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ABSTRACT: Given the importance of the fitting of a mathematical model that describes the ki-
netic behavior of a chemical reaction, this article describes the general method to achieve such
adjustments. It emphasizes the importance of the least squares procedure and how to achieve
the minimization of the sum of square errors, presenting examples of the algorithms when the
kinetics to be adjusted is simple (one reaction and one kinetic equation), where the linear least
squares procedure is used; or for complex kinetics where, then, it is necessary to adjust systems
of equations that are probably nonlinear, here we are talking about Newton-Raphson, Gauss-
Newton and Levenberg-Marquart algorithms. Once the adjustments were made, there is, also,
presentation about how to show the goodness of the fit through graphs. Different cases of how
the scientific literature displays the catalytic activity data and the best kinetic model are shown.
KEYWORDS: chemical reaction rate, catalytic activity, least squares, Gauss-Newton algorithm
(GNA), descendent gradient algorithm (DGA), Levenberg-Marquart algorithm (LMA), catalytic ac-
tivity measures.

RESUMEN: Dada la importancia de los ajustes para crear un modelo matematico que describa
el comportamiento cinético de una reaccion quimica, en este articulo se describe la manera
general para alcanzar dichos ajustes. Se destaca la importancia de la suma de los errores al
cuadrado como funcion objetivo, y de ahi lograr la minimizacion de la suma de errores. A esta
manera de proceder se la conoce como minimos cuadrados. En el articulo se muestran los al-
goritmos necesarios para lograr la minimizacién cuando la cinética a ajustar es simple (una
reaccion y una ecuacion cinética), donde se utiliza el procedimiento de minimos cuadrados li-
neal; o para cinéticas complejas donde es necesario ajustar sistemas de ecuaciones que proba-
blemente sean no lineales, aqui se necesitan algoritmos mas robustos como Gauss-Newton,
gradiente descendente y Levenberg-Marquart. Se presenta un ejemplo breve de como realizar
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el ajuste de una cinética con cuatro reacciones utilizando el método GRG2 en solver de Micro-
soft Excel™. También se toca la representacion de la bondad del ajuste a través de diferentes
graficas y se habla de diferentes formas en las que la literatura cientifica representa los datos
de actividad catalitica para mostrar el ajuste del mejor modelo cinético.

PALABRAS CLAVE: rapidez de reaccion, actividad catalitica, minimos cuadrados, algoritmo Gauss-
Newton (GNA), algoritmo del gradiente descendente (DGA), algoritmo Levenberg-Marquart (LMA),
medidas de actividad catalitica.

Introduccion

En el articulo “Obtencién y andlisis de expresiones de cinética quimica. I.
Obtencién de datos cinéticos y criterios para evitar los problemas de trans-
ferencia de masa y energia utilizando catalizadores heterogéneos” (en este
numero) se abordaron las descripciones de rapidez de reaccién, los tipos de
reactores quimicos y cémo evitar que datos obtenidos en el laboratorio estén
afectados por la presencia de fenémenos de trasferencia de masa y energia.
A partir de lo desarrollado con anterioridad, en este trabajo se parte de que
tenemos datos experimentales idéneos (i.e. datos donde solo se esta midien-
do el efecto de la reaccién quimica) y de ahi obtendremos los pardmetros ci-
néticos confiables que proporcionen informacién del modelo cinético de re-
acciones cataliticas. En este articulo se describe el procedimiento en general
para realizar el ajuste de los coeficientes cinéticos. Para alcanzar el ajuste, se
utiliza la sumatoria de errores al cuadrado (SSE: sum of square errors) como la
funcién objetivo de la minimizacién lineal o no. Esta manera de proceder se
conoce como minimos cuadrados y ha mostrado, desde los afios en que se
implement6, que es un estimador robusto, consistente y que muestra varia-
ciones pequenas. En situaciones en que se estd ajustando una reaccién qui-
mica simple (la reaccién puede describirse con una ecuacién estequiométrica
y una ecuacién cinética), la minimizacién puede alcanzarse con relativa faci-
lidad; pues la funcién objetivo es escalar y puede considerarse lineal. En esta
situacién estamos hablando de la regresién lineal; pero, es conveniente acla-
rar que esta NO es método de minimos cuadrados; en realidad es el método
maés simple de los métodos de minimos cuadrados. Con reacciones complejas
(més de una ecuacion estequiométrica y mas de una ecuacién cinética) el
procedimiento de minimizacién se complica y se requieren métodos de mini-
mizacién mas robustos. Es relativamente fécil darse cuenta del aumento de
la complejidad cuando consideramos que en lugar de ajustar un coeficiente
cinético k (pardmetro) se deben encontrar los valores éptimos para la mini-
mizacién de varias ks y, entonces, en lugar de un pardmetro ahora tendria-
mos un vector de pardmetros (ks).

En este articulo se destaca la importancia de la sumatoria de errores al
cuadrado (SEE), que representa las diferencias (errores) entre los datos expe-
rimentales con el modelo matematico a ajustar. La SSE se utiliza como fun-
cién objetivo para alcanzar la minimizacién. Se habla brevemente de los mé-
todos para la minimizacién mas comunes empezando por la regresién lineal
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y los métodos para casos no lineales. Finalmente, se muestran algunas ma-
neras en que la literatura cientifica presenta los resultados de los ajustes; la
“bondad” del ajuste se refiere a que se obtuvieron resultados adecuados para
la representacién matemadtica de la actividad catalitica. Este articulo no pre-
tende ser exhaustivo en la demostracién de los métodos, mas bien se enfoca
en que un lector interesado tenga los elementos para elegir mejor cual de los
métodos de minimos cuadrados se ajusta a sus necesidades.

Optimizacion (ajuste) de parametros cinéticos

En general, el algoritmo que nos conduce al mejor ajuste, o a la obtencién de
pardmetros cinéticos 6ptimos, se presenta en la figura 1.

Para cumplir con la etapa 1, plantear el sistema de ecuaciones diferen-
ciales (ED), se debe tener un cierto conocimiento quimico, que a su vez in-
cluye cierta experiencia en cuanto al posible comportamiento de la reaccién.
En los casos mas sencillos se conoce la reaccién, también la estequiometria y
con ellas se propone una ecuacién cinética muy simple. En casos mas com-
plejos se establece un esquema de reaccién que se representa con sus posi-
bles expresiones matemadticas. Si se conoce el mecanismo se describen mate-
maéticamente todos los pasos.

FIGURA 1. Algoritmo general para optimizar los parametros cinéticos utilizando minimos cuadrados.
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Las etapas numero dos y tres estdn intimamente relacionadas. Con el
preprocesamiento de los datos nos referimos a la manera en la cual se deben
presentar los datos (generalmente a un programa matematico) y con ello fa-
cilitar los célculos inherentes al paso 3. Esto puede incluir pasos como: sim-
plificar la forma en que resulté la solucién analitica de sistema ED o norma-
lizar los datos, entre otros.

Etapa tres (integrador). Aqui la operacién fundamental es resolver el sis-
tema de ED. Hay ecuaciones muy simples que se pueden integrar facilmente.
Algunos sistemas de ecuaciones diferenciales ordinarias también tienen re-
soluciones analiticas y, en cambio, también existen sistemas mas complejos
que solo tienen resolucién numérica. Algunos de los métodos numéricos
mas utilizados en este punto son del tipo Runge-Kutta.

El procedimiento que lleva al ajuste es la minimizacién de la SSE, lineas
abajo se presenta cémo se genera esta suma y su importancia en el ajuste. El
procedimiento para la minimizacién de la SSE puede ser muy simple si es-
tamos ajustando una sola reaccion (porque la ecuacién cinética asociada es
muy simple) o complicada, por ejemplo, con un sistema de varias reacciones.
Generalmente, el criterio de decisién es si ya se alcanz6 un valor predetermi-
nado en la SSE; si es asi terminamos la optimizacién. En caso contrario se
tienen que predecir unos nuevos parametros, regresar a la resolucién del sis-
tema ED y comparar los valores de esta solucién con los datos experimen-
tales, y de nuevo evaluar la suma de errores. El error (E) por cada punto se
define como:

E = dato experimental —f (supuesta) @)

¢Por qué es importante la suma de errores SSE? Témese en cuenta la fi-
gura 2. Con la optimizacién de parametros lo que buscamos es, con una fun-
cién (f) propuesta, responder la pregunta: ;con cudles pardmetros f se acerca
lo més posible a los datos experimentales? Al obtener esos pardmetros ten-
driamos el ajuste. Inicialmente requerimos una buena suposicién de los va-
lores de los parametros (coeficientes cinéticos en nuestro caso) que describen
el esquema de reaccién. Con esta suposicion, se traza la funciéon supuesta (f),
véase la figura (2a). Se calcula la distancia (E) entre la curva y los puntos expe-
rimentales (ecuacion 2). El ajuste debe pasar a la menor distancia posible a los
puntos. Esta distancia es la sumatoria de todos los errores 2(E). Para trabajar
solo con nimeros positivos se usa el cuadrado de cada distancia. Se genera una
nueva suposicion (figura 2b), si la nueva suposicién se realiza en la direccién
correcta X (E)* debe disminuir. En la figura 2, como puede observarse la supo-
sicién fue simplemente un menor valor del pardmetro ordenada en el origen.
Asi, estamos trabajando con la sumatoria del cuadrado de los errores (SSE). A
la suma de cuadrados de errores también se acostumbra llamarla suma de resi-
duos. La connotacién de residuo es, entonces, la diferencia entre los puntos
generados por la funcién supuesta y los datos experimentales.
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FIGURA 2. Ajuste de parametros: a) inicio del ajuste de parametros con una suposicion de parametros
inicial; b) con la metodologia el ajuste mejora suposicion.
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Fuente: Elaboracion del autor.

Sibien algunos casos son simples y se ajusta un tnico valor de k, para al-
gunos otros problemas debemos ajustar mas de un pardmetro, de esta ma-
nera se usa un conjunto de pardmetros (vector k™ = {k;, k,, ks, ... , k,}). En-
tonces, f(supuesta) es una funcién de los pardmetros a ajustar (coeficientes
cinéticos) y la variable independiente (tiempo), es decir f(t, k). De tal modo,
debemos buscar cudl valor para todas las k (pardmetros en el modelo) da lugar
a la menor SSE = X(E)% Entonces, la suma de los cuadrados de los errores
SSE(K) es la funcién objetivo que se minimiza.

SSE(k) = argming Tj-y[y; — f(t, k)] )

argmin significa que realizamos una busqueda de los parametros (k) que
convierten la sumatoria en un minimo. Ademas, como se utilizan cuadrados,
se acostumbra llamar a los métodos de busqueda de los mejores pardmetros
métodos de minimos cuadrados. La forma mads simple de este tipo de méto-
dos es el método de minimos cuadrados lineal (regresién lineal) y también
hay métodos para minimos cuadrados no lineales.

Métodos de optimizacion de valores de los parametros
por minimos cuadrados

Regresion lineal

El ajuste méas simple de minimos cuadrados se corresponde con una funcién
lineal. Resulta que el procedimiento de optimizacién es tan simple que admi-
te una solucién analitica. El matemdtico francés Andréi-Marie Legendre fue
el primero en publicarlo en 1805, aunque existen indicios de que antes tra-
bajé en el tema el matematico alemén Carl Friedrich Gauss, quien lo planteé
en 1794; pero, no lo publicé sino hasta 1809 (Mayorga y Osear 1988).
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El método de regresion lineal se define como el procedimiento de ana-
lisis numérico en el que, dados un conjunto de datos experimentales de los
que se sospecha siguen un comportamiento determinado por una funcién
simple lineal con la variable independiente, se intenta determinar la recta
(linea de mejor ajuste o linea de regresién) que mejor se aproxime a los datos
experimentales. Dado que se tiene una grafica, la representacién sencilla
proporciona una demostracién visual de la relacién entre los puntos (véase
figura 2).

El término lineal es porque la funcién supuesta se refiere a la ecuacién
de una linea recta:

y=mx+b 3)

Donde m es la pendiente y b la ordenada en el origen. Para este caso, el
mejor estimado por minimos cuadrados es:

N C N
M E e zal @

para la pendiente, y:

_ Ty a-T sy (xxy)
b= nxy x2—|¥ x| ®)

para la ordenada en el origen, donde x es la variable independiente
y = datos experimentales o la respuesta
n = numero de datos experimentales.

El ajuste se obtiene de manera directa realizando las operaciones de las
ecuaciones (4) y (5). En contraste con lo anterior, cualquier ajuste no lineal es
mucho més dificil de realizar. A continuacién se hablara de los métodos parala
minimizacién de una funcién no lineal. Téngase en mente que se sigue ha-
blando de la minimizacién de los residuos.

Optimizacion de funciones multivariable no lineales
por minimos cuadrados

Con la finalidad de explicar cémo funcionan en general los métodos de opti-
mizacién no lineal, empezaremos recordando el método de Newton utiliza-
do métodos numeéricos para obtener las raices de una funcién.

Método de Newton

El método de Newton, también conocido como Newton-Raphson, fue imple-
mentado por Newton originalmente para obtener la raiz de un polinomio. Es
conveniente aclarar que Newton veia su método como puramente algebraico
y no hizo ningiin intento de conectarlo al calculo. A diferencia de la versién
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original del método, la versién moderna implementa las sucesiones y, por lo
tanto, crea un algoritmo (Kerst 1946). En su versién mas simple el método
de Newton-Raphson es un algoritmo para encontrar las raices (o ceros) de
una funcién de una variable f(x) que es diferenciable. Esta funcién tiene su
dominio en los valores reales (R). El método produce sucesivamente mejores
aproximaciones a las raices con la regla de sucesién:

Xiy1 = X + o)

La sucesién empieza con x, como suposicién inicial y debe localizarse ra-
zonablemente cerca de la raiz buscada. El método se basa en que se estima el
valor de f(x) =y con la tangente de la funcién, es decir, su derivada f’(x), esto
es, el nuevo valor predicho de, y seria:

y =) 41 —x) + f(x) (7

Ahora necesitamos el valor de la nueva suposicién x; + 1. Su valor se cal-
cula de la interseccién con el eje de las abscisas, esto es cuandoy = 0

0 =f"C)(xirs — %) + f(x1) ®

Finalmente, al despejar X;;, se obtiene la férmula de Newton-Raphson,
ecuacién (6). Cuando el valor de x;,, se acerca a x;, dentro del criterio que se
asigné para el error, se dice que se localiz6 la raiz y el método converge.

Aunque el método es confiable, pueden surgir diversos problemas, entre
ellos:

«  Elmétodo falla en llegar a la convergencia, en ocasiones puede suce-
der que los valores sucesivos entren en un ciclo.

«  Depende demasiado de la suposicién inicial, una mala suposicién pue-
de causar la no convergencia o un nimero de iteraciones excesivo.

+  El calculo de la derivada puede ser dificil, incluyendo el que la deri-
vada no exista en el punto asociado con la raiz.

+  Sila primera derivada no tiene un buen comportamiento y el método
se dispara, es decir, el siguiente valor supuesto se aleja de la solucién.

«  Existela posibilidad de que el método alcance un punto estacionario
y entonces los valores sucesivos ya no se mueven y no se cumple el
criterio de convergencia.

Método de Newton multivariable

El método de Newton puede extenderse a variables multiples, pero se debe
considerar que en este caso cada variable tiene su raiz (cero) que atrae al pun-
to de convergencia.
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Método para k variables (o parametros), k funciones

También se puede utilizar el método de Newton para resolver sistemas de k
ecuaciones (no lineales), lo que equivale a encontrar los ceros de las funcio-
nes que deben ser diferenciables donde, también el vector de funciones esta
definido en los numeros reales: f(x;, X,, ... X;) : R¥ = R, La ecuacién en este
caso es andloga a la del método de Newton para una variable (ecuacién 8) tie-
ne su equivalente en:

Xipn =%+ J ()T () €)

Donde J; es la matriz del jacobiano de la funcién, esto es:

_ 9fi
Jr =5, (10)
La comparacién con el método de Newton original muestra que como
resultado de trabajar con funciones multivariable se sustituye la multiplica-
cién de 1/f°(x) por la inversa de la matriz jacobiana J; '(x;).
Al realizar las operaciones de cémputo se puede ahorrar tiempo cuando
en lugar de resolver la inversa de la matriz jacobiana, se resuelve el sistema
de ecuaciones lineales:

Jr(Xi)(Xir1 — Xn) = — f(Xn) (11)

Quiz4 en este momento nos preguntamos: ;y esto qué tiene que ver con
la optimizacién? Pues regresemos a las clases de calculo diferencial e inte-
gral. ;Como se localiza un minimo (o méximo)? Pues el criterio mas simple
es utilizar la primera derivada. En el minimo (o maximo) la primera derivada
tiene un valor de cero. Asi que, en el contexto de la optimizacién de pardme-
tros, la optimizacién se realiza con la busqueda del conjunto de pardmetros
que acerquen el valor de la SSE a cero, es decir, la minimizan.

Algoritmo Gauss-Newton

El ajuste de funciones no lineales es complicado porque requiere encontrar
matrices jacobianas y derivadas parciales (Glen, 2017). No obstante, exis-
ten algoritmos para realizarlo, por ejemplo, el algoritmo Gauss-Newton
(GNA: por sus siglas en inglés Gauss-Newton algoritm) que es una modifi-
cacién del método de Newton. El GNA es un algoritmo iterativo para resol-
ver problemas no lineales de minimos cuadrados. Iterativo significa que
utiliza una sucesién de calculos basados en conjeturas iniciales (x,) para
calcular valores (x;) donde cada valor de X; se acerca a la solucién. El GNA se
utiliza generalmente para encontrar el modelo tedrico de mejor ajuste, aun-
que también podria ser utilizado para localizar un solo punto. Dado que el
algoritmo estd basado en el método de Newton puede presentar los si-

guientes problemas:
[
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+  Sila conjetura inicial no es buena, encontrar una solucién es muy di-
ficil —de encontrar (converger)— o puede que no se halle una en
absoluto.

« El procedimiento no es adecuado para matrices jacobianas que es-
tan mal condicionadas o deficientes en el rango.

+  Silos residuos relativos son muy grandes, el procedimiento perdera
una gran cantidad de informacién.

En algunos casos, el GNA puede llevarse cientos de iteraciones el encon-
trar una solucién (suponiendo que exista). Por lo tanto, se realiza casi exclu-
sivamente con software. Los pasos basicos que realizara el software (tome en
cuenta que los pasos siguientes son para una sola iteracién):

Haga una suposicién inicial X, para x;

Haga una suposicién parai=1

Crear un vector f(X;) con las funciones f(x;)

Crear una matriz jacobiana para J;

Resolver (Jp(x;)(xir1 — X,) = — f(x,))

La siguiente suposicién corresponde a la ecuacién recursiva:
— —1

Xpp =Xt Jp(x) " Fx)).

7. Repitalos pasos 1 a 6 hasta la convergencia.

Uk wh e

Método del gradiente (descendente)

Consideremos la siguiente situacién: tenemos que subir en bicicleta una
cuesta muy empinada. Esto es mas ficil si se sigue un camino en zigzag, por-
que después de cada vuelta el dngulo de subida es menor al de la pendiente;
pero la distancia recorrida es mayor. En contraste, si tuviéramos la fuerza de
piernas, podriamos subir mds rdpidamente. En la situacién contraria, si
queremos llegar rdpidamente a la parte mdas baja de la colina (equivalente a
un valle o en matemadticas un minimo), podemos tomar el camino recto (y
quiza tendriamos problemas con el control). El algoritmo del gradiente des-
cendente DGA (descent gradient algoritm), se obtiene con la traduccién de
este concepto a términos matemadticos. Para encontrar el minimo de una
funcién en un menor niamero de pasos debemos tomar la direccién contra-
ria a donde se produce el cambio méximo. La derivada direccional de méxi-
mo cambio de una funcién es una de las definiciones de gradiente. Por lo
tanto, la regla recursiva para realizar las iteraciones (equivalente a la ecua-
cién 8) es:

Xit1 = Xn = YVf(x:) (12)

Donde v, pertenece a los numeros reales. El vector gradiente de una fun-
cion (VF(x;) o grad(F(x;)) esta definido por:

[
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_ (/X of (x))
Ve = (22,22 (13)

Enla ecuacién 12, siy eslo suficientemente pequefia y como la direccién
elegida es contraria a incrementos de f(x;); entonces se genera una secuencia
monotoénica descendente:

flxo) = f(x1) o f(xim1) 2 f(x) (14)

Y entonces esperamos que converja en un minimo, que de preferencia
debe ser global.

Algoritmo Levenberg-Marquardt

El algoritmo Levenberg-Marquardt (LMA, Levenberg-Marquardt algoritm).
Realiza una interpolacién entre los métodos Gauss-Newton y el gradiente
descendente. Este algoritmo fue publicado en 1944 por Kenneth Levenberg
y redescubierto por Donald Marquardt (Marquardt, 1963). Regresando al
problema de la minimizacién por minimos cuadrados planteado, mds arriba,
en la ecuacién (2):

SSE(k) = argming X1 [y; — f (£, k)]? 2)

Para empezar la busqueda del minimo, debemos proponer un vector de
estimaciones iniciales k" = (ki, ..., k;). Para la busqueda del minimo global,
las suposiciones de cada uno de los pardmetros k (en las mediciones ciné-
ticas, los coeficientes) deberian estar preferentemente cerca de la solucién
final.

En el algoritmo LMA, la regla de sucesién ocupa ligeras modificaciones
del vector de parametros K, que es remplazado por una nueva estimacién k +
8 en principio, el desplazamiento (8) también puede ser un vector. Entonces,
la nueva respuesta f(x;, k; + 8;) se estima considerando una linealizacién de
la funcién f(x;, kK):

f(xi, k+8) = f(x;, k) +];6; (15)

Donde Ji es de nuevo la matriz jacobiana; pero ahora, note que f es fun-
ci6én de x; y del vector de pardmetros Ki.

Ji = —af(;;:'k) (16)

En este momento, la nueva aproximacién para la suma de residuos
SSE(K) seria:

SSE(k + 8) = $io1[y; — f (xiz1, k) + 1,612 (17)
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Tomando la derivada de SSE(k + 8) con respecto de 8, e igualando el re-
sultado a cero, el sistema se resuelve con:

IS = I'y-f(x;, k)] (18)

La contribucién del método LMA es que se sustituye la ecuacién ante-
rior con:

(J'IHADS = I [y-f(xi, k)] (19)

Comparacion del comportamiento de los diferentes métodos

de minimizacion

En la siguiente serie de gréficas es posible estudiar el comportamiento de los
métodos de minimizacién. El ajuste que se est4 realizando es el crecimiento
delevadura, modelado con la ecuacién logistica. El punto rojo es el minimo de
la funcién, que tiene la forma de un tazén. También se presentan las curvas
de nivel. Las figuras se realizan en el software MATHEMATICA™ y son adapta-
das de una demostracién de Ruskeepii (Ruskeepii 2009).

