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ABSTRACT: The computational study of structures with chemical relevance is preceded by its 
modeling in such manner that no calculations can be submitted without the knowledge of their 
spatial atomic arrangement. In this regard, the use of an object-oriented language can be helpful 
both to generate the Cartesian coordinates (.xyz file format) and to obtain a ray-traced image. 
The modeling of chemical structures based on programming has some advantages with respect 
to other known strategies. The more important advantage is the generation of Cartesian coordi-
nates that can be visualized easily by using free of charge software. Our approach facilitates the 
spatial vision of complex structures and make tangible the chemistry concepts delivered in the 
classroom. In this article an undergraduate project is described in which students generate the 
Cartesian coordinates of 13 Archimedean solids based on a geometrical/programming approach. 
Students were guided along the project and meetings were held to integrate their ideas in a few 
lines of programmed codes. They improved their decision-making process and their organization 
and collecting information capabilities, as much as their reasoning and spatial depth. The final 
products of this project are the coded algorithms and those made tangible the grade of learning/
understanding derived of this activity. 
KEYWORDS: Archimedean solids, pov-ray, programming, geometrical study, modeling. 

RESUMEN: El estudio computacional de estructuras con relevancia en la química es precedido 
por el modelado de las mismas; no se pueden realizar cálculos sin el conocimiento del arreglo 
espacial atómico. El uso de un lenguaje de programación orientado a objetos ayuda a generar 
las coordenadas cartesianas (archivos .xyz) y obtener una imagen a partir de un modelo 3D. El 
modelado de estructuras químicas basadas en programación tiene algunas ventajas respecto a 
otras estrategias conocidas. La mayor ventaja es la generación de coordenadas que pueden ser 
visualizadas fácilmente usando un software libre. Nuestro enfoque facilita la visión espacial de 
estructuras complejas y hace entendibles los conceptos de química vistos en clase. En este 
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artículo describimos un proyecto desarrollado por estudiantes de licenciatura en el cual obtu-
vieron las coordenadas cartesianas de los 13 sólidos de Arquímedes, usando un enfoque 
geométrico y de programación. Los estudiantes fueron orientados a lo largo del proyecto, se 
realizaron reuniones para compartir ideas y códigos con pocas líneas. También mejoraron la 
toma de decisiones y su ejecución, sus capacidades para organizar y reunir información, así 
como su razonamiento y profundidad espacial. El producto final de este proyecto son los algo-
ritmos codificados y el aprendizaje y entendimiento derivado de esta actividad. 
PALABRAS CLAVE: sólidos de Arquímedes, pov-ray, programación, estudio geométrico, mode-
lado.

Introduction 

The importance of the study of nanostructures with chemical relevance based 
on regular shapes relies on the gain of a simple vision or explanation of their 
featured complexity (i.e., metal clusters, metal-organic frameworks, complex 
metallic alloys, and so on). The process of structural simplification can be fu-
eled by using symmetry elements, and the visualization might be facilitated 
by an object-oriented language. In materials science and structural chemis-
try, the spatial vision is recognized as valuable in the understanding of bond-
ing and structure. Certainly, the training of second-year undergraduate stu-
dents requires the use of programming tools to facilitate the assimilation of 
concepts as topology, bonding, and all covered subjects in materials chemis-
try and computational chemistry courses (Morales-Vidales et al., 2020). In 
other words, the study of regular shapes is inherent to structural chemistry, 
where a simplification of complex structures is done by using polyhedral 
building blocks. In literature the use of regular shapes to describe the bond-
ing in Boron clusters is plenty and they have been modeled/determined with 
octahedral and tetrahedral symmetries (Hayami and Otani, 2011; Wang, 
2016). Interestingly, the snub Archimedean solids (snub cube and snub do-
decahedron) features the property of chirality depending on the direction of 
applied rotation. For example, the B60 molecule was proposed as a chiral dis-
torted snub dodecahedron (Zope y Baruah, 2011). Another interesting sys-
tems displaying regular shapes (Platonic, Archimedean and Catalan solids) 
are gold nanoparticles whose morphology depends on the content of water 
and a capping agent known as poly(vinyl pyrrolidone) (Kim et al., 2010). The 
Archimedean solids have also been realized as candidates of carbon struc-
tures, and the proposal of a C120 molecule based on the truncated icosido-
decahedron was reported in 1985 (Haymet, 1985). Other amazing structures 
were explained in terms of concentric shells describing dodecahedron and 
icosidodecahedron polyhedral shapes (Kong et al., 2007; Niu et al., 2014). 
However the truncated octahedron (Ni et al., 2005), truncated tetrahedron 
(Leininger et al., 2000), truncated cuboctahedron (Eddaoundi et al., 2001), 
cuboctahedron (Tomiaga et al., 2004), Rhombicuboctahedron (Qui et al., 
2019), and snub cube (Xiong et al,. 2010; Gupta and Corbett, 2012; Hudson, 
2010) have also been reported. 
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The study of the coordination number in face centered cubic (FCC) gold 
structures, grant us with the first sight of an Archimedean solid; the cuboc-
tahedron which is formed among 12 first neighbors linked to one central 
atom (figure 1a). Second neighbor’s analysis of the gold atoms arrangement 
(figure 1b), let us visualize the shape of an octahedron with surrounding 
atoms located at the cell parameter value (approx. acube = 4.07 Å). Further 
analysis shows us another fascinating atomic arrangement: a distorted 
rhombicuboctahedron formed by 24 neighboring atoms, which are located 
at circa 4.98 Å (acube*sqrt (6)/2 distance value). More recently, it was re-
ported that the thiolated gold clusters can be described using distorted tet-
rahedron and octahedron building blocks. It attests the distortion induced 
by the sulfur atoms to the gold-gold bonds with the size reduction on clus-
ters. The polyhedral approach is interesting because it maintains the idea of 
compactness when it refers to metal clusters (Tlahuice-Flores, 2019).

The literature related to geometrical studies of metal clusters included 
cuboctahedron, icosahedron, body centered cubic and simple cubic structures 
providing us with formulas to determine the number of constituting atoms, co-
ordination numbers and so on (Montejano-Carrizales, 1997). Recently, some 
of us have published the study of Au60 cluster modeled as one snub dodecahe-
dron in its neutral charge state. Obtaining degenerated frontier orbitals in ac-
cordance with its displayed I-symmetry (Jacobo-Fernández et al., 2021). This 
example, clearly attests the importance of an orientated to objects code to fa-
cilitate the generation of cartesian coordinates of structures with chemical rel-
evance, being this the first step to simulate related structures. 

In this article, we describe a project devoted to the study of 13 Archime-
dean solids carried out by undergraduate students; the used methodology is 
described, and the obtained results are summarized. 

Figure 1. (a) The nearest 12 neighbors in a metal with FCC structure are displayed. Central atom (in 
green color) is surrounded by atoms (in red color) describing a cuboctahedron. (b) Second neighbors in 
FCC structure are forming an octahedral arrangement. (c) The distorted rhombicuboctahedron arran-
gement of 24 third neighbors are shown. The rest of the atoms forming the FCC structure are displayed 
in glass texture.

Source: Author’s elaboration. 
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Archimedean solids and their construction
It is important to know that Archimedean solids were named after Archime-
des work (287-212 BCE). There are 13 Archimedean solids and they can be 
constructed from the Platonic solids. Each Archimedean solid is comprised by 
same type of regular faces sharing common vertices; thus, each vertex is linked 
to the same type of faces, and it looks similar from a close-up view. Moreover, 
only Platonic solids containing triangular faces (tetrahedron, icosahedron and 
octahedron) can produce three of the Archimedean solids by truncation of one 
third of their edges (truncated icosahedron, truncated octahedron, truncated 
tetrahedron). In the case of truncation at the middle point of the Platonic so-
lid edges, the icosidodecahedron (starting from the icosahedron/dodecahe-
dron) and the cuboctahedron (from the cube) are generated. The other eight 
Archimedean solids require correction operations such as translation (trunca-
ted cube, truncated cuboctahedron, rhombicuboctahedron, rhombicosidode-
cahedron, truncated icosidodecahedron, and truncated dodecahedron) (Ball 
and Coxeter, 1987) and rotation of their faces to produce the same length of 
their edges (snub cube and snub dodecahedron) (Wells, 1991).

Methodology

We started our study by proposing new algorithms in the Pov-Ray1 langua-
ge to model the 13 Archimedean solids. Pov-Ray is a powerful tool to code 
related mathematical algorithms and to generate 3D models (initial confi-
gurations). In this opportunity, our programmed truncation algorithms to 
model Platonic solids were not enough and new algorithms to select, trans-
late and rotate faces were implemented. Such algorithms were used to co-
rrect the truncated structures sustaining not equal edge lengths (table 1). 
With respect to Pov-Ray codes, the use of macros was mandatory to reduce 
the repetition of code lines and to reduce the size of related programs. An 
introductory use of macros is provided in the supporting information with 
one example. In table 2 are included geometrical features of 13 Archime-
dean solids.

It is important to mention that the truncated octahedron is the unique 
Archimedean solid whose repetition in the space can fill it with no gaps. In 
solid state this shape is assumed by the Wigner Seitz cell of FCC structure 
(Kittel, 1996). 

Learning objetives

In this project, second year undergraduate students were devoted to the geo-
metrical study of Archimedean solids and their relationship with Platonic so-

	 1	http://www.povray.org 
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lids. All the obtained models can be considered as part of their training to fur-
ther study of electronic properties of nanostructures of boron, carbon or gold. 

As part of this project, students learnt about translation and rotation 
operations to generate some of 13 Archimedean solids. They applied their 
previous knowledge on an object-oriented language with the goal of gene-
rate new irregular solids. All the work is oriented to model chemical struc-
tures with relevance in areas as materials science. In the process, it was ne-
cessary to introduce the use of macros to reduce/adapt the code included in 
this publication. The effectiveness and compliance of our project goals is co-
rroborated by the final written reports, the discussion of algorithms and the 
final codes herein delivered.

Archimedean solid From the Archimedean/
Platonic solid

Operation

Cuboctahedron Cube/Octahedron Truncation of edges in two equal parts

Truncated cube Cuboctahedron
Cube

Perpendicular translation of triangular 
faces
Irregular truncation of square faces

Truncated cuboctahedron Truncated cube/
Cuboctahedron/
Rhombicuboctahedron

Truncation of triangular faces and 
translation/truncation in three equal parts 
of the triangular faces and translation/
translation outwards of square faces

Rhombicuboctahedron Cube/Octahedron/
Cuboctahedron

Perpendicular translation of square 
faces/perpendicular translation of 
triangular faces/Truncation of edges in 
two equal parts

Snub cube Rhombicuboctahedron Rotation of square faces of 
rhombicuboctahedron

Rhombicosidodecahedron Dodecahedron/
Icosahedron

Translation of dodecahedron/
icosahedron faces

Snub dodecahedron Rhombicosidodecahedron Rotation of pentagonal faces of 
rhombicosidodecahedron

Truncated tetrahedron Tetrahedron Truncation of edges in three equal parts

Truncated octahedron Octahedron Truncation of edges in three equal parts

Truncated icosahedron Icosahedron Truncation of edges in three equal parts

Truncated icosidodecahedron Icosidodecahedron/
Truncated dodecahedron/ 
Truncated Icosahedron

Truncation and translation of hexagonal 
faces/translation of decagons/
translation of hexagonal faces

Truncated dodecahedron Dodecahedron/
Icosidodecahedron

Irregular truncation and perpendicular 
translation of triangular faces/
translation of triangular faces

Icosidodecahedron Dodecahedron/
Icosahedron

Truncation of edges in two equal parts

Source: Author's elaboration.

Table 1. Description of the used operations to produce the Archimedean solids starting from related 
either Archimedean or Platonic solids.
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Conceptual orientation
Operations to generate Archimedean solids
The modeling of various Archimedean solids was based on the implementa-
tion of new algorithms to make some operations as:

1.	 Selection of regular faces. It implies to find each perpendicular vector 
to every face of the solid. The use of cross vector/dot product opera-
tion among two vectors sharing a vertex and forming a pair of edges 
was necessary. The centered cube (centered at 0,0,0) is related to va-
rious Archimedean solids whose perpendicular vectors are directed 
along the cube diagonals.

2.	 Translation of selected faces. It is obtained by adding a perpendicular 
vector to each vertex forming a face. For example, this operation 
produces the perpendicular displacement (k) applied to the square 
faces of the cube to produce the rhombicuboctahedron.

3.	 Rotation of selected faces. It is easily done by using the perpendicu-
lar vector to each face and finding numerically the proper rotation 
angle.

4.	 Location of vertices along one edge where no regular truncation is possi-
ble. This operation was implemented as a macro and it yields the 
proportional displacement to truncate the Platonic solids in order 
to obtain 5 of the 13 Archimedean solids. 

Table 2. Geometrical features of 13 Archimedean solids. 

Archimedean solid Type of face Number of 
faces

Number of 
edges

Number of 
vertices

Cuboctahedron 8 triangles; 6 squares 14 24 12

Truncated cube 8 triangles; 6 octagons 14 36 24

Truncated cuboctahedron 12 squares; 8 hexagons;  
6 octagons

26 72 48

Rhombicuboctahedron 8 triangles; 18 squares 26 48 24

Snub cube 32 triangles; 6 squares 38 60 24

Rhombicosidodecahedron 20 triangles; 30 squares;  
12 pentagons

62 120 60

Snub dodecahedron 80 triangles; 12 pentagons 92 150 60

Truncated tetrahedron 4 triangles; 4 hexagons 8 18 12

Truncated octahedron 6 squares; 8 hexagons 14 36 24

Truncated icosahedron 12 pentagons; 20 hexagons 32 90 60

Truncated icosidodecahedron 30 squares; 20 hexagons;  
12 decagons

62 180 120

Truncated dodecahedron 20 triangles; 12 decagons 32 90 60

Icosidodecahedron 20 triangles; 12 pentagons 32 60 30

Source: Author’s elaboration.
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It is important to note that various of the parameters used to build the 
Archimedean solids were calculated numerically, for example, in the case of 
the rhombicuboctahedron, the calculation of the magnitude of the perpen-
dicular vector (k) to one square face of the cube was done by adding up a 
fraction of the perpendicular vector to each vertex of the cube and the dis-
tance among the translated positions was used to stop the search.

The use of macros in an object-oriented programming language
The use of macros is recommended when there exist lines that are repeated 
through the code. The syntaxis to declare a macro is defined in the Box 1. 
Tokens refer to any number of Pov-Ray keywords, or punctuation marks 
which are the body of the macro. In such manner that it contains the code 
that is repeated, and it is pretended to replace it. In the supporting informa-
tion is given an example of a macro.

The algorithm to make an irregular truncation
In table 2 are found 5 Archimedean solids whose names include the word trun-
cated. Among them, the truncated tetrahedron, truncated octahedron, and 
truncated icosahedron are obtained by a regular truncation (truncation of one 
third of their edges) of the related Platonic solids. Conversely, the truncated 
cube and truncated dodecahedron, cannot be truncated in an easy form and 
one new algorithm was proposed to make this possible. In the following is ex-
plained the algorithm used to truncate 5 Platonic solids and to obtain related 
Archimedean solids. In addition, in figure 2 is illustrated the algorithm.

1.	 Location of three points P1, P2 and P3 forming a pair of equal edges 
with a common vertex (P1).

2.	 Calculation of a pair of vectors: V1 = P3-P1 and V2 = P2-P1 to defi-
ne the direction of the displacement.

3.	 Two new positions P4 and P5 are created along the V1 vector and 
one position P6 along the V2 vector. Look at figure 2a.

4.	 Translation of the P4 and P5 positions resulting in TP4 = P1+h*V1 
and TP5 = P3- h*V1, being h the magnitude of the displacement.

5.	 Translation of the P6 position by using TP6 = P1+h*V2. 
6.	 Calculation of the distance among translated point TP4 and TP6. 

When distance among TP6 and TP4 equals the distance among 
TP4 and TP5, the displacement is known, and it represents the 
proportion of truncation. See figure 2b for a final look of the algo-
rithm.

Box 1. Commands in Pov-Ray Language to declare a Macro  
#macro Identifier (parameters)  
Tokens  
#end
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The algorithm can be easily implemented for solids with edges forming 
an angle different of 90º used in figure 2.

The given algorithm was coded as a macro and in the Box 2 is delivered.

Results and discussions

The Archimedean solids can be generated starting from various related po-
lyhedral solids as can be seen in table 1. In the next section, we discuss about 
the chosen path and the algorithm; also, we provide the programmed codes 
of each Archimedean solid.

The truncated tetrahedron from tetrahedron
The truncated tetrahedron consists of 4 hexagons, 4 triangles, 12 vertices 
and 18 edges. Despite the regular truncation is done by reducing the original 

Figure 2. The illustration of the algorithm used to truncate five Platonic solids and to generate the 
related Archimedean solids. (a) It starts with three vertices and two edges sharing a common vertex 
(P1) and placing a pair of new vertices (P5 and P4) along the direction given by the vector P2-P1. The 
position along the P3-P1 edge is used to conditionate the small displacement applied to P4 and P5 
vertices. (b) The correct displacement is reached when the distance among TP6 and TP4 equals the 
distance in the other edge (TP4-TP5).

Source: Author’s elaboration. 

Box 2. Macro for an irregular truncation of Platonic solid 
edges. It determines the displacement to be applied to 
vertices forming the truncated Archimedean solids 
#macro Found_inc(Angle)  
 #declare P1=<0,0,0>;  
 #declare P2=<1,0,0>;  
 #declare P3=vaxis_rotate(P2,<0,0,1>,Angle);  
 #declare P4=P1;  
 #declare P5=P2;  
 #declare P6=P1;  
 #declare inc=0.27;  
 #declare h=0.00001;  
 #declare Cad=”Au “;  
 #while (VDist(P4,P5)>VDist(P4,P6))  
  #declare P4=inc*P2;  
  #declare P5=(1-inc)*P2;  
  #declare P6=inc*P3;  
  #declare inc=inc+h;  
 #end  
#end 
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tetrahedron edge to one third, we proved the effectiveness of our proposed 
algorithm by finding the same proportion. See figure 3 for the structure, and 
the code is given in Box 3.

Figure 3. Truncated tetrahedron obtained by using the macro included in Box 2. Thin cylinders corres-
pond with the parent tetrahedron.

Source: Author’s elaboration. 

Box 3. POV-Ray code to make a truncated cube  
// Insert here the last definition of libraries,  
// light_source, camera, and background 
#declare Pos= array[8];     // Cube positions  
#declare TC= array [24];   // Truncated cube vertices  
#declare acube=1;              // Cube edges length  
#declare Pos[0]= <acube/2,    acube/2,  acube/2>;  
#declare Pos[1]= <-acube/2,  -acube/2, -acube/2>;  
#declare Pos[2]= <-acube/2,   acube/2,  acube/2>;  
#declare Pos[3]= <acube/2,   -acube/2,  acube/2>;  
#declare Pos[4]= <acube/2,    acube/2,  -acube/2>;  
#declare Pos[5]= <-acube/2,  -acube/2,  acube/2>;  
#declare Pos[6]= <-acube/2,   acube/2,  -acube/2>;  
#declare Pos[7]= <acube/2,   -acube/2,  -acube/2>;  
#declare L=acube+0.1;  
#fopen CT “TruncatedCube.xyz” write  
Found_inc(90)  
 //Call the macro to know the fraction to truncate the  
       square face.  
 #declare cont=0;  
#declare i=0;  
#while(i<7)  
 #declare j=i+1;  
 #while (j<8)  
  #declare Distan=VDist(Pos[i],Pos[j]);  
  #declare Desp=Pos[j]-Pos[i];  
  #if(Distan<L)  
   #declare TC[cont  ]=Pos[i]+inc*Desp;  
   #declare TC[cont+1]=Pos[i]+(1-inc)*Desp;  
//There are 2 points in the edge: the closer to Pos[i] and  
       the closer to Pos[j]  
#write (CT,”Au”, “ “,vstr(3, TC[cont  ],” “,3,5),”\n”)  
#write (CT,”Au”, “ “,vstr(3, TC[cont+1],” “,3,5),”\n”)  
 
   sphere{TC[cont],0.2 texture {pigment{color Blue}}}  
   sphere{TC[cont+1],0.2 texture {pigment{color Blue}}}  
   #declare cont=cont+2;  
  #end  
  #declare j=j+1;  
 #end  
 #declare i=i+1;  
#end 
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The truncated cube from cube
The truncated cube has 6 octagons, 8 triangles, 24 vertices and 36 edges. The 
truncation of cube is not regular, and the proportion of truncation was deter-
mined as approx. 0.293 times the cube edge length (Ni et al., 2005). See figure 
4 for the structure of the truncated tetrahedron, and its code is given in Box 4.

Figure 4. Truncated cube obtained with our proposed macro. Evidently the truncation is not regular, 
and it was necessary to implement a new algorithm (Box 2).

