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ABSTRACT: Given the importance of the fitting of a mathematical model that describes the ki-
netic behavior of a chemical reaction, this article describes the general method to achieve such 
adjustments. It emphasizes the importance of the least squares procedure and how to achieve 
the minimization of the sum of square errors, presenting examples of the algorithms when the 
kinetics to be adjusted is simple (one reaction and one kinetic equation), where the linear least 
squares procedure is used; or for complex kinetics where, then, it is necessary to adjust systems 
of equations that are probably nonlinear, here we are talking about Newton-Raphson, Gauss-
Newton and Levenberg-Marquart algorithms. Once the adjustments were made, there is, also, 
presentation about how to show the goodness of the fit through graphs. Different cases of how 
the scientific literature displays the catalytic activity data and the best kinetic model are shown. 
KEYWORDS: chemical reaction rate, catalytic activity, least squares, Gauss-Newton algorithm 
(GNA), descendent gradient algorithm (DGA), Levenberg-Marquart algorithm (LMA), catalytic ac-
tivity measures. 

RESUMEN: Dada la importancia de los ajustes para crear un modelo matemático que describa 
el comportamiento cinético de una reacción química, en este artículo se describe la manera 
general para alcanzar dichos ajustes. Se destaca la importancia de la suma de los errores al 
cuadrado como función objetivo, y de ahí lograr la minimización de la suma de errores. A esta 
manera de proceder se la conoce como mínimos cuadrados. En el artículo se muestran los al-
goritmos necesarios para lograr la minimización cuando la cinética a ajustar es simple (una 
reaccion y una ecuación cinética), donde se utiliza el procedimiento de mínimos cuadrados li-
neal; o para cinéticas complejas donde es necesario ajustar sistemas de ecuaciones que proba-
blemente sean no lineales, aquí se necesitan algoritmos más robustos como Gauss-Newton, 
gradiente descendente y Levenberg-Marquart. Se presenta un ejemplo breve de cómo realizar 
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el ajuste de una cinética con cuatro reacciones utilizando el método GRG2 en solver de Micro-
soft Excel™. También se toca la representación de la bondad del ajuste a través de diferentes 
gráficas y se habla de diferentes formas en las que la literatura científica representa los datos 
de actividad catalítica para mostrar el ajuste del mejor modelo cinético. 
PALABRAS CLAVE: rapidez de reaccion, actividad catalítica, mínimos cuadrados, algoritmo Gauss-
Newton (GNA), algoritmo del gradiente descendente (DGA), algoritmo Levenberg-Marquart (LMA), 
medidas de actividad catalítica. 

Introducción 

En el artículo “Obtención y análisis de expresiones de cinética química. I. 
Obtención de datos cinéticos y criterios para evitar los problemas de trans-
ferencia de masa y energía utilizando catalizadores heterogéneos” (en este 
número) se abordaron las descripciones de rapidez de reacción, los tipos de 
reactores químicos y cómo evitar que datos obtenidos en el laboratorio estén 
afectados por la presencia de fenómenos de trasferencia de masa y energía. 
A partir de lo desarrollado con anterioridad, en este trabajo se parte de que 
tenemos datos experimentales idóneos (i.e. datos donde solo se está midien-
do el efecto de la reacción química) y de ahí obtendremos los parámetros ci-
néticos confiables que proporcionen información del modelo cinético de re-
acciones catalíticas. En este artículo se describe el procedimiento en general 
para realizar el ajuste de los coeficientes cinéticos. Para alcanzar el ajuste, se 
utiliza la sumatoria de errores al cuadrado (SSE: sum of square errors) como la 
función objetivo de la minimización lineal o no. Esta manera de proceder se 
conoce como mínimos cuadrados y ha mostrado, desde los años en que se 
implementó, que es un estimador robusto, consistente y que muestra varia-
ciones pequeñas. En situaciones en que se está ajustando una reacción quí-
mica simple (la reacción puede describirse con una ecuación estequiométrica 
y una ecuación cinética), la minimización puede alcanzarse con relativa faci-
lidad; pues la función objetivo es escalar y puede considerarse lineal. En esta 
situación estamos hablando de la regresión lineal; pero, es conveniente acla-
rar que esta NO es método de mínimos cuadrados; en realidad es el método 
más simple de los métodos de mínimos cuadrados. Con reacciones complejas 
(más de una ecuación estequiométrica y más de una ecuación cinética) el 
procedimiento de minimización se complica y se requieren métodos de mini-
mización más robustos. Es relativamente fácil darse cuenta del aumento de 
la complejidad cuando consideramos que en lugar de ajustar un coeficiente 
cinético k (parámetro) se deben encontrar los valores óptimos para la mini-
mización de varias ks y, entonces, en lugar de un parámetro ahora tendría-
mos un vector de parámetros (ks). 

En este artículo se destaca la importancia de la sumatoria de errores al 
cuadrado (SEE), que representa las diferencias (errores) entre los datos expe-
rimentales con el modelo matemático a ajustar. La SSE se utiliza como fun-
ción objetivo para alcanzar la minimización. Se habla brevemente de los mé-
todos para la minimización más comunes empezando por la regresión lineal 
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y los métodos para casos no lineales. Finalmente, se muestran algunas ma-
neras en que la literatura científica presenta los resultados de los ajustes; la 
“bondad” del ajuste se refiere a que se obtuvieron resultados adecuados para 
la representación matemática de la actividad catalítica. Este artículo no pre-
tende ser exhaustivo en la demostración de los métodos, más bien se enfoca 
en que un lector interesado tenga los elementos para elegir mejor cuál de los 
métodos de mínimos cuadrados se ajusta a sus necesidades.

Optimización (ajuste) de parámetros cinéticos

En general, el algoritmo que nos conduce al mejor ajuste, o a la obtención de 
parámetros cinéticos óptimos, se presenta en la figura 1. 

Para cumplir con la etapa 1, plantear el sistema de ecuaciones diferen-
ciales (ED), se debe tener un cierto conocimiento químico, que a su vez in-
cluye cierta experiencia en cuanto al posible comportamiento de la reacción. 
En los casos más sencillos se conoce la reacción, también la estequiometría y 
con ellas se propone una ecuación cinética muy simple. En casos más com-
plejos se establece un esquema de reacción que se representa con sus posi-
bles expresiones matemáticas. Si se conoce el mecanismo se describen mate-
máticamente todos los pasos.

FIGURA 1. Algