by the dual of dodecahedron (icosahedron) and their magnitude was
calculated as circa 0.951 times the dodecahedron edge length. See figure 15 for
an illustration of the structure and Box 15 for the code.

Figure 15. Rhombicosidodecahedron obtained from a dodecahedron. The pentagonal faces of the do-
decahedron (blue color) are translated with respect to perpendicular vectors. The triangular faces are
formed when all the inter-face distances equal the pentagon edges length.
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Source: Author’s elaboration.

The snub dodecahedron from the rhombicosidodecahedron

The snub dodecahedron is also known as snub icosidodecahedron. It has 12
pentagons, and 80 equilateral triangles, and its 150 edges join the 60 vertices
constituting him. It can be obtained from the rotation of the pentagonal faces
of the rhombicosidodecahedron in a similar way that the snub cube is made
from the rhombicuboctahedron. The rotation of the pentagonal faces can be
done both clockwise and counter-clockwise orientation, resulting in two struc-
tures related by a mirror symmetry operation. If the edge of this solid is the
unit, then a rotation of 18.2158° is necessary to change the square faces by
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Box 15. Pov-Ray code to make a rhombicosidodecahedron
with edge length of 1

// Insert here the last definition of libraries,

// light_source, camera, and background

#declare acube=1; // cube edges length

#declare Pos= array[8]; // cube positions

#declare cuboc= array [12]; // Cuboctahedron vertices

// Insert here the dodecahedron and icosahedron arrays.
#declare adode=1;

// dode[n] contains dodecahedron vertices

// Selecting and moving pentagonal faces

#fopen rhombicosidode “rhombicosidodecaedro.xyz” write
#write (thombicosidode,”60”,"\n”)
#write (rhombicosidode,””,”\n")

#declare konter=0;

#declare i=0;

#while(i<20)

#declare j=0;

#while (j<12)

#if (vdot( vnormalize(dodeli]), vnormalize(icolj]))> (0.75) &
vdot(vnormalize(dodel[i]), vnormalize(ico[j] ))< (1.0))

// dot product among one vertex and the center of one
face

#declare Rho[konter]=dode[i]+ 0.95088*adode

*vnormalize((ico[j])); // magnitude of the perpendicular

vector

sphere {Rho[konter], 0.3 pigment {rgb <1,0,0>} }
#write (rhombicosidode,”Au”, “ “,vstr(3, Rho[konter ],”

“3,5),"\n")
#declare konter=konter+1;

#end

#declare j=j+1;
#end
#declare i=i+1;

#end

// spheres Model

#declare h=0.1;

#declare i=0;

#while (i<60)

sphere {Rhom[i],0.1 texture { pigment { color Red} }}

#declare j=i+1 ;

#while(j<60)

#if (VDist(Rhom[i],Rhom[j])<adode+2*h &

VDist(Rhom[i],Rhom[j])>adode-2*h )

cylinder {Rhom[i],Rhomlj], 0.05 texture { pigment { color
Yellow} finish { phong 0.0 reflection{ 0.00 metallic

0.00}}}}
#end
#declare j=j+1;
#end
#declare i=i+1;
#end

triangular ones (Weisstein, 2020; WolframMathworld, http://mathworld.wol-
fram.com/ SnubDodecahedron.html). Recently, we have calculated one ho-
llows Aug, cluster corresponding with a perfect snub dodecahedron. It means
that modeling of Archimedean can be used to investigate structures with rele-
vance in chemistry (Jacobo-Ferndndez and Tlahuice-Flores, 2021).

Figure 16 contains the rhombicosidodecahedron structure. Box 16 con-
tains the Pov-Ray code of the snub dodecahedron.

Figure 16. Snub dodecahedron from the rhombicosidodecahedron. Making a snub dodecahedron from
rotation of pentagonal faces of the rhombicosidodecahedron. The cylinders in blue correspond with
the rhombicosidodecahedron. The rotation of pentagonal faces transforms the square in triangular
faces (green color). To simplify the view, the edges of rhombicosidodecahedron are displayed as thin
cylinders.

Source: Author’s elaboration.
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Box 16. Pov-Ray code to make snub dodecahedron with
edge length of 1
//Insert here code from Box 15

#fopen SnubD “SnubRhombicosidode.xyz” write
#declare SnubRho= array [120];

#write (SnubD,”60”,”"\n”")

#write (SnubD,””,"\n")

#declare konter5=0;
#declare angulo=18.215828464309;
#declare i=0;
#while(i<60) // vertices
#declare j=0;
#while (j<12) // centers
#if (vdot( vnormalize(Rhom/[i]),
vnormalize(icolj]))> (0.75) &
vdot(vnormalize(Rhomli]), vnormalize(ico[j] ))< (1))
#declare SnubRho[konter5]=
vaxis_rotate(Rhomli], icol[j], angulo) ;
sphere {SnubRho[konter5], 0.06 pigment {color
Blue} }
#write (SnubD,’Au”, “ “vstr(3, SnubRho[konter5 ],
“3,5),"\n")
#declare konter5=konter5+1;

#end
#declare j=j+1;
#end
#declare i=i+1;
#end
#declare n=0;
#declare j=0;

// spheres Model
#declare h=0.2;
#declare i=0;
#while (i<60)
#declare j=i+1;
#while(j<60)
#if (VDist(SnubRholi],SnubRholj])<adode+2*h &
VDist(SnubRholi],SnubRholj])>adode-2*h )
cylinder {SnubRholi],SnubRholj], 0.05 texture { pigment
{color Green} finish {phong 0.0
reflection{ 0.00 metallic 0.00} } } }
#end
#declare j=j+1;
#end
#declare i=i+1;
#end

Conclusions

The addressed project was carried out by undergraduate students, and it in-
cluded the planning, and election of the shortest paths to code the 13 Archi-
medean solids. This study represents an improvement in their programming
level where the use of macros was mandatory to reduce the size of the deli-
vered code. The students were involved in the study of the geometrical rela-
tionships of regular and irregular solids, and these let us obtain a more in-
tuitive view during the modeling/construction of the irregular solids. We do
not demerit the use of plastic models, but that approach is limited in the size
of studied compounds.

Among all proposed/coded algorithms included in this publication, the
irregular truncation of edges of a regular solid, let us obtain 3 of the 13 Ar-
chimedean solids. However, other algorithms to select faces, to translate
and to rotate them were necessary. This resulted in the generation of new al-
gorithms that were coded in an object-oriented language (Pov-Ray).

Regarding the granted capabilities of students, this project improved
their spatial depth and requested of their creativity. They were involved du-
ring the decision-making process to reach the final goal: the programming of
13 Archimedean solids.
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Annex. Use of macros in POV-Ray codes*

Figure S1. Icosidodecahedron geometrical features.
Figure $2. Rhombicuboctahedron calculation of the k value from cube.
Figure $3. Rhombicuboctahedron deduction of k value from octahedron.

The use of macros is helpful in POV-Ray codes. A macro is declared by using
an identifier, and a list of parameters. Its syntax is as follows:

Box 1. Commands in Pov-Ray Language to declare a Macro
#macro Identifier (parameters)

Tokens

#end

Macros need to be declared before they can be used. The manner to in-
voke them is as follows:
Macro_identifier (parameters list)

The next example is provided to facilitate the understanding of macros.

#macro Enlaces (first, final, Vel, distan, kolor)
// printing bonds as cylinders
#declare i=first;
#while (i< final-1)
#declare j=i+1;
#while (j< final)
#declare L1= VDist( Vell[i], Vel[j]);
#if(L1< a* (distan) +0.01)
cylinder{ Vel[i], Vel[j] 0.05 pigment{color kolor} }
#end
#declare j=j+1;
#end
#declare i=i+1;
#end

It can be used to calculate the edges of a solid as cuboctahedron.

* Annex related to macros, deduction of magnitude of the translation vectors of rhom-
bicuboctahedron and truncated icosidodecahedron.

@



POV-Ray Code to make a cuboctahedron
// Insert here the last definition of libraries,
// light_source, camera, and background

#declare acube=2/sqrt(2); //cube edges length
#declare Pos= array[8]; // cube positions
#declare cuboc= array [12]; // cuboctahedron vertices

// Cube positions

#declare Pos[0]= <acube/2, acube/2, acube/2>;

#declare Pos[1]= <-acube/2, -acube/2, -acube/2>;
#declare Pos[2]= <-acube/2, acube/2, acube/2>;

#declare Pos[3]= <acube/2, -acube/2, acube/2>;

#declare Pos[4]= <acube/2, acube/2, -acube/2>;
#declare Pos[5]= <-acube/2, -acube/2, acube/2>;
#declare Pos[6]= <-acube/2, acube/2, -acube/2>;
#declare Pos[7]= <acube/2, -acube/2, -acube/2>;

#fopen cuboct “cuboctahedron.xyz” write

// This block is to calculate the distances among vertices
// and to define edges
//Calculating the center of cube edges
#declare i=0;
#declare ncub=0;
#declare n=8;
#while (i<n-1)
#declare j=i+1;
#while (j<n)
#declare L= VDist(Posli],Poslj]);
#if(L< acube+0.1)
#declare cuboc[ncub]=Pos[i]+0.5*(Poslj]- Posl[i]);
sphere{cuboc[ncub], 0.25 pigment{color Red}}
#write (cuboct,”Au”, “ “,vstr(3, cuboc[ncub],” “,3,5),”\n”)
#declare ncub=ncub+1;
#end
#declare j=j+1;
#end
#declare i=i+1;
#end

To show the edges, the macro is invoked as follows.
Enlaces (0, 11, cuboc, 1, Green).