Source: Author’s elaboration. 

Box 4. POV-Ray code to make a truncated tetrahedron  
// Insert here the last definition of libraries,  
// light_source, camera, and background  
 
//Insert here the macro to find the displacement of the  
       tetrahedron positions  
 
#declare atetra=1;              // Tetrahedron edges length  
#declare L=atetra*sqrt(2)+0.1;  
#declare PosTetra= array[4];     // Tetrahedron positions  
#declare TT= array [12];       // Truncated tetrahedron vertices  
#declare PosTetra[0]=<atetra/2,  atetra/2,  atetra/2>;  
#declare PosTetra[1]=<-atetra/2,  -atetra/2,  atetra/2>;  
#declare PosTetra[2]=<-atetra/2,  atetra/2,  -atetra/2>;  
#declare PosTetra[3]=<atetra/2, -atetra/2,  -atetra/2>;  
#fopen TTf “TruncatedTetrahedron.xyz” write  
Found_inc(60)  
 //Call the macro to know the proportion to truncate an  
       equilateral triangular face.  
 #declare cont=0;  
#declare i=0;  
#while(i<3)  
 #declare j=i+1;  
 #while (j<4)  
  #declare Distan=VDist(PosTetra[i],PosTetra[j]);  
  #declare Desp=PosTetra[j]-PosTetra[i];  
  #if(Distan<L)  
   #declare TT[cont  ]=PosTetra[i]+inc*Desp;  
   #declare TT[cont+1]=PosTetra[i]+(1-inc)*Desp;  
//There are 2 points in the edge: the closer to PosTetra[i]  
       and the closer to PosTetra[j]  
#write (TTf,”Au”, “ “,vstr(3, TT[cont  ],” “,3,5),”\n”)  
#write (TTf,”Au”, “ “,vstr(3, TT[cont+1],” “,3,5),”\n”)  
   sphere{TT[cont],0.2 texture {pigment{color Blue}}}  
   sphere{TT[cont+1],0.2 texture {pigment{color Blue}}}  
   #declare cont=cont+2;  
  #end  
  #declare j=j+1;  
 #end  
 #declare i=i+1;  
#end
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The truncated octahedron from octahedron
The regular truncation of an octahedron results in the truncated octahe-
dron. It shows 8 hexagons, and 6 squares; it has 24 vertices and 36 edges. 
See Box 5 for code, and figure 5 for the structure.

Figure 5. Truncated octahedron and its relationship with the octahedron. The truncation of the octahe-
dron produces a truncated octahedron with an edge of one third of the original one.

Source: Author’s elaboration. 

Box 5. POV-Ray code to make a truncated octahedron  
// Insert here the last definition of libraries,  
// light_source, camera, and background  
 
//Insert here the macro included in Box 2.  
 
#declare aoct=sqrt(2);            // Octahedron edges length  
#declare L=aoct*sqrt(2)/2+0.1;  
#declare PosOct= array[6];     // Octahedron positions  
#declare TO= array [24];        // Truncated tetrahedron vertices  
#declare PosOct[0]=<aoct/2,  0,  0>;  
#declare PosOct[1]=<-aoct /2,  0,  0>;  
#declare PosOct[2]=<0,  aoct/2,  0>;  
#declare PosOct[3]=<0, -aoct/2,  0>;  
#declare PosOct[4]=<0,  0,  aoct/2>;  
#declare PosOct[5]=<0,  0,  -aoct/2>;  
#fopen TOf “TruncatedOctahedron.xyz” write  
Found_inc(60)  
 //Call the macro to find what fraction we have to translate in  
       an equilateral triangular face.  
 
#declare cont=0;  
#declare i=0;  
#while(i<5)  
 #declare j=i+1;  
 #while (j<6)  
  #declare Distan=VDist(PosOct[i],PosOct[j]);  
  #declare Desp=PosOct[j]-PosOct[i];  
  #if(Distan<L)  
   #declare TO[cont  ]=PosOct[i]+inc*Desp;  
   #declare TO[cont+1]=PosOct[i]+(1-inc)*Desp;  
//There are 2 points in the edge: the closer to PosOct[i] and  
       the closer to PosOct[j]  
#write (TOf,”Au”, “ “,vstr(3, TO[cont  ],” “,3,5),”\n”)  
#write (TOf,”Au”, “ “,vstr(3, TO[cont+1],” “,3,5),”\n”)  
   sphere{TO[cont],0.2 texture {pigment{color Blue}}}  
   sphere{TO[cont+1],0.2 texture {pigment{color Blue}}}  
   #declare cont=cont+2;  
  #end  
  #declare j=j+1;  
 #end  
 #declare i=i+1;  
#end
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The truncated dodecahedron from dodecahedron
This Archimedean solid is comprised by 12 decagons, 20 triangles, 60 verti-
ces and 90 edges. It can be obtained by an irregular truncation of the dode-
cahedron to form the decagons and to obtain the triangles. The fraction to 
truncate the pentagonal faces was calculated as 0.276 times the edge length 
of the dodecahedron. In Box 6 is provided the code to generate the truncated 
dodecahedron (figure 6) based on the macro showed in Box 2.

Figure 6. Truncated dodecahedron. The thin cylinders feature the edges of the original dodecahedron.

Source: Author’s elaboration. 

Box 6. POV-Ray code to make a truncated dodecahedron 
from dodecahedron  
// Insert here the last definition of libraries,  
// light_source, camera, and background  
//Insert here the macro included in Box 2.  
#declare n=20;  
#declare dode=array[n]  
#declare acube=1;  
#declare L=0.7;  
#declare fi=(sqrt(5)-1)/2;  
 
// Dodecahedron vertices  
#declare dode[0]=  (acube/2)*<1+fi,0,fi>;  
#declare dode[1]=  (acube/2)*<-(1+fi),0,-fi>;  
#declare dode[2]=  (acube/2)*<1+fi,0,-fi>;  
#declare dode[3]=  (acube/2)*<-(1+fi),0,fi>;  
#declare dode[4]=  (acube/2)*<0,fi,1+fi>;  
#declare dode[5]=  (acube/2)*<0,fi,-(1+fi)>;  
#declare dode[6]=  (acube/2)*<0,-fi,1+fi>;  
#declare dode[7]=  (acube/2)*<0,-fi,-(1+fi)>;  
#declare dode[8]=  (acube/2)*<fi,1+fi,0>;  
#declare dode[9]= (acube/2)*<fi,-(1+fi),0>;  
#declare dode[10]= (acube/2)*<-fi,1+fi,0>;  
#declare dode[11]= (acube/2)*<-fi,-(1+fi),0>;  
#declare dode[12]=  (acube/2)*<1,    1,  1>;  
#declare dode[13]=  (acube/2)*<-1,  -1, -1>;  
#declare dode[14]=  (acube/2)*<-1,   1,  1>;  
#declare dode[15]=  (acube/2)*<1,   -1,  1>;  
#declare dode[16]=  (acube/2)*<1,    1,  -1>;  
#declare dode[17]=  (acube/2)*<-1,  -1,  1>;  
#declare dode[18]=  (acube/2)*<-1,   1,  -1>;  
#declare dode[19]=  (acube/2)*<1,   -1,  -1>;  
#fopen DTf “TruncatedDodecahedron.xyz” write  
Found_inc(108) 

//Call the macro to find the truncation value over the  
       edges of pentagonal faces.  
#declare cont=0;  
#declare PosT=array[60];  
#declare i=0;  
#while(i<n-1)  
 #declare j=i+1;  
 #while (j<n)  
  #declare Distan=VDist(dode[i],dode[j]);  
  #declare Desp=dode[j]-dode[i];  
  #if(Distan<L)  
   #declare PosT[cont]=dode[i]+inc*Desp;  
#write (DTf,”Au”, “ “,vstr(3, PosT[cont],” “,3,5),”\n”)  
#write (DTf,”Au”, “ “,vstr(3, PosT[cont],” “,3,5),”\n”)  
   sphere { PosT[cont], 0.1 pigment{color Red} }  
   #declare cont=cont+1;  
   #declare PosT[cont]=dode[i]+(1-inc)*Desp; 
   sphere { PosT[cont], 0.1 pigment{color Red} }  
   #declare cont=cont+1;  
  #end  
  #declare j=j+1;  
 #end  
 #declare i=i+1;  
#end 
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The truncated icosahedron from icosahedron
In Chemistry, this is the most famous Archimedean solid given the fact that 
C60 molecule was confirmed experimentally (Kroto et al., 1985). Just like the 
other two Platonic solids previously discussed (tetrahedron and octahedron) 
the icosahedron is formed only by 20 triangular faces. This means that trun-
cated icosahedron, can be easily obtain by dividing the 30 edges of the icosa-
hedron into three equal parts (two new positions located at each icosahe-
dron edges). The structure of truncated icosahedron is depicted in figure 7 
and the programmed code is given in Box 7.

Figure 7. Truncated icosahedron. The icosahedron edge is divided among three in such manner that 
the 30 edges generate the 60 vertices of this Archimedean solid. Thin cylinders represent the icosa-
hedron edges.

Source: Author’s elaboration. 

Box 7. POV-Ray code to make a truncated icosahedron 
with length 1  
// Insert here the last definition of libraries,  
// light_source, camera, and background  
#declare ico= array[12];         // Icosahedron positions  
#fopen ITf “TruncatedIcosahedron.xyz” write  
#declare fi=(sqrt(5)-1)/2;  
#declare acube=3/fi;  
 
// Icosahedron coordinates  
#declare ico[0]=  (acube/2)*<1,0,fi>;  
#declare ico[1]=  (acube/2)*<-1,0,-fi>;  
#declare ico[2]=  (acube/2)*<1,0,-fi>;  
#declare ico[3]=  (acube/2)*<-1,0,fi>;  
#declare ico[4]=  (acube/2)*<0,fi,1>;  
#declare ico[5]=  (acube/2)*<0,fi,-1>;  
#declare ico[6]=  (acube/2)*<0,-fi,1>;  
#declare ico[7]=  (acube/2)*<0,-fi,-1>;  
#declare ico[8]=  (acube/2)*<fi,1,0>;  
#declare ico[9]= (acube/2)*<fi,-1,0>;  
#declare ico[10]= (acube/2)*<-fi,1,0>;  
#declare ico[11]= (acube/2)*<-fi,-1,0>;  
// This block is to calculate the distances among vertices  
// of icosahedron  
#declare RIc=0.1;  
#declare i=0;  
#declare n=12; // vertices of icosahedron  
#declare ladoIco=acube*fi;  
#declare kC60=1; // counter  
#fopen Icotrunc “TruncatedIcosahedron.xyz” write  
#declare IcoTrun= array[60];

       #while (i<n-1)  
       #declare j=i+1;  
       #while (j<n)  
       #declare IcoDist= VDist(ico[i], ico[j]);  
       #if( IcoDist<= ladoIco+0.1 )  
       #declare IcoTrun[kC60]= ico[j];  
       #declare IcoTrun[kC60 ]= ico[i]+  (ico[j]-ico[i])/3;  
       #write (ITf,”Au”, “ “,vstr(3, IcoTrun[kC60 ],” 
“,3,5),”\n”)  
 
sphere {IcoTrun [kC60], RIc pigment{color Cyan} 
finish{phong 1}}  
#write (Icotrunc,”Au”, “ “,vstr(3, IcoTrun [kC60 ],” 
“,3,5),”\n”)  
             #declare IcoTrun[kC60]=  ico[i]+   2*(ico[j]-
ico[i])/3;  
             sphere { IcoTrun [kC60], RIc  pigment {color 
Cyan} finish{phong 1}}  
            #write (Icotrunc,”Au”, “ “,vstr(3, IcoTrun [kC60],” 
“,3,5),”\n”)  
              #declare kC60=kC60+1;  
            #end  
            #declare j=j+1;  
            #end  
        #declare i=i+1;  
       #end
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The cuboctahedron from a cube
It has 8 triangular and 6 square faces with 12 vertices. It is obtained by divi-
ding the cube edges (acube = 1) in two halves. The position vectors of the 
cube vertices are perpendicular to the triangular faces while the unitary i, j, 
and k vectors are perpendicular to its square faces. The edge length of cuboc-
tahedron equals sqrt (2)/2. Figure 8 shows the cuboctahedron and its rela-
tionship with the cube.

	
⟶

	
⟶	

⟶
	

⟶
	

P2cube – P1cube	 P1cuboctahedron = P1cube + ————— 	 (1)
                                                                    2

The algorithm to truncate the cube edges in two halves is given by the 
formula 1, which is used to obtain the positions of the cuboctahedron. Box 
8 contains the programmed code to obtain the cuboctahedron from the cube 
and it implies to calculate the middle point among a pair of vertices sepa-
rated by the length of the cube (acube).

Figure 8. A cuboctahedron obtained by truncation of the cube edges. The cuboctahedron edges have a 
length of sqrt (2)/2. The thin cylinders feature the parent cube. 

Source: Author’s elaboration. 

           #while (j<n) 
            #declare L= VDist(Pos[i],Pos[j]); 
              #if(L< acube+0.1)  
               #declare cuboc[ncub]=Pos[i]+0.5*(Pos[j]- Pos[i]); 
                 sphere{cuboc[ncub], 0.25 pigment{color Red}}  
#write (cuboct,”Au”, “ “,vstr(3, cuboc[ncub],” “,3,5),”\n”)  
                 #declare ncub=ncub+1; 
              #end  
            #declare j=j+1; 
            #end 
          #declare i=i+1; 
         #end 

Box 8. POV-Ray code to make a cuboctahedron  
// Insert here the last definition of libraries,  
// light_source, camera, and background  
#declare acube=2/sqrt(2);    //cube edges length  
#declare Pos= array[8];         // cube positions  
#declare cuboc= array [12]; // cuboctahedron vertices 
 
// Cube positions (Box 3) 
 
#fopen cuboct “cuboctahedron.xyz” write 
 
// This block is to calculate the distances among vertices 
// and to define edges 
//Calculating the center of cube edges  
       #declare i=0; 
       #declare ncub=0; 
       #declare n=8; 
       #while (i<n-1) 
        #declare j=i+1; 
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The icosidodecahedron from the icosahedron
This solid has 32 faces, 20 of them are triangles and 12 are pentagons. It has 
30 vertices and 60 edges (figure 9). Just like the cuboctahedron, which can 
be obtain both from the cube or its dual (the octahedron) the icosidodecahe-
dron can be obtain by locating a vertex in the middle point of the edges of 
either the dodecahedron or its dual. In other words, the icosidodecahedron 
is obtained by regular truncation of the icosahedron edges. In such manner 
that we can reuse the code to obtain the cuboctahedron. However, the initial 
vertices, will form the icosahedron instead of a cube. Evidently, formula 1 is 
also applied to this code (see Box 9).

Box 9. POV-Ray code to make an icosidodecahedron  
// Insert here the last definition of libraries,  
// light_source, camera, and background 
#declare ico= array[12];       // Icosahedron positions 
#declare icosi= array [30]; // Icosidodecahedron vertices 
#declare fi=(sqrt(5)-1)/2; 
#declare acube=1*fi; //Icosahedron edges 
#fopen Icf “Icosidodecahedron.xyz” write 
 
// Icosahedron coordinates  
#declare ico[0]=  (acube/2)*<1,0,fi>;  
#declare ico[1]=  (acube/2)*<-1,0,-fi>; 
#declare ico[2]=  (acube/2)*<1,0,-fi>;  
#declare ico[3]=  (acube/2)*<-1,0,fi>; 
#declare ico[4]=  (acube/2)*<0,fi,1>;  
#declare ico[5]=  (acube/2)*<0,fi,-1>;  
#declare ico[6]=  (acube/2)*<0,-fi,1>; 
#declare ico[7]=  (acube/2)*<0,-fi,-1>;  
#declare ico[8]=  (acube/2)*<fi,1,0>;  
#declare ico[9]= (acube/2)*<fi,-1,0>; 
#declare ico[10]= (acube/2)*<-fi,1,0>;  
#declare ico[11]= (acube/2)*<-fi,-1,0>; 
#declare ladoIco=acube*fi; 
// This block is to calculate the distances among vertices 
// and to define edges 
//Calculating the middle point of icosahedron edges 
       #declare i=0; 
       #declare nicos=0; 
       #declare n=12; 
       #while (i<n-1) 
 

        #declare j=i+1; 
           #while (j<n) 
            #declare L= VDist(ico[i],ico[j]); 
              #if(L< ladoIco+0.1)  
               #declare icosi[nicos]=ico[i]+0.5*(ico[j]- ico[i]); 
#write (Icf,”Au”, “ “,vstr(3, icosi[nicos],” “,3,5),”\n”)  
                 sphere{icosi[nicos], 0.25 pigment{color Red}}  
                 #declare nicos=nicos+1; 
              #end 
            #declare j=j+1; 
          #end 
        #declare i=i+1; 
       #end 

Figure 9. Icosidodecahedron. It was obtained by finding the middle point of the icosahedron edges. 
The thin and blue sticks correspond with the icosahedron. 

Source: Author’s elaboration. 
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The truncated icosidodecahedron from the truncated icosahedron
It is also known as great rhombicosidodecahedron and it is the largest Archi-
medean solid. The structure is built by 30 squares, 20 hexagons and 12 deca-
gons. It has 120 vertices and 180 edges. It can be constructed by dividing the 
icosidodecahedron edges in three equal parts and a further translation along 
a perpendicular vector of the formed hexagons (i.e., related dodecahedron 
vertices). However, we chosen to start from a truncated icosahedron (figure 
7), whose hexagonal faces were translated along the dodecahedron vertices. 
The selection of hexagonal faces implies to calculate the dot product among 
the face vertices and its perpendicular vector. It was determined that a value 
of circa 0.875 (i.e., k = 0.875) for the dot product allows to select the hexago-
nal faces. The translation vector k was calculated as circa 1.40 times the 
hexagon edge (Williams, 1979). The described algorithm is given in terms of 
formulas 2 and 3. See figure S1(annex) for more geometrical details.
	

⟶
	

⟶
	 Vp = Pdode	 (2)
	

⟶	 ⟶	 ⟶
	 QnTrunc-icosi = Pnhexagon + kPdode	 (3)
	

⟶
Where Pnhexagon corresponds with hexagonal faces of truncated icosahe-

dron. Formula 2 indicates the magnitude of each perpendicular vector, that 
is along one related position vector of the dodecahedron. 

Formula 3 stands for the translation of the obtained hexagonal faces 
(Qn
⟶

Trunc-icosi ).
In Box 10 the programmed code is included, and it contains in the last 

part the algorithm to select and translate vertices. The structure is displayed 
in figure 10.

Figure 10. Truncated icosidodecahedron or great rhombicosidodecahedron. The hexagonal faces of 
the truncated icosahedron are translated along perpendicular vectors, it means along the dodecahe-
dron vertices. The truncated icosahedron is displayed in blue color. 

Source: Author’s elaboration. 
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The rhombicuboctahedron from a cube
The rhombicuboctahedron is constituted by 18 square faces, 8 triangular faces 
and 24 vertices, being the same edge length in both type of faces. It is an Archi-
medean solid formed by the outward translation of the vertices forming each 
square face of a cube. The translation of each square face is along its respective 
perpendicular vectors (they can be calculated using the formula 4). In the case of 
one centered cube with an edge of acube, <acube/2,0,0>, <-acube/2,0,0>, <0,acu-
be/2,0>, <0,-acube/2,0>, <0,0,acube/2> and <0,0,-acube/2> represent perpen-
dicular vectors to each square face. The magnitude of the perpendicular vectors 
can be analytically calculated and it corresponds with the acube/sqrt(2) value 
(i.e. k = 0.7071*acube in formula 5). We calculate numerically the k value by 
adding up successively a fraction of a pair of perpendicular vectors (for example 
<1,0,0> and <0,0,-1>) to the same cube vertex and attesting that at certain 
translation, the distance among new created positions equals the cube edge. See 
supporting information (figure S1 in annex) for more details and the used code.
	