En la figura 3a, se observa claramente la forma de proceder del método
Newton-Raphson, la primera iteracién se proyecta fuera de la grifica. Mien-
tras que la segunda ya se acerca al minimo; pero esta del lado contrario de las
suposiciones iniciales. Para el método del gradiente descendente note en las
figuras 3a y 3c que el camino para el minimo es el mismo; porque es el que
tiene el valor de maximo cambio. El algoritmo Levenberg-Marquardt es una

FIGURA 3. Comparacion del comportamiento de métodos de minimizacion Levenberg-Marquardt,
Gauss-Newton, y Gradiente en cuanto cambian las suposiciones iniciales.

ardt: 7 pasos
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ente: § pasos

a) Suposiciones iniciales en wn punto b) Suposiciones iniciales en otra
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Fuente: Elaboracién del autor.
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combinacién de los de Newton-Raphson y GNA y en la segunda iteracién ya
estd muy cerca del minimo. También se presenta el comportamiento si se
trabaja con mejores suposiciones iniciales.

Ejemplo 1:

La condensacién del formaldehido (F) con el parasulfonato de sodio (B) fue
estudiada por Stults y McCarthy (1952) en un reactor intermitente. Los da-
tos de la rapidez de formacién del monémero (MA) se siguieron a 100 °C 'y
pH =8.35. Inicialmente, las cantidades presentes de Ay B eran iguales. Ajus-
te la expresién de ley de potencias.

TABLA 1. Datos obtenidos en laboratorio.

C, gmol/L | 0131 0123 0121 0117 0111 0104

t, min 0 10 20 30 40 60

Fuente: Elaboracion del autor.

Empezaremos suponiendo una ley de potencia de primer orden; la ecua-
cién es tan simple que la solucién analitica es inmediata:

dt

Separando variables e integrando:

dc, cadc, c Ca Ca,
kdt = —C—A,kt = —J; C_A = —lTlCA Cﬁo = —[lTlCA - lnCAO] = — lnq = lTlC—A

Ao
Lo que nos pide la ecuacién anterior es que el preprocesamiento de los
datos es simplemente calcular —In(C,/C,,), obtenemos:

TABLA 2. Datos a utilizar en el ajuste para un primer orden.

t, min 0 10 20 30 40 50
Cro/Ca 1 1.0650 1.0826 11196 11801 1.2596
(N Cpo/Ca 0 0.0630 0.0794 0.1130 0.1657 0.2308

Fuente: Elaboracion del autor.

La ecuacién resultante es una linea recta kt = —In(C,/C,); asi es que una
regresion lineal simple es nuestro método de minimizacién y es suficiente.
Esto se puede realizar con software, por ejemplo, Microsoft Excel™. El agregar
una linea de tendencia nos da la pendiente k y el coeficiente de correlacién.
Es mas recomendable trabajar con Excel™ regresion lineal en la seccién ané-
lisis de datos. Los resultados se presentan en la figura 4.

@
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FIGURA 4. Resultado del ajuste de primer orden de una cinética.
Primer orden

0.25
y =0.0037x +0.0092 /"
0.20 | R®*=0.9848
L
& 015
5 (4
£ 010
./
0.05
0.00 ‘ ‘
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Fuente: Elaboracién del autor.

Criterios de confiabilidad estadistica para el ajuste de una funcién

Una vez que la computadora arroja el resultado de un ajuste corresponde al
investigador decidir qué tan bueno es el ajuste y aceptar o no los resultados.
Para ello se apoya en criterios estadisticos para tomar la decisién. A conti-
nuacion, se discutirdn algunos de los criterios mas comunes.

Coeficiente de correlacion (R?)

El coeficiente de correlacion se utiliza para determinar la “bondad” de un
ajuste. Esto quiere decir qué tan cercanos son los valores del ajuste a los da-
tos experimentales. El coeficiente de correlacién siempre se encuentra en el
intervalo 0 < R? <1. Algunos autores consideran que el ajuste es bueno si R?
> (.98, pero esto en realidad depende del numero de datos experimentales.

Residuos
Recordando nuestra funcién para los minimos cuadrados:

SSE (k) = argminy 3j-1[y; — £ (t, )]? @)

Los residuos o errores SE(k) son las diferencias entre los datos experi-
mentales y el mejor ajuste obtenido. Esto se puede representar en la figura 5.

Los residuos deben distribuirse normalmente alrededor de la linea cero.
Dicha linea representa el caso en que no hay diferencia entre el modelo ajus-
tado y el valor predicho. También existe un menor error si los valores en el
eje delas ordenadas, residuos, son lo mas pequefios posibles. Nétese que con
esta grafica se pueden identificar algunos de los puntos problematicos, es
decir, fuera del comportamiento normal; o, si hay un patrén en la distribu-
cién de los puntos, ambos casos significarian que se debe buscar un mejor
ajuste.

-
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FIGURA 5. Grafica de residuos después del ajuste de un modelo cinético.
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Fuente: Elaboracién del autor.

Grafica de paridad

La grafica de paridad compara los datos experimentales contra los valores
predichos del modelo ajustado. En estas graficas se acostumbra representar
lalinea x =y como referencia; esta linea significa que los valores experimen-
tales (x) son exactamente los predichos por el modelo (y). Lo ideal en esta re-
presentacién es que en un buen modelo los puntos se localicen cerca de esa
linea. Como ejemplo de este tipo de graficas se tiene la figura 11 (Alonso-Ra-
mirez et al. 2019).

Intervalo de confianza

El objetivo de esta grafica es mostrar los limites donde al menos cae un por-
centaje de los datos con los pardmetros ajustados. Asi, un limite de 95% sig-
nifica que se tiene un 95% de probabilidad de que el valor “verdadero” del pa-
rametro esté en ese intervalo. En otras palabras, si se realizaran experimentos
independientes, para cada experimento y a partir de los datos obtenidos y
sus respectivos ajustes, el valor del pardmetro estaria en ese intervalo del
95% de las experiencias. En general, cuanto mds cerca estén los limites de
confianza del 95% del valor del pardmetro, mejor sera el ajuste. Como ejem-
plo se presenta la figura 6.

Aqui se introduce otra situacién para mejorar los resultados y la con-
fianza que podemos tener en nuestros resultados; se estd hablando de la re-
peticién de los experimentos. Existen técnicas estadisticas para calcular cudl
es el minimo numero de experimentos necesarios para dar confianza a los re-
sultados, estamos hablando del disefio (estadistico) de experimentos, tema
fuera del objetivo este articulo.