The truncated icosidodecahedron

To select the hexagonal faces of the truncated icosahedron, it was necessary
to calculate the dot product among the position vectors of the dodecahedron
(cyan spheres in figure S1) and the position vectors of vertices of the trunca-
ted icosahedron (orange vectors).

With respect to the magnitude of the translation vector (k) it was neces-
sary to subtract the relation of the distance from the origin to the center of
hexagonal faces of truncated icosahedron and trun-cated icosidodecahe-
dron. That relationship was found in the reference 22 (Weisstein, 2020).

-
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Figure S1. Truncated icosidodecahedron from a truncated icosahedron.

gonal faces of the truncated icosahedron produces the truncated icosidodecahedron.

Rhombicuboctahedron calculation of the magnitude (k) of the
perpendicular vector

To obtain the magnitude of the perpendicular vector (k) to the cube faces, it
was necessary to make a code to translate the cube vertices by a fraction. In
the following box is included the used code.

// Calculation of the magnitude (k) of the translation vector being perpen-
dicular to square faces of the cube

#fopen RombiCuH “T_Rombicuboctahedron.txt” write
#declare h=0.0001; //INCREMENT
#declare contadd=0;

#while(vlength(RC[8 ] - RC[0 ])< a)
#local RC[0]= RC[0]+ h*<1,0,05;
#local RC[8 ]= RC[8]+ h*<0,0,1>;

// Checking the distance among 2 translated vertices
#write (RombiCuH, RC[8], RC[0], “distance= “,vlength(RC[8 ]- RC[0 ]),” T=",
contadd*h, “\n”)
#declare T= contadd*h; //Thisisk
#declare contadd= contadd+1;
#end

Figure S2. Illustration of the calculation of the magnitude (k) of the displacement vector applied to
cube vertices to obtain the rhombicuboctahedron. RC[0] and RC[8] are obtained by translating one
vertex of the cube along perpendicular vectors to square faces.
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In figure S2, the blue triangle can be used to analytically obtain the mag-
nitude of the translation vector (k).

k> + k? = acube®
Then

_ acube

2

Rhombicuboctahedron deduction of the magnitude (k) of the
perpendicular vector

Figure S3. Illustration of the calculation of the magnitude of the displacement vector applied to octa-
hedron vertices to obtain the rhombicuboctahedron.

R, R,

Oct,

As mention in the main manuscript, the Rhombicuboctahedron can be
obtain from both the cube and its dual, the octahedron. In each case we have
to translate the faces a certain distance (k). In the case of the octahedron,
this length is 5*0.8660, being b the edge of the octahedron. In the following,
we explore how did we deduce this.

In the figure S3 the blue dot represents one of the octahedron’s vertices.
As we can see, 2 vectors come out from the octahedron’s vertex (there are 4
vertices of the Rhombicuboctahedron for each octahedron’s vertex but for
simplicity issues we just consider two). These two vectors are the “translation
vectors” from the octahedron’s vertex to its rhombicuboctahedron’s vertices.
So,thedistancebetweenthetworeddots(representingRhombicuboctahedron’s
vertices) must be the same as the edge of the octahedron

At first we give these vectors a length of 1; which is the default value
given by Pov-Ray with the function VPerp_To_Plane (V1, V2). This arbitrary
value is just given because we aren’t interest-ed in the length of the vectors
yet, but in the angle between them.
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The program shows that the angle between the vectors is 70.5369° and
the other angles are 54.7315°@ each. Given this information, we can use the

sine rule in order to calculate the length of the vectors.

b _ k
sin(1.2311 radians)  (0.95245)

Being b the edge of the octahedron and rhombicuboctahedronrhombi-

cuboctahedron, and k the length of the translation vector.

b sin(0.95245)
sin(1.2311 radians)

k =b(0.8659)

Coordinates of the rhombicuboctahedron obtain by the translation of

octahedron’s faces:

-0.70692 0.70692 1.70692 -1.70692 0.70692
0.70692 0.70692 1.70692 -1.70692 0.70692
-0.70692 -0.70692 1.70692 -1.70692 -0.70692
0.70692 -0.70692 1.70692 -1.70692 -0.70692
0.70692 1.70692 0.70692 -0.70692 -1.70692
0.70692 1.70692 -0.70692 0.70692 -1.70692
-0.70692 1.70692 0.70692 -0.70692 -1.70692
-0.70692 1.70692 -0.70692 0.70692 -1.70692
1.70692 -0.70692 0.70692 0.70692 0.70692
1.70692 0.70692 0.70692 0.70692 -0.70692
1.70692 -0.70692 -0.70692 -0.70692 0.70692
1.70692 0.70692 -0.70692 -0.70692 -0.70692

0.70692
-0.70692
0.70692
-0.70692
0.70692
0.70692
-0.70692
-0.70692
-1.70692
-1.70692
-1.70692
-1.70692
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