⟶	 ⟶	 ⟶	 ⟶	 ⟶
	 Vp = (P3cube – P1cube) ⨂ (P2cube – P1cube )	 (4)
	

⟶	 ⟶	 ⟶
	 QnRhom = Pncube + kVp	 (5)

Where Pn
⟶

cube represent the position vectors of the nth vertex of a cube, 
and Qn⟶

 Rhom are the position vectors of the translated vertices forming the 

         #declare i=0; 
         #while(i<60)  
           #declare j=0; 
           #while (j<20) 
// vdot is 0.8710180527 for hexagons and their perpendicular 
vectors 
#if (  vdot( icoTrun[i] ,  dode[j]  ) < (0.89) & vdot( icoTrun[i] ,  
dode[j]  )>(0.84) )  
#declare icosit[counter1]=icoTrun[i]  
+1.4011*a/3*vnormalize(dode[j]); 
#write(out3, icosit[counter1], “\n”)  
#write(out5,”Au”, “ “,vstr(3,icosit[counter1], “ “,3,5),”\n”) 
sphere { icosit[counter1], 0.05 pigment{color Red} finish {phong 
1}} 
                   #declare counter1=counter1+1;  
                  #end 
             #declare j=j+1;  
           #end    
           #declare i=i+1;  
         #end 
//Truncated icosidodecahedron model 
         #declare i=0; 
         #while(i<118)  
           #declare j=i+1; 
           #while(j<119)  
             #declare dist6=VDist(icosit[i],icosit[j]);  
             #if (dist6<0.5 & dist6>0.3) 
               cylinder{ icosit[i] icosit[j] 0.03 pigment{color Green}} 
             #end 
             #declare j=j+1; 
           #end  
           #declare i=i+1; 
#end 

Box 10. POV-Ray code to make a truncated icosidodecahe-
dron from a truncated icosahedron 
// Insert here the last definition of libraries, 
// light_source, camera, and background 
// icoTrun array contains the Truncated icosahedron vertices 
// Calculation of the vertices of dual of the icosahedron 
// Copy here Box 9 
#declare n=12; 
#declare conter=0; 
         #declare i = 0;  
          #while ( i < n-1)  
          #declare j = i + 1;  
          #while ( j < n)  
          #declare k = j + 1;  
          #while ( k < n)  
#declare L1= VDist(ico[i], ico[j]);  
#declare L2= VDist(ico[i], ico[k]);  
#declare Angulo= VAngleD( ico[j]-ico[i], ico[k]-ico[i]);  
 // Angle formed among edges  
  #if (L1=a & L2=a &  Angulo=60) 
      #declare dode[conter]= (ico[i]+ico[j]+ico[k])/3; 
      #declare conter=conter+1; 
 #end 
         #declare k= k + 1; 
         #end  
         #declare j= j + 1; 
         #end  
          #declare i= i + 1; 
         #end  
 
#fopen out3 “seleccion2.dat” write 
#fopen out5 “TruncatedIcosidodecahedron.xyz” write 
// Selection and Translation of hexagonal faces  
         #declare counter1=0; 
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rhombicuboctahedron. Figure 11 contains a graphical explanation of the given 
formulas.

It is also worth to notice that rhombicuboctahedron can also be obtain 
from the dual of a cube, i.e., the octahedron. The triangular octahedron’s 
faces must be translated b*0.8660. Being b the length of the octahedron’s 
edge (b = acube/sqrt(2), and acube the edge of the cube where the octahedron 
is inscribed). On the other hand, an angle of circa 1.23 radians is comprised 
between both perpendicular translation vectors, which originate from the 
octahedron’s vertices. And the angle between the perpendicular vector and 
the octahedron’s edge is of 0.9547 radians. The same proportion is found 
when we try to obtain the truncated cube from the cuboctahedron. A full de-
duction of this is included in the supporting information (figure S3 in annex).

The code given in Box 11 can be simplified by using the function Vperp_
To_Plane (V1, V2) where V1 and V2 are along the edges of the polyhedral 
face. This operation is given by the formula 4. However, we considered im-
portant to provide the readers with code that is easy to visualize and to be 
related to the above given formulas 4 and 5.

The truncated cube from a cuboctahedron
In addition to the irregular truncation of the cube edge (Box 3), in this sec-
tion is explained another form to truncate the cube. The truncated cube is 
built by 8 triangular and 6 octagonal faces, linking 24 vertices. It can be ob-
tained by the selection and the outward translation of the triangular faces of 
the cuboctahedron. This operation is simplified by knowing that position 
vector of each cube’s vertex is perpendicular to triangular faces of the cuboc-
tahedron. The procedure to translate each triangular face of the cuboctahe-
dron is given in formula 6, where three vertices of the truncated cube are ob-
tained by adding one position vector of the cube to three vertices of the 
cuboctahedron. This operation is repeated to translate outward all 8 triangu-

Figure 11. Rhombicuboctahedron obtained from a cube. All vertices of cube are translated along a 
perpendicular vector (Vp). Q position is obtained from translation of P position. The triangular faces 
are formed after the translation of the square faces of the parent cube (red color).

Source: Author’s elaboration. 
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lar faces constituting the cuboctahedron. The magnitude of perpendicular 
translation (k vector magnitude) was numerically calculated and it is defined 
as acube*sqrt(3)/2 (i.e,. acube*0.8660). Figure 12 includes the discussed 
structure of the truncated cube, and Box 12 has the implemented code.
	

⟶	 ⟶	 ⟶
	 PTrun-Cube = Pcuboctahedron + kPCube	 (6)

#end  
#declare i=i+1;  
#end  
//Translation of square faces  
#fopen out “Rhombicuboctahedron.xyz” write  
#declare i=0; 
#declare n=24; 
#while(i<n)  
#declare Rho[i]=Rho[i]+ 0.7071*acube 
*vnormalize((Center[i/4]));  
#declare Rho[i+1]=Rho[i+1]+0.7071*acube 
*vnormalize((Center[i/4]));  
#declare Rho[i+2]=Rho[i+2]+0.7071*acube 
*vnormalize((Center[i/4]));  
  #declare Rho[i+3]=Rho[i+3]+0.7071*acube 
*vnormalize((Center[i/4]));  
  #write (out,”Au”, “ “,vstr(3,Rho[i],  “ “,3,5),”\n”) 
  #write (out,”Au”, “ “,vstr(3,Rho[i+1],  “ “,3,5),”\n”) 
  #write (out,”Au”, “ “,vstr(3,Rho[i+2],  “ “,3,5),”\n”) 
  #write (out,”Au”, “ “,vstr(3,Rho[i+3],  “ “,3,5),”\n”) 
 #declare i= i+4;  
#end  
 
// Drawing the model with spheres 
#declare h=pow(10,-3); 
#declare i=0;  
#while (i<n-1)  
        sphere {Rho[i],0.2 texture { pigment { color Red}  } } 
        #declare j=i+1;  
        #while(j<n)  
         #if (VDist(Rho[i],Rho[j])<acube+2*h  & 
VDist(Rho[i],Rho[j])>acube-2*h ) 
         cylinder {Rho[i], Rho[j], 0.1 texture {pigment { color  
Yellow }  } }  
         #end  
         #declare j=j+1; 
        #end  
        #declare i=i+1; 
       #end 

Box 11. POV-Ray code to make a rhombicuboctahedron 
with edge of 1 
// Insert here the last definition of libraries, // light_
source, camera, and background 
#declare acube=1;                // cube edges length 
#declare Pos= array[8];         // cube positions 
#declare Rho= array [24];    // Rhombicuboctahedron 
vertices 
// Insert here cube positions given as (±acube/2, ± acube/2, 
± acube/2)  
// Calculation of center of cube faces (perpendicular 
// vectors) 
#declare i=0; 
#declare Center=array[6]; 
#declare counter=0; 
#declare n=8; 
#declare j=1; 
#while (j<n) 
#declare L= VDist(Pos[0],Pos[j]); 
#if(L=acube*sqrt(2)  )  
#declare Center[counter]= Pos[0]+(Pos[j]-Pos[0])/2;  
 #declare Center[counter+1]= -1*Center[counter]; 
 #declare counter=counter+2;  
#end  
#declare j=j+1; 
#end 
 
//selecting vertices to translate on each square face  
#declare i=0;  
#declare lado= acube*sqrt(2)/2; 
#declare coun=0 
#while (i<counter)  
#declare j=0; 
 #while (j<n)  
 #if(VDist(Center[i],Pos[j])= lado) 
    #declare Rho[coun]=Pos[j]; 
    #declare coun=coun+1; 
 #end 
#declare j=j+1; 

Figure 12. Making a truncated cube from a cuboctahedron. Each triangular face of the cuboctahedron 
is translated along one diagonal of the cube. The translated vertices constituting the truncated cube 
are linked by cylinders featured in green color. Thin red cylinders correspond with the cube.

Source: Author’s elaboration. 
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The truncated cuboctahedron from a truncated cube
It is also named as great rhombicuboctahedron (Williams, 1979), and it is 
constituted by 12 square faces, 8 hexagonal faces, 6 octagonal faces and 48 
vertices (figure 13). It can be built by the truncation of triangular faces of 
the truncated cube in three equal parts to generate the hexagonal faces 
(formulas 2 and 3). However, further inward translation of hexagons along 
the perpendicular vectors (cube vertices is necessary to obtain a truncated 
cuboctahedron with equal edges. The algorithm to construct this Archime-
dean solid includes a conditional to verify that the edges of the hexagonal 
faces (one third of the cuboctahedron) equal the distance among neighbo-
ring hexagonal faces. In formula 9, the perpendicular vector has a magnitu-
de 0.985 times the edge of the cuboctahedron, and the sign indicates an in-
ward translation. Moreover, each perpendicular vector to one hexagonal 
face is along the position vector of respective cube vertices. See Box 13 for 
the code.
	

⟶	 ⟶	 ⟶
	 PTrun-Cuboctahedron = PTrun-Cube-hex – k * PCube	 (7)

//Translation of triangular faces  
 #declare i=0; 
 #while(i<nsele)  
  #declare TC[i  ]=TC[i]+ 0.8660*(sqrt(2)/2)      
*vnormalize((Pos[i/3]));  
  #declare TC[i+1]=TC[i+1]+0.8660*(sqrt(2)/2) 
*vnormalize((Pos[i/3]));  
  #declare TC[i+2]=TC[i+2]+0.8660*(sqrt(2)/2)  
*vnormalize((Pos[i/3]));  
  #write (out,”Au”, “ “,vstr(3,TC[i],  “ “,3,5),”\n”) 
  #write (out,”Au”, “ “,vstr(3,TC[i+1],  “ “,3,5),”\n”) 
  #write (out,”Au”, “ “,vstr(3,TC[i+2],  “ “,3,5),”\n”) 
  #declare i=i+3;  
 #end  
 
// Final model 
#declare h=pow(10,-3); 
#declare i=0;  
#while (i<nsele-1)  
 sphere {TC[i],0.2 texture {pigment { color Red}  } }  
 #declare j=i+1  ; 
 #while(j<nsele)  
  #if (VDist(TC[i],TC[j])<(sqrt(2)/2)+2*h  &  
         VDist(TC[i],TC[j])>(sqrt(2)/2)-2*h ) 
  cylinder {TC[i],TC[j], 0.1  texture { pigment { color  
         Yellow}  } }   
  #end  
  #declare j=j+1; 
 #end  
 #declare i=i+1; 
#end

Box 12. POV-Ray code to make a truncated cube 
// Insert here the last definition of libraries, 
// light_source, camera, and background 
#declare acube=1;                 // cube edges length 
#declare Pos= array[8];         // cube positions
#declare cuboc= array [12];   // Cuboctahedron vertices 
// Insert here cuboctahedron code given in Box 8 
 
#fopen out “truncatedcube.xyz” write 
 
// Selecting triangular faces using the distance to the 
center of faces 
#declare i=0; 
#declare nsele=0; 
#declare TC= array [24]; // selected cuboctahedron vertices
#while (i<8)  
#declare j=0; 
 #while (j<ncub)  
 #if( VDist(Pos[i],cuboc[j]) < sqrt(2)/2 ) 
    #declare TC[nsele]=cuboc[j]; 
 
  #declare nsele=nsele+1; 
 #end 
#declare j=j+1; 
#end  
#declare i=i+1;  
#end#declare nsele=0; 
#declare lado= sqrt(2)/2; 
#declare TC= array [24]; //selected cuboctahedron vertices 
#while (i<ncen)  
#declare j=0; 
 #while (j<ncub)  
 #if( VDist(Pos[i],cuboc[j]) < lado ) 
    #declare TC[nsele]=cuboc[j]; 
#end  
#declare i=i+1;  
#end 
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The snub cube from the rhombicuboctahedron
This Archimedean solid is comprised by 6 squares, and 32 equilateral triangles. 
It has 24 vertices and 60 edges. The rotation of the square faces of the rhombi-
cuboctahedron is included in the algorithm given in Box 14. Depending on the 
rotation (clockwise or counter-clockwise) a pair of enantiomers are produced (it 
is a chiral structure) (Ball and Coxeter, 1987). If a rotation of circa 16 degrees is 
applied on each square face, then the square faces of the rhombicuboctahedron 

Figure 13. Truncated cuboctahedron from a truncated cube. The triangular faces of the truncated cube 
are truncated in three equal parts and the new hexagonal faces (orange/red sticks) are translated 
along vectors oriented on the diagonal of the cube indicated in red color. The translated vertices cons-
tituting the truncated cuboctahedron are linked by cylinders in orange color.

Source: Author’s elaboration. 

    #declare kon=kon+6; 
    #end 
   #declare k=k+1; 
   #end 
   #declare j=j+1; 
   #end 
   #declare i=i+1; 
#end 
//Selection of hexagons and normal vectors to translate them 
#declare Thex= array[480]; 
#declare ladoCuboc= acube*sqrt(2)/2; //Cuboctahedron edge 
#fopen TrCubocta “Truncated-cuboc.xyz” write 
#declare konter=1; 
 #declare i=0; 
 #while(i<48)  
 #declare j=0; 
 #while (j<8)  
 
#if ( vdot(hexa1[i],Pos[j])<(1+0.2) & vdot(hexa1[i], Pos[j] )>  
         (1-0.2)) 
  #declare Thex[konter]=hexa1[i]-0.985* ladoCuboc 
       *vnormalize((Pos[j]));  
      sphere {Thex[konter], 0.3 pigment {rgb <1,0,0>} } 
    #write (TrCubocta,”H”, “ “,vstr(3, Thex[konter ],” “,3,5),”\n”) 
        #declare konter=konter+1; 
#end 
    #declare j=j+1;  
#end  
  #declare i=i+1;  
#end 

Box 13. Pov-Ray Code To Make a Truncated Cuboctahedron 
// Insert here the last definition of libraries, 
// light_source, camera, and background
#declare acube=1;                  // cube edges length 
#declare Pos= array[8];         // cube positions 
#declare cuboc= array [12];   // Cuboctahedron vertices 
 
// Insert here code to make the truncated cube included in Box  
        12. TC[24] represents the positions of truncated cube. 
#declare hexa1= array [48]; 
#declare kon=0; 
#declare i=0; 
  #while (i<nsele) 
    #declare j=i+1; 
    #while (j<nsele) 
      #declare V1= TC[j]-TC[i]; 
      #declare k=j+1; 
      #while (k<nsele) 
         #declare V2= TC [k]-TC[i]; 
       #declare Dd=   VDist(TC [i],TC[j]); 
       #declare Dd1= VDist(TC [i],TC[k]); 
       #declare angulo= VAngleD(V1,V2); 
 
//finding edges with a common vertex; edge equals sqrt(2)/2 
     #if( (Dd<0.8 & Dd>0.7) & (Dd1<0.8 & Dd1> 0.7)  &  
         (angulo>59 & angulo<61)) 
     #declare hexa1[kon ]= TC[i]+     (TC[j]-TC[i])/3;  
     #declare hexa1[kon+1]=TC[i]+2*(TC[j]-TC[i])/3; 
     #declare hexa1[kon+2 ]=TC[i]+   (TC[k]-TC[i])/3;   
     #declare hexa1[kon+3]= TC[i]+2*(TC[k]-TC[i])/3; 
     #declare hexa1[kon+4 ]=TC[j]+   (TC[k]-TC[j])/3;  
     #declare hexa1[kon+5]= TC[j]+   2*(TC[k]-TC[j])/3; 
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seem to rotate in contrary directions when they are seen perpendicular to those 
square faces. In figure 14, the structure of the snub cube is provided.

It is important to note that we are using the dot product to select square 
faces of the rhombicuboctahedron. Rotations are carried out by using the 

Box 14. POV-Ray code to make a snub cube with edge length 
of 1 
// Insert here the last definition of libraries, 
// light_source, camera, and background 
#declare acube=1;                 // cube edges length 
#declare Pos= array[8];         // cube positions 
#declare cuboc= array [12];   // Cuboctahedron vertices 
 
// Insert here the rhombicuboctahedron included in Box 11.  
        Center[counter] represents the center of cube faces. Rho  
        is the array containing 24 vertices of  
        rhombicuboctahedron 
 
// Selection of square faces and their rotation 
        #write (SnubCub,”24”,”\n”) 
        #write (SnubCub,””,”\n”)  
#declare konter3=0; 
#declare angulo= 16.47 ; 
 #declare i=0; 
 #while(i<24)  // vertices 
 #declare j=0; 
 #while (j<6) // centers 
#if ( vdot(Rho[i],Center[j])<(0.6036+0.1) & vdot(Rho[i],  
        Center[j] )> (0.6036-0.1) )  
 
  #declare Snubcu[konter3]= vaxis_rotate(Rho[i],     Center[j], 
angulo) ; 
      sphere {Snubcu[konter3], 0.1 pigment {color Blue} }

    #write (SnubCub,”Au”, “ “,vstr(3, Snubcu[konter3 ],” 
“,3,5),”\n”) 
        #declare konter3=konter3+1; 
#end 
    #declare j=j+1;  
#end  
  #declare i=i+1;  
#end

Figure 14. Snub cube from a rhombicuboctahedron. The square faces of the rhombicuboctahedron 
(blue color) are rotated with respect to perpendicular vectors passing through the cube faces. The rota-
ted vertices constituting the snub cube are linked by cylinders (green color). Left structure corresponds 
with a counter-clockwise rotation. Both enantiomers are related by a mirror symmetry operation.

Source: Author’s elaboration. 
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command axis_rotate (V1, V2, angle), being V1 the rhombicuboctahedron 
vertices array and V2 the centers array. The twist angle was determined nu-
merically, and it is of circa 16.47º (WolframMathworld, http://mathworld.
wolfram.com/SnubCube.html). On the other hand, the calculated dot pro-
duct among the perpendicular vector and one vertex of the rhombicosidode-
cahedron was calculated as 0.6036*acube2. This value is included in our algo-
rithm to select vertices forming a square face and to rotate them with respect 
to the related perpendicular vector. 

The rhombicosidodecahedron from the dodecahedron
This structure has been found comprising the structure of one I-Au144 cluster, 
and it represents a distorted 60-shell atoms where the gold atoms are separa-
ted and they are linked to an inner gold core (Tlahuice-Flores et al., 2013). The 
rhombicosidodecahedron is an Archimedean solid built by 20 triangles, 30 
squares and 12 pentagons. It has 60 vertices and 120 edges. To generate it, we 
selected each pentagonal face of dodecahedron (12 pentagonal faces) and 
translated it outwards along a perpendicular vector. The perpendicular vectors 
are given by the dual of dodecahedron (icosahedron) and their magnitude was 
calculated as circa 0.951 times the dodecahedron edge length. See figure 15 for 
an illustration of the structure and Box 15 for the code.

The snub dodecahedron from the rhombicosidodecahedron
The snub dodecahedron is also known as snub icosidodecahedron. It has 12 
pentagons, and 80 equilateral triangles, and its 150 edges join the 60 vertices 
constituting him. It can be obtained from the rotation of the pentagonal faces 
of the rhombicosidodecahedron in a similar way that the snub cube is made 
from the rhombicuboctahedron. The rotation of the pentagonal faces can be 
done both clockwise and counter-clockwise orientation, resulting in two struc-
tures related by a mirror symmetry operation. If the edge of this solid is the 
unit, then a rotation of 18.2158º is necessary to change the square faces by 

Figure 15. Rhombicosidodecahedron obtained from a dodecahedron. The pentagonal faces of the do-
decahedron (blue color) are translated with respect to perpendicular vectors. The triangular faces are 
formed when all the inter-face distances equal the pentagon edges length.

Source: Author’s elaboration. 
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triangular ones (Weisstein, 2020; WolframMathworld, http://mathworld.wol-
fram.com/ SnubDodecahedron.html). Recently, we have calculated one ho-
llows Au60 cluster corresponding with a perfect snub dodecahedron. It means 
that modeling of Archimedean can be used to investigate structures with rele-
vance in chemistry (Jacobo-Fernández and Tlahuice-Flores, 2021). 

Figure 16 contains the rhombicosidodecahedron structure. Box 16 con-
tains the Pov-Ray code of the snub dodecahedron.

Figure 16. Snub dodecahedron from the rhombicosidodecahedron. Making a snub dodecahedron from 
rotation of pentagonal faces of the rhombicosidodecahedron. The cylinders in blue correspond with 
the rhombicosidodecahedron. The rotation of pentagonal faces transforms the square in triangular 
faces (green color). To simplify the view, the edges of rhombicosidodecahedron are displayed as thin 
cylinders.