Grafica de perturbaciones
Ya se sefialé que cuando estamos realizando un ajuste de una ecuacién con
varios pardmetros, cada pardmetro presenta su propio ajuste, y durante el
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FIGURA 6. Grafica del ajuste de los coeficientes cinéticos de la reaccion del dibenzotiofeno (DBT) para
catalizadores NiMo/Al,0.
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Nota: Se incluyen los intervalos de confianza.
Fuente: Cuevas-Garcia (2004).

ajuste cada una de las k estimadas tienden a su minimo. Entonces, ;c6mo se
distingue si nos encontramos en el minimo global? Para ello se realiza la gra-
fica de perturbaciones. Con el ajuste obtenido se elige cualquiera de los para-
metros (coeficientes cinéticos) y se le agrega (o resta) una cierta cantidad,
creando, con ello, una perturbacién en el modelo. Se calculan los valores de
las otras k y se grafican los resultados. Estamos en un minimo global si las
perturbaciones en todas las k coinciden al mismo minimo independiente-
mente de la perturbacién creada. Un ejemplo de este tipo de graficas se pre-
senta en la figura 13.

Medidas de actividad catalitica en las publicaciones

En esta seccién revisaremos algunos ejemplos de cémo se ha reportado en la
literatura la actividad catalitica. Se muestran dos ejemplos que tienen esque-
mas de reaccién muy complejos y como se ha avanzado en esos campos. En
general, para las medidas de conversién se reportan intervalos de confianza.
Sise han desarrollado y aceptado esquemas de reaccién se pueden ajustar co-
eficientes cinéticos y cuando se conoce mdas se obtiene informacién sobre
cémo funciona el nanocatalizador.

Produccion de biocrudo utilizando microalgas

Si se estd analizando un sistema muy complejo, por ejemplo, en el caso de pro-
duccién de biocrudo a partir de biomasa el nimero de productos es muy gran-
de. Se procesan diferentes tipos de biocompuestos: proteinas, carbohidratos y
lipidos. Los carbohidratos pueden ser simples (aztcares) o complejos (celulo-
sa). Por su parte, los lipidos pueden ser: fosfidicos, polares, no polares, entre
otros. Cada biocompuesto es susceptible de sufrir reacciones distintas, por lo
cual se generan demasiados compuestos; se desconocen también las posibles

[
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rutas de reaccién. En la figura 7, se presenta un cromatograma tipico del bio-
crudo obtenido con el proceso HTL (hydrothermal liquefaction),* donde se ob-
serva el gran numero de compuestos quimicos formados y de ahi la compleji-
dad de estos. Con los problemas descritos, solo se estd en condiciones de
reportar balances en masa y los rendimientos, también en masa. En la figura 7
se presentan cromatogramas después de procesar un consorcio de microalgas.
Y en la figura 8 las conversiones por biocompuesto que pueden obtenerse
(Gonzales-Galvez et al. 2020).

FIGURA 7. Cromatogramas de biocrudo obtenidos para tres condiciones de cosechado de microalgas.
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Fuente: Nava Bravo et al. (2019).

FIGURA 8. Conversiones por biomolécula en el proceso de solvolisis de un consorcio de microalgas rico
en Spiruluna sp. En funcion de la temperatura.
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*La HTL consiste en el tratamiento de la microalga con agua como solvente, pero en condi-
ciones subcriticas o supercriticas.
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De cualquier manera, en este tema, por el momento, todo experimento
debe repetirse y entonces habrd que advertir cémo se reportan intervalos de
confianza para cada medicién.

Mejoramiento de crudos pesados
El objetivo de estos procesos es lograr un mejor aprovechamiento del crudo,
transformando gran parte de los cortes mas pesados (asfaltenos, residuos de
vacio y atmosféricos) a cortes mds ligeros. Se consideran mucho m4s valiosos
los llamados destilados intermedios, porque en estos cortes encontramos a los
precursores del diesel, keroseno, turbosina y gasolina. No es recomendable
“sobretratar” el crudo porque entonces se pierden destilados intermedios al
producir demasiado gas. El problema en este tema es el nimero de componen-
tes que se encuentran en el crudo. Como ilustracién se presenta, en la figura 9,
un cromatograma de solo una fraccién del crudo que es la fraccién de satura-
dos (compuestos donde predomina el comportamiento quimico de las olefi-
nas). La mezcla total de crudo incluye, ademads, las fracciones de aromaéticos,
resinas y asfaltenos. Destacan como los picos de mayor intensidad precisa-
mente los saturados, empezando por el heptano (C7) cerca de los 10 min y lle-
gando hasta C27.

Discutiremos algunas graficas tomadas del trabajo de Alonso-Ramirez et
al. (2019), en cuyos experimentos se estudia el efecto de la temperatura (380,
390y 400 °C) y tiempo (1, 2.5 y 4 horas) sobre la posible distribucién de pro-
ductos después de la destilacién primaria. Como se puede observar, la figura
10 esta construida con porcentaje en peso. En las refinerias, la destilaciéon pri-
maria genera cortes distribuidos en funcién de la temperatura de ebullicién.
Los principales son gases ligeros (GAS), nafta (NAP), keroseno (KER), gaséleo
(GO), residuo atmosférico (AR) y residuo de vacio (VR). Cuando tratamos un
crudo pesado y si el proceso funciona consumimos AR y VG y sus rendimientos
son negativos. Si estuviéramos interesados en producir gaséleo (GO) o kero-
seno (KER), lo mejor seria trabajar a 400 °C por 2.5 horas. Pero para nafta (an-
tecedente de la gasolina) seria preferible operar por 4h y 400 °C.

FIGURA 9. Cromatograma de la fraccion de saturados de un crudo pesado.
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Fuente: Alonso-Ramirez et al. (2019).
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FIGURA 10. Rendimiento a diferentes fracciones después del proceso de mejoramiento de un crudo
pesado en funcion de la temperatura y tiempo de reaccion.
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Fuente: Alonso-Ramirez et al. (2019).

Pero las investigaciones estdn avanzando y es posible predecir de qué
corte antecedente puede provenir el corte generado y asi optimizar las con-
diciones de operacién para obtener el mejor rendimiento. Pero, para ello, hay
que proponer un esquema de reaccién. Para llegar al esquema de reaccion op-
timizado se propusieron y analizaron hasta 50 esquemas distintos. El es-
quema optimizado se muestra en la figura 11.

Los ajustes se consiguieron con el algoritmo Levenberg-Marquardt (LMA).
Para analizar la confianza en los resultados, se crea la grafica de paridad de los
valores de fraccién en masa experimentales versus los predichos con el mo-
delo (figura 12). Un modelo confiable es cuando los valores predichos corres-
ponden con los experimentales. Lo que esta sefialado con la linea a 45° en la
grafica.

Como se ajustan hasta 15 coeficientes cinéticos, el trabajo no termina
ahi, pues se debe garantizar que se alcanza un minimo global, lo cual se rea-
liza con la gréfica de perturbaciones.

FIGURA 11. Esquema de reaccion de la fraccion de saturados y sus efectos en los cortes de la destila-
cion primaria.
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Fuente: Alonso-Ramirez et al. (2019).

¢



www.mundonano.unam.mx | ARTICULOS DE REVISION | Mundo Nano
https://doi.org/10.22201/ ceiich.24485691€.2021.26.69639 | 14(26), 1e-25e, enero-junio 2021
Rogelio Cuevas Garcia

FIGURA 12. Curva de paridad para un modelo cinético propuesto por Alonso-Ramirez et al. (2019).
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Fuente: Alonso-Ramirez et al. (2019).

FIGURA 13. Grafica de perturbaciones para los coeficientes cinéticos calculados en el modelo presen-
tado por Alonso-Ramirez et al. (2019).

0.230

0.2294

]

K i
oo
x

0.228 4 x
0.2274
0.226-

0.225+

SSE: Sum of square errors

0.224 41—
10 -8 -6 -4 -2 0 2 4 6 8 10

% Perturbacion
Fuente: Alonso-Ramirez et al. (2019).

Reaccion de HDS del dibenzotiofeno

Ahora se hablar4 de un esquema bastante mds desarrollado en el tema de los
nanocatalizadores de hidrotratamiento (HDT). Los catalizadores de (HDT)
se utilizan para eliminar heterodtomos de diferentes cortes de crudo, en par-
ticular el azufre. Asi, gracias a estos catalizadores tenemos gasolinas y diesel
con bajos contenidos de azufre y se evitan problemas de contaminacién. Los
catalizadores de HDT son sulfuros de Mo, NiMo o CoMo soportados en ala-
mina. En estos nanocatalizadores se ha identificado plenamente la fase acti-
va; en general, se habla de dos tipos de sitios donde ocurren reacciones de hi-
drogenacién o reacciones de desulfuracién. Se han aplicado varias técnicas
de caracterizacién para identificar y cuantificar los sitios activos. Esta infor-
macién es importante para mejorar el disefio del catalizador y/u orientar la
preparacién para procesar de mejor manera los distintos cortes de crudo.
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Ejemplo 2:
Analizaremos la reaccion de HDS del dibenzotiofeno (DBT). Y la utilizare-
mos para mostrar todo el proceso de ajuste usando Microsoft Excel™. Para
esta reaccion, se conoce el esquema de reaccién, véase la figura 14. Los tetra
y hexahidro DBT son intermediarios de reaccién, asi que, generalmente, no
los podemos detectar y se puede considerar que la reaccién va del DBT al
CHB y DE. En algunos nanocatalizadores se considera que la reaccién del DF
al CHB no existe. Y si el catalizador presenta una funcién hidrogenante fuer-
te se produce DCH

El proceso se realiza a presiones de hidrogeno altas; asi, cada reaccién se
considera de pseudo primer orden. Del esquema construimos el sistema de
ecuaciones diferenciales, en este caso ordinarias (EDO) (Cuevas-Garcia, 2004):

—dcd’;t’" = k1Cppr + kyCppr = (k1 + k2)Cppr (20)
dZ?F = koCppr — k3Cpr (21)

dcdc% = k1Cppr + k3Cpr — kaCcup (22)
LD — e 4Conp 23)

Este sistema de ecuaciones diferenciales puede resolverse analitica-
mente (Cuevas-Garcia 2004), para obtener:

FIGURA 14. Esquema de reaccion para el DBT.

DBT
/ Dibenzotiofeno

ki K2
Hidrogenacién / Desuffuracién
k3
—-

CHB
Ciclohe xlbenceno DF
Difenilo
JM
DCH
Diciclohexilo

Fuente: Cuevas-Garcia (2004).
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CDBT _ k't — p—(ky+kp)t (24)
CpBTg
dci = kzcbaroeik't —kCpr (25)
dt
Cpr ks (e—(k1+k2)t - e—k3t) (26)

Cppry  ka—(ki+kz)

Ccup _ k2k3(e—(k1+k2)t_e—k4t) kl(e—(k1+k2)t_e—k4t) k2k3(e_k4t—e_k3t) (27)
Coprg  (k3—(Uea+kz))(ka=(ler+k2)) (ka=(k1+k2)) (leg = (k1 +k2)) (ke —k3)
CpcH _ 1— Cpoer _ _Cpr _ CcHB (28)

CpBT, Cpery CDBT9 CDBTy

Nétese que, como resultado del procedimiento de solucién en el prepro-
cesamiento, los datos deben normalizarse como C;/Cppry que, a suvez, es una
definicién de rendimiento. Como ejemplo se presenta, en la figura 15, una
captura de pantalla en Microsoft Excel™. Dado que fue posible resolver las
ecuaciones analiticamente, se introducen las soluciones de cada ecuacién
(ecuaciones 24 a 28) en las celdas respectivas (celdas F11: J18). Por ejemplo,
para el DBT calculado (DBTc), la variacién de C;/C, en funcién del tiempo se
muestra de las celdas F11: F18, y en cada celda se encuentra la ecuacién 24. Se
procede en forma similar con los otros compuestos. Como informacién adi-
cional, en el ejemplo se evaluaban selectividades de hidrodesulfuracién/hi-
drogenacién y por eso se presenta una columna con la suma de los productos
de hidrogenacién CHB+DCH.

