
28e

Annex. Use of macros in POV-Ray codes*

Figure S1. Icosidodecahedron geometrical features.
Figure S2. Rhombicuboctahedron calculation of the k value from cube.
Figure S3. Rhombicuboctahedron deduction of k value from octahedron.

The use of macros is helpful in POV-Ray codes. A macro is declared by using
an identifier, and a list of parameters. Its syntax is as follows:

Macros need to be declared before they can be used. The manner to in-
voke them is as follows:

Macro_identifier (parameters list)

The next example is provided to facilitate the understanding of macros.

It can be used to calculate the edges of a solid as cuboctahedron.

Box 1. Commands in Pov-Ray Language to declare a Macro
#macro Identifier (parameters)
Tokens
#end

#macro Enlaces (first, final, Ve1, distan, kolor)
 // printing bonds as cylinders
 #declare i=first;
 #while (i< final-1)
 #declare j=i+1;
 #while (j< final)
 #declare L1= VDist(Ve1[i], Ve1[j]);
 #if(L1< a* (distan) +0.01)
 cylinder{ Ve1[i], Ve1[j] 0.05 pigment{color kolor} }
 #end
 #declare j=j+1;
 #end
 #declare i=i+1;
 #end

 * Annex related to macros, deduction of magnitude of the translation vectors of rhom-
bicuboctahedron and truncated icosidodecahedron.

29e

To show the edges, the macro is invoked as follows.
Enlaces (0, 11, cuboc, 1, Green).

The truncated icosidodecahedron

To select the hexagonal faces of the truncated icosahedron, it was necessary
to calculate the dot product among the position vectors of the dodecahedron
(cyan spheres in figure S1) and the position vectors of vertices of the trunca-
ted icosahedron (orange vectors).

With respect to the magnitude of the translation vector (k) it was neces-
sary to subtract the relation of the distance from the origin to the center of
hexagonal faces of truncated icosahedron and trun-cated icosidodecahe-
dron. That relationship was found in the reference 22 (Weisstein, 2020).

POV-Ray Code to make a cuboctahedron
// Insert here the last definition of libraries,
// light_source, camera, and background

#declare acube=2/sqrt(2); //cube edges length
#declare Pos= array[8]; // cube positions
#declare cuboc= array [12]; // cuboctahedron vertices

// Cube positions
#declare Pos[0]= <acube/2, acube/2, acube/2>;
#declare Pos[1]= <-acube/2, -acube/2, -acube/2>;
#declare Pos[2]= <-acube/2, acube/2, acube/2>;
#declare Pos[3]= <acube/2, -acube/2, acube/2>;
#declare Pos[4]= <acube/2, acube/2, -acube/2>;
#declare Pos[5]= <-acube/2, -acube/2, acube/2>;
#declare Pos[6]= <-acube/2, acube/2, -acube/2>;
#declare Pos[7]= <acube/2, -acube/2, -acube/2>;

#fopen cuboct “cuboctahedron.xyz” write

// This block is to calculate the distances among vertices
// and to define edges
//Calculating the center of cube edges
 #declare i=0;
 #declare ncub=0;
 #declare n=8;
 #while (i<n-1)
 #declare j=i+1;
 #while (j<n)
 #declare L= VDist(Pos[i],Pos[j]);
 #if(L< acube+0.1)
 #declare cuboc[ncub]=Pos[i]+0.5*(Pos[j]- Pos[i]);
 sphere{cuboc[ncub], 0.25 pigment{color Red}}
#write (cuboct,”Au”, “ “,vstr(3, cuboc[ncub],” “,3,5),”\n”)
 #declare ncub=ncub+1;
 #end
 #declare j=j+1;
 #end
 #declare i=i+1;
 #end

30e

Mundo Nano | research articles | www.mundonano.unam.mx
15(29), 1e-32e, July-December 2022 | https://doi.org/10.22201/ceiich.24485691e.2022.29.69694
S. Alejandro Sandoval-Salazar, Jimena M. Jacobo-Fernández, J. Abraham Morales-Vidales, Alfredo Tlahuice-Flores

Rhombicuboctahedron calculation of the magnitude (k) of the
perpendicular vector

To obtain the magnitude of the perpendicular vector (k) to the cube faces, it
was necessary to make a code to translate the cube vertices by a fraction. In
the following box is included the used code.

Figure S1. Truncated icosidodecahedron from a truncated icosahedron.

Note: Both Archimedean solids have hexagonal faces, in such manner that the translation of the hexa-
gonal faces of the truncated icosahedron produces the truncated icosidodecahedron.

// Calculation of the magnitude (k) of the translation vector being perpen-
dicular to square faces of the cube

 #fopen RombiCuH “T_Rombicuboctahedron.txt” write
 #declare h=0.0001; // INCREMENT
 #declare contadd=0;

#while(vlength(RC[8] - RC[0])< a)
 #local RC[0]= RC[0]+ h * <1,0,0>;
 #local RC[8]= RC[8]+ h * <0,0,1>;

// Checking the distance among 2 translated vertices
#write (RombiCuH, RC[8], RC[0], “distance= “,vlength(RC[8]- RC[0]),” T=”,
contadd*h, “\n”)
 #declare T= contadd*h ; // This is k
 #declare contadd= contadd+1;
 #end

Figure S2. Illustration of the calculation of the magnitude (k) of the displacement vector applied to
cube vertices to obtain the rhombicuboctahedron. RC[0] and RC[8] are obtained by translating one
vertex of the cube along perpendicular vectors to square faces.

31e

www.mundonano.unam.mx | research articles | Mundo Nano
https://doi.org/10.22201/ceiich.24485691e.2022.29.69694 | 15(29), 1e-32e, July-December 2022

S. Alejandro Sandoval-Salazar, Jimena M. Jacobo-Fernández, J. Abraham Morales-Vidales, Alfredo Tlahuice-Flores

In figure S2, the blue triangle can be used to analytically obtain the mag-
nitude of the translation vector (k).

 k2 + k2 = acube2

Then

acube k = ———
 √2

Rhombicuboctahedron deduction of the magnitude (k) of the
perpendicular vector

As mention in the main manuscript, the Rhombicuboctahedron can be
obtain from both the cube and its dual, the octahedron. In each case we have
to translate the faces a certain distance (k). In the case of the octahedron,
this length is b*0.8660, being b the edge of the octahedron. In the following,
we explore how did we deduce this.

In the figure S3 the blue dot represents one of the octahedron’s vertices.
As we can see, 2 vectors come out from the octahedron’s vertex (there are 4
vertices of the Rhombicuboctahedron for each octahedron’s vertex but for
simplicity issues we just consider two). These two vectors are the “translation
vectors” from the octahedron’s vertex to its rhombicuboctahedron’s vertices.
So, the distance between the two red dots (representing Rhombicuboctahedron’s
vertices) must be the same as the edge of the octahedron

At first we give these vectors a length of 1; which is the default value
given by Pov-Ray with the function VPerp_To_Plane (V1, V2). This arbitrary
value is just given because we aren’t interest-ed in the length of the vectors
yet, but in the angle between them.

Figure S3. Illustration of the calculation of the magnitude of the displacement vector applied to octa-
hedron vertices to obtain the rhombicuboctahedron.

32e

Mundo Nano | research articles | www.mundonano.unam.mx
15(29), 1e-32e, July-December 2022 | https://doi.org/10.22201/ceiich.24485691e.2022.29.69694
S. Alejandro Sandoval-Salazar, Jimena M. Jacobo-Fernández, J. Abraham Morales-Vidales, Alfredo Tlahuice-Flores

The program shows that the angle between the vectors is 70.5369º and
the other angles are 54.7315º@ each. Given this information, we can use the
sine rule in order to calculate the length of the vectors.

b

k ————————— = —————
 sin(1.2311 radians) (0.95245)

Being b the edge of the octahedron and rhombicuboctahedronrhombi-
cuboctahedron, and k the length of the translation vector.

b sin(0.95245) k = —————————
 sin(1.2311 radians)

k = b(0.8659)

Coordinates of the rhombicuboctahedron obtain by the translation of
octahedron’s faces:

1
2
3
4
5
6
7
8
9

10
11
12

–0.70692
0.70692

–0.70692
0.70692
0.70692
0.70692

–0.70692
–0.70692

1.70692
1.70692
1.70692
1.70692

0.70692
0.70692

–0.70692
–0.70692

1.70692
1.70692
1.70692
1.70692

–0.70692
0.70692

–0.70692
0.70692

1.70692
1.70692
1.70692
1.70692
0.70692

–0.70692
0.70692

–0.70692
0.70692
0.70692

–0.70692
–0.70692

13
14
15
16
17
18
19
20
21
22
23
24

–1.70692
–1.70692
–1.70692
–1.70692
–0.70692
0.70692

–0.70692
0.70692
0.70692
0.70692

–0.70692
–0.70692

0.70692
0.70692

–0.70692
–0.70692
–1.70692
–1.70692
–1.70692
–1.70692
0.70692

–0.70692
0.70692

–0.70692

0.70692
–0.70692
0.70692

–0.70692
0.70692
0.70692

–0.70692
–0.70692
–1.70692
–1.70692
–1.70692
–1.70692