Source: Author’s elaboration. 

      sphere {Rho[konter], 0.3 pigment {rgb <1,0,0>} } 
    #write (rhombicosidode,”Au”, “ “,vstr(3, Rho[konter ],”  
        “,3,5),”\n”) 
        #declare konter=konter+1; 
#end 
    #declare j=j+1;  
#end  
  #declare i=i+1;  
#end   
// spheres Model 
#declare h=0.1; 
#declare i=0;  
#while (i<60)  
 sphere {Rhom[i],0.1 texture { pigment { color Red}  } }  
 #declare j=i+1  ; 
 #while(j<60)  
  #if (VDist(Rhom[i],Rhom[j])<adode+2*h  &  
        VDist(Rhom[i],Rhom[j])>adode-2*h ) 
 cylinder {Rhom[i],Rhom[j], 0.05  texture { pigment { color  
        Yellow} finish  { phong 0.0 reflection{ 0.00 metallic  
        0.00} } } }   
  #end  
  #declare j=j+1; 
 #end  
 #declare i=i+1; 
#end 

Box 15. Pov-Ray code to make a rhombicosidodecahedron 
with edge length of 1 
// Insert here the last definition of libraries, 
// light_source, camera, and background 
#declare acube=1;                 // cube edges length 
#declare Pos= array[8];         // cube positions
#declare cuboc= array [12];  // Cuboctahedron vertices 
 
// Insert here the dodecahedron and icosahedron arrays. 
#declare adode= 1 ; 
 
// dode[n] contains dodecahedron vertices 
// Selecting and moving pentagonal faces 
#fopen rhombicosidode “rhombicosidodecaedro.xyz” write 
        #write (rhombicosidode,”60”,”\n”) 
        #write (rhombicosidode,””,”\n”)  
#declare konter=0; 
 #declare i=0; 
 #while(i<20)  
 #declare j=0; 
 #while (j<12)  
#if ( vdot( vnormalize(dode[i]), vnormalize(ico[j]))> (0.75) &  
        vdot(vnormalize(dode[i]), vnormalize(ico[j] ))< (1.0)) 
// dot product among one vertex and the center of one  
        face 
  #declare Rho[konter]=dode[i]+ 0.95088*adode         
*vnormalize((ico[j]));  //  magnitude of the perpendicular  
        vector 
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Conclusions

The addressed project was carried out by undergraduate students, and it in-
cluded the planning, and election of the shortest paths to code the 13 Archi-
medean solids. This study represents an improvement in their programming 
level where the use of macros was mandatory to reduce the size of the deli-
vered code. The students were involved in the study of the geometrical rela-
tionships of regular and irregular solids, and these let us obtain a more in-
tuitive view during the modeling/construction of the irregular solids. We do 
not demerit the use of plastic models, but that approach is limited in the size 
of studied compounds.

Among all proposed/coded algorithms included in this publication, the 
irregular truncation of edges of a regular solid, let us obtain 3 of the 13 Ar-
chimedean solids. However, other algorithms to select faces, to translate 
and to rotate them were necessary. This resulted in the generation of new al-
gorithms that were coded in an object-oriented language (Pov-Ray).

Regarding the granted capabilities of students, this project improved 
their spatial depth and requested of their creativity. They were involved du-
ring the decision-making process to reach the final goal: the programming of 
13 Archimedean solids.

References

Ball, W. W. R. and Coxeter, H. S. M. (1987). Mathematical Recreations and Essays, 13th 
ed. New York: Dover, 138-139.

    #end 
    #declare j=j+1;  
#end  
  #declare i=i+1;  
#end   
#declare n=0; 
#declare j=0; 
 
// spheres Model 
#declare h=0.2; 
#declare i=0;  
#while (i<60)  
 #declare j=i+1; 
 #while(j<60)  
  #if (VDist(SnubRho[i],SnubRho[j])<adode+2*h  &  
        VDist(SnubRho[i],SnubRho[j])>adode-2*h ) 
  cylinder {SnubRho[i],SnubRho[j], 0.05  texture { pigment  
        {color Green} finish  {phong 0.0  
        reflection{ 0.00 metallic 0.00} } } }  
  #end  
  #declare j=j+1; 
 #end  
 #declare i=i+1; 
#end  

Box 16. Pov-Ray code to make snub dodecahedron with 
edge length of 1 
//Insert here code from Box 15 
 
#fopen SnubD “SnubRhombicosidode.xyz” write 
#declare SnubRho= array [120]; 
#write (SnubD,”60”,”\n”) 
#write (SnubD,””,”\n”)  
 
#declare konter5=0; 
#declare angulo=18.215828464309; 
#declare i=0; 
#while(i<60)  // vertices 
#declare j=0; 
 #while (j<12) // centers 
        #if ( vdot( vnormalize(Rhom[i]),  
vnormalize(ico[j]))> (0.75) &  
vdot(vnormalize(Rhom[i]), vnormalize(ico[j] ))< (1)) 
  #declare SnubRho[konter5]=  
vaxis_rotate(Rhom[i],     ico[j], angulo) ; 
sphere {SnubRho[konter5], 0.06 pigment {color  
Blue} } 
  #write (SnubD,”Au”, “ “,vstr(3, SnubRho[konter5 ],” 
       “,3,5),”\n”) 
        #declare konter5=konter5+1; 



26e

Mundo Nano | research articles | www.mundonano.unam.mx	  
15(29), 1e-32e, July-December 2022 | https://doi.org/10.22201/ceiich.24485691e.2022.29.69694 	  
S. Alejandro Sandoval-Salazar, Jimena M. Jacobo-Fernández, J. Abraham Morales-Vidales, Alfredo Tlahuice-Flores 

Eddaoundi, M.; Kim, J.; Wachter, J. B.; Chae, H. K.; O’Keeffe, M.; Yaghi, O. M. (2001). 
Porous metal-organic polyhedra: 25 Å cuboctahedron constructed form 12 
Cu2(CO2)4 paddle-wheel building blocks. Journal of the American Chemical Soci-
ety. 123: 4368-4369. https://doi.org/10.1021/ja0104352

Gupta, S.; Corbett, J. D. (2012). BaAuxZn13-x: Electron-Poor Cubic NaZn13-Type in-
termetallic and its ordered tetragonal variant. Inorganic Chemistry. 51: 2247-
2253. https://doi.org/10.1021/ic2022787

Hayami, W.; Otani, S. (2011). Structural stability of boron clusters with octahedral 
and tetrahedral symmetries. Journal of Physical Chemistry A. 115: 8204-8207. 
https://doi.org/10.1021/jp204115x

Haymet, A. D. J. (1985). C120 and C60: Archimedean solids constructed from sp2 hy-
bridized carbon atoms. Chemical Physics Letter. 122: 421-424. https://doi.
org/10.1016/0009-2614(85)87239-0

Hudson, T. S. (2010). Dense sphere packing in the NaZn13 structure type. The Journal 
of Physical Chemistry C. 114: 14013-14017. https://doi.org/10.1021/jp1045639

Jabobo-Fernández, Jimena M.; Tlahuice-Flores, A. (2021). Effect of the charge state 
on the structure of the Au60 cluster. Physical Chemistry Chemical Physics. 23: 
442-448. https://doi.org/10.1039/D0CP04393A

Kim, D. Y.; Im, S. H.; Park, O. Ok, Lim, Y. T. (2010). Evolution of gold nanoparticles 
through Catalan, Archimedean and Platonic solids. CrystEngComm, 12: 116-
121. https://doi.org/10.1039/B914353J

Kittel, C. (1996). Introduction to solid state physics, 8th ed. New York: John Wiley & 
Sons. 

Kong, X.-J.; Ren, Y.-P.; Long, L.-S.; Zheng, Z.; Huang, R.-B.; Zheng, L.-S. (2007). A 
keplerate magnetic cluster featuring an icosidodecahedron of Ni(II) ions en-
capsulationg a dodecahedron of La(III) ions. Journal of the American Chemical 
Society. 129: 7016-7017. https://doi.org/10.1021/ja0726198

Kroto, H. W.; Heath, J. R.; O’Brien, S. C.; Curl, R. F.; Smalley, R. E. (1985). C60: Buck-
minsterfullerene. Nature. 318: 162-163. https://doi.org/10.1021/cr00006a005

Leininger, S.; Fan, J.; Schmitz, M.; Stang, P. J. (2000). Archimedean solids: transition 
metal mediated rational self-assembly of supramolecular-truncated tetrahe-
dra. Proceedings of the National Academy of Sciences of the United States of Amer-
ica, 97: 1380-1384. https://doi.org/10.1073/pnas.030264697

Montejano-Carrizales, J. M.; Aguilera-Granja, F.; Morán-López, J. L. (1997). Direct 
enumeration of the geometrical characteristics of clusters. Nanostructured Ma-
terials, 8(3): 269-287. https://doi.org/10.1016/S0965-9773(97)00168-2

Morales-Vidales, J. A.; Sandoval Salazar S. A.; Jacobo-Fernández, J. M; Tlahuice-Flores 
A. (2020). Platonic solids and their programming: a geometrical approach. Jour-
nal of Chemical Education. https://doi.org/10.1021/acs.jchemed.9b00751

Ni, Z.; Yassar, A., Antoun, T., Yaghi, O. M. (2005). Porous metal-organic truncated oc-
tahedron constructed from paddle-wheel square and terthiophene links. Journal 
of the American Chemical Society. 127: 12752-12753. https://doi.org/10.1021/
ja052055c

Niu, W., Zhang, W., Firdoz, S., Liu X. (2014). Dodecahedral gold nanocrystals: the 



27e

www.mundonano.unam.mx | research articles | Mundo Nano 
https://doi.org/10.22201/ceiich.24485691e.2022.29.69694 | 15(29), 1e-32e, July-December 2022 

S. Alejandro Sandoval-Salazar, Jimena M. Jacobo-Fernández, J. Abraham Morales-Vidales, Alfredo Tlahuice-Flores 

missing Platonic shape. Journal of the American Chemical Society, 136: 3010-
3012. https://doi.org/10.1021/ja500045s

Qiu, Y.-C., Yuan, S., Li, X.-X., Du, D.-Y., Wang, C., Qin, J.-S., Drake, H. F., Lan, Y.-Q., 
Jiang, L., Zhou, H.-C. (2019). Face-sharing Archimedean solids stacking for the 
construction of mixed-ligand metal-organic frameworks. Journal of the American 
Chemical Society, 141: 13841-13848. https://doi.org/10.1021/jacs.9b05580

Tlahuice-Flores, A. (2019). New polyhedra aproach to explain the structure and evo-
lution on size of thiolated gold clusters. The Journal of Physical Chemistry C., 
123(17): 10831-10841. https://doi.org/10.1021/acs.jpcc.9b02265

Tlahuice-Flores, A., Black, D. M., Bach, S. B.H, José-Yacamán, M., Whetten, R. L. 
(2013). Structure & bonding of the gold-subhalide cluster I-Au144Cl60[z]. Phys-
ical Chemistry Chemical Physics, 15: 19191-19195. https://doi.org/10.1039/
C3CP53902D

Tominaga, M., Suzuki, K., Kawano, M., Kusukawa, T., Ozeki, T., Sakamoto, S., Yama-
guchi, K., Fujita, M. (2004). Finite, spherical coordination networks that self-
organize form 36 small components. Angewandte Chemie International Edition, 
43: 5621-5625. https://doi.org/10.1002/anie.200461422

Wang, L-S. (2016). Photoelectron spectroscopy of size-selected boron clusters: from 
planar structures to borophenes and borospheres. International Reviews in Physi-
cal Chemistry, 35: 69-142. https://doi.org/10.1080/0144235X.2016.1147816

Weisstein, Eric W. (2020). “Snub Cube.” From MathWorld–A Wolfram Web resource. 
https://mathworld.wolfram.com/SnubCube.html

Wells, D. (1991). The Penguin dictionary of curious and interesting geometry. New York: 
Penguin Books, 8.