FIGURA 15. Captura de pantalla de Microsoft Excel para el ajuste de los coeficientes cinéticos del es-
quema del DBT.

Hll % v | -expisase)tan)
B C D
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1

1 Valores de los coefientes
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Fuente: Elaboracién del autor.
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Los valores de los coeficientes cinéticos para el ajuste se presentan en las
celdas B1: B6; en la captura de pantalla se muestra que la suposicién inicial
fue que todas las k = 1. Procedemos a realizar la minimizacién con la funcién
solver de Microsoft Excel™. Se muestra en la figura 16 otra captura de pan-
talla con los datos para usar solver. Se elige la celda N23 porque ahi se en-
cuentra la SSE, como objetivo para la minimizacién; que se da a través de
cambiar los valores de las k celdas B1: B6. Un buen método para la minimi-
zacioén en solver es el GRG (Generalized reduced gradient), versién basada en
el método GDA.

A continuacién, se muestra cémo funciona el ajuste de los pardmetros
en Excel™; para ello, se presentan los resultados de ciertos pasos en la itera-
cién que se va realizando, donde se busca la minimizacién de la SEE, como es
usual, en el modelo se presenta como una linea recta y los puntos corres-
ponden a las experiencias experimentales. En la figura 17a se presentan las
funciones considerando que los coeficientes cinéticos valen todos 1 (valores
iniciales). Las figuras 17b-17d muestran claramente que la minimizacién
sigue un buen camino pues las distancias entre la funcién supuesta con los
valores de k de la iteracién estan disminuyendo todas simultdneamente. En
la figura 17e, se muestra qué valores se van alcanzando con la reduccién del
SSE, para diferentes nimeros de iteraciones. Finalmente, elegimos si se al-
canza el criterio de convergencia SSE < 1(107*), 1a optimizacién termina. Por
seguridad, también debe elegirse un nimero de iteraciones.

Recomendaciones

En este articulo se revisaron los métodos numeéricos para realizar un ajuste
para una ecuacién cinética, y se describe la manera de realizar estos ajustes.
Se present6 un ejemplo (esquema DBT) desde el punto de vista de cémo se
realiza el ajuste. Aunque se trabaje con ecuaciones mas complejas, basica-
mente, el procedimiento a implementar es el mismo; aunque la etapa de re-
solucién debe de ser numérica. Si la complejidad del sistema es alta, se re-
quiere el uso de software matematico mas avanzado como MATHEMATICA™ y
Matlab™. Este dltimo tiene una nueva aplicacién para ajustes cinéticos; pero,
independientemente de la facilidad del uso del software, el conocimiento de

FIGURA 16. Localizacion de solver en una hoja de Microsoft Excel™ y parametros para la minimizacion.

- [ 1 Solver esti en la pestafia
3 1 datos - - | ] * El objetivo es SSE icona de
4 1 - Salver
. A Los pardmetros que | - O o o
- [FHe 3 cambian san los o i

coeficientes cinGticos. = s——i s

Fuente: Elaboracion del autor.
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FIGURA 17. Comportamiento del ajuste para los coeficientes cinéticos de la reaccion de hidrodesulfu-
racion del DBT utilizando Microsoft Excel™ y su herramienta solver.
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Nota: Se muestran diferentes nimeros de iteraciones antes de llegar al ajuste aceptado.
Fuente: Elaboracion del autor.

cémo operan los métodos de minimos cuadrados es fundamental para no
caer en la equivocacién de aceptar los resultados sin criterio.

Conclusiones

Por el momento el ajuste de las ecuaciones cinéticas tiene como fundamentos
los métodos de minimos cuadrados. La manera en que se crea un método de
minimos cuadrados es tener la suma de errores al cuadrado (SSE) como fun-
cién objetivo y después se le aplica un método de minimizacién, lineal o no.
La optimizacién consta de las etapas de representacién de las ecuaciones ci-
néticas como un sistema de ecuaciones, obtencién y preprocesamiento de los
datos experimentales, resolucién numérica o analitica del sistema de ecuacio-
nes diferenciales resultantes y obedece en gran medida al método de minimi-
zacién por minimos cuadrados. Dependiendo del sistema de ecuaciones dife-
renciales a resolver cambia el método de minimizacién y entre los métodos se
cuenta con regresiéon lineal, Newton-Raphson, Gauss-Newton, Gradiente
descendente y Levenberg-Marquardt, entre otros. La decisién sobre la bon-
dad del ajuste descansa sobre criterios estadisticos y existen varias formas de
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mostrar la confiabilidad de los resultados, entre ellas la presentacién del coe-
ficiente de correlacidn, la grafica de residuos, representacién del intervalo de
conflanza, la grifica de paridad y las graficas de perturbaciones.

Nomenclatura

Las letras negritas se refieren a funciones vectoriales.
Letra normal: Funciones escalares.
8: Pequefio incremento (o disminucion).
. a 3
Vf (x) = Gradiente de f(x), Vf(x) = (£, .., 2%)

x4 7 9x;

A = Matriz de eigen valores; para resolver un sistema de ecuaciones.

b: En la ecuacién de una linea recta, la ordenada en el origen.

f(x): Funcién matematica, aqui funcién que se estéd probando en el ajuste.
f’(x): Derivada de f(x).

Jr es la matriz del jacobiano de la funcién: j, = %
j

k: Parametro(s) a ajustar, aqui, comtinmente, coeficientes cinéticos.

I: Matriz identidad.

m: En la ecuacién de una linea recta, la pendiente.

y: Repuesta del analisis, aqui, los datos experimentales.

x: En el método de Newton Raphson, valor de la variable independiente que
se usa en la sucesién.

x(0) = Suposicién inicial.
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