Williams, R. (1979). The geometrical foundation of Natural Science. A source book of de-
sign, 1 ed. New York: Dover Publications, 140-142.

Xiong, D.-B., Zhao, Y., Schnelle, W., Okamoto, N. L. Inui, H. (2010). Complex Alloys 
containing Double-Mackay clusters and (Sb1-δ Znδ )24 snub cubes filled with 
highly disordered zinc aggregates: synthesis, structures, and physical proper-
ties of ruthenium zinc antimonides. Inorganic Chemistry, 49: 10788-10797. 
https://doi.org/10.1021/ic101804m

Zope, R. R., Baruah, T. (2011). Snub boron nanostructures: chiral fullerenes, nano-
tubes and planar sheet. Chemical Physics Letters, 501: 193-196. https://doi.
org/10.1016/j.cplett.2010.11.012



28e

Annex. Use of macros in POV-Ray codes*

Figure S1. Icosidodecahedron geometrical features.
Figure S2. Rhombicuboctahedron calculation of the k value from cube.
Figure S3. Rhombicuboctahedron deduction of k value from octahedron.

The use of macros is helpful in POV-Ray codes. A macro is declared by using 
an identifier, and a list of parameters. Its syntax is as follows:

Macros need to be declared before they can be used. The manner to in-
voke them is as follows:

Macro_identifier (parameters list)

The next example is provided to facilitate the understanding of macros.

It can be used to calculate the edges of a solid as cuboctahedron.

Box 1. Commands in Pov-Ray Language to declare a Macro  
#macro Identifier (parameters)  
Tokens  
#end

#macro Enlaces (first, final, Ve1, distan, kolor) 
      // printing bonds as cylinders 
      #declare i=first; 
      #while (i< final-1) 
       #declare j=i+1; 
          #while (j< final) 
           #declare L1= VDist( Ve1[i], Ve1[j]); 
             #if(L1< a* (distan) +0.01) 
               cylinder{ Ve1[i], Ve1[j] 0.05 pigment{color kolor} }  
             #end 
           #declare j=j+1; 
           #end 
         #declare i=i+1; 
         #end 

	 *	Annex related to macros, deduction of magnitude of the translation vectors of rhom-
bicuboctahedron and truncated icosidodecahedron.



29e

To show the edges, the macro is invoked as follows.
Enlaces (0, 11, cuboc, 1, Green).

The truncated icosidodecahedron

To select the hexagonal faces of the truncated icosahedron, it was necessary 
to calculate the dot product among the position vectors of the dodecahedron 
(cyan spheres in figure S1) and the position vectors of vertices of the trunca-
ted icosahedron (orange vectors). 

With respect to the magnitude of the translation vector (k) it was neces-
sary to subtract the relation of the distance from the origin to the center of 
hexagonal faces of truncated icosahedron and trun-cated icosidodecahe-
dron. That relationship was found in the reference 22 (Weisstein, 2020).

POV-Ray Code to make a cuboctahedron 
// Insert here the last definition of libraries, 
// light_source, camera, and background 
 
#declare acube=2/sqrt(2);     //cube edges length 
#declare Pos= array[8];         // cube positions 
#declare cuboc= array [12]; // cuboctahedron vertices 
 
// Cube positions 
#declare Pos[0]= <acube/2,    acube/2,  acube/2>; 
#declare Pos[1]= <-acube/2,  -acube/2, -acube/2>; 
#declare Pos[2]= <-acube/2,   acube/2,  acube/2>; 
#declare Pos[3]= <acube/2,   -acube/2,  acube/2>; 
#declare Pos[4]= <acube/2,    acube/2,  -acube/2>; 
#declare Pos[5]= <-acube/2,  -acube/2,  acube/2>; 
#declare Pos[6]= <-acube/2,   acube/2,  -acube/2>; 
#declare Pos[7]= <acube/2,   -acube/2,  -acube/2>; 
 
#fopen cuboct “cuboctahedron.xyz” write 
 
// This block is to calculate the distances among vertices 
// and to define edges 
//Calculating the center of cube edges 
     #declare i=0; 
     #declare ncub=0; 
     #declare n=8; 
     #while (i<n-1) 
      #declare j=i+1; 
         #while (j<n) 
          #declare L= VDist(Pos[i],Pos[j]); 
            #if(L< acube+0.1)  
             #declare cuboc[ncub]=Pos[i]+0.5*(Pos[j]- Pos[i]); 
               sphere{cuboc[ncub], 0.25 pigment{color Red}}  
#write (cuboct,”Au”, “ “,vstr(3, cuboc[ncub],” “,3,5),”\n”) 
               #declare ncub=ncub+1; 
            #end 
          #declare j=j+1; 
          #end 
        #declare i=i+1; 
       #end 
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Rhombicuboctahedron calculation of the magnitude (k) of the 
perpendicular vector

To obtain the magnitude of the perpendicular vector (k) to the cube faces, it 
was necessary to make a code to translate the cube vertices by a fraction. In 
the following box is included the used code.

Figure S1. Truncated icosidodecahedron from a truncated icosahedron.

Note: Both Archimedean solids have hexagonal faces, in such manner that the translation of the hexa-
gonal faces of the truncated icosahedron produces the truncated icosidodecahedron. 

// Calculation of the magnitude (k) of the translation vector being perpen- 
dicular to square faces of the cube 
 
     #fopen RombiCuH “T_Rombicuboctahedron.txt” write 
       #declare h=0.0001;     // INCREMENT  
       #declare contadd=0;  
 
#while(vlength(RC[8 ] - RC[0 ])< a) 
               #local RC[0 ]=      RC[0 ]+    h * <1,0,0>; 
               #local RC[8 ]=      RC[8]+     h * <0,0,1>; 
 
// Checking the distance among 2 translated vertices  
#write (RombiCuH, RC[8], RC[0], “distance= “,vlength(RC[8 ]- RC[0 ]),”  T=”, 
contadd*h, “\n”) 
               #declare T= contadd*h ;      // This is k 
               #declare contadd= contadd+1; 
           #end 

Figure S2. Illustration of the calculation of the magnitude (k) of the displacement vector applied to 
cube vertices to obtain the rhombicuboctahedron. RC[0] and RC[8] are obtained by translating one 
vertex of the cube along perpendicular vectors to square faces.
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In figure S2, the blue triangle can be used to analytically obtain the mag-
nitude of the translation vector (k). 

	 k2 + k2 = acube2

Then 
	

acube	 k = ——— 
	 √2

Rhombicuboctahedron deduction of the magnitude (k) of the 
perpendicular vector

As mention in the main manuscript, the Rhombicuboctahedron can be 
obtain from both the cube and its dual, the octahedron. In each case we have 
to translate the faces a certain distance (k). In the case of the octahedron, 
this length is b*0.8660, being b the edge of the octahedron. In the following, 
we explore how did we deduce this.

In the figure S3 the blue dot represents one of the octahedron’s vertices. 
As we can see, 2 vectors come out from the octahedron’s vertex (there are 4 
vertices of the Rhombicuboctahedron for each octahedron’s vertex but for 
simplicity issues we just consider two). These two vectors are the “translation 
vectors” from the octahedron’s vertex to its rhombicuboctahedron’s vertices. 
So, the distance between the two red dots (representing Rhombicuboctahedron’s 
vertices) must be the same as the edge of the octahedron

At first we give these vectors a length of 1; which is the default value 
given by Pov-Ray with the function VPerp_To_Plane (V1, V2). This arbitrary 
value is just given because we aren’t interest-ed in the length of the vectors 
yet, but in the angle between them.

Figure S3. Illustration of the calculation of the magnitude of the displacement vector applied to octa-
hedron vertices to obtain the rhombicuboctahedron.
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The program shows that the angle between the vectors is 70.5369º and 
the other angles are 54.7315º@ each. Given this information, we can use the 
sine rule in order to calculate the length of the vectors.
	

b
	

k	 ————————— = —————
	 sin(1.2311 radians)	 (0.95245) 

Being b the edge of the octahedron and rhombicuboctahedronrhombi-
cuboctahedron, and k the length of the translation vector. 
	

b sin(0.95245)	 k = ————————— 
	 sin(1.2311 radians)

k = b(0.8659)

Coordinates of the rhombicuboctahedron obtain by the translation of 
octahedron’s faces:

1
2
3
4
5
6
7
8
9

10
11
12 

–0.70692
0.70692

–0.70692
0.70692
0.70692
0.70692

–0.70692
–0.70692

1.70692
1.70692
1.70692
1.70692

0.70692
0.70692

–0.70692
–0.70692

1.70692
1.70692
1.70692
1.70692

–0.70692
0.70692

–0.70692
0.70692

1.70692
1.70692
1.70692
1.70692
0.70692

–0.70692
0.70692

–0.70692
0.70692
0.70692

–0.70692
–0.70692

13
14
15
16
17
18
19
20
21
22
23
24

–1.70692
–1.70692
–1.70692
–1.70692
–0.70692
0.70692

–0.70692
0.70692
0.70692
0.70692

–0.70692
–0.70692

0.70692
0.70692

–0.70692
–0.70692
–1.70692
–1.70692
–1.70692
–1.70692
0.70692

–0.70692
0.70692

–0.70692

0.70692
–0.70692
0.70692

–0.70692
0.70692
0.70692

–0.70692
–0.70692
–1.70692
–1.70692
–1.70692
–1.70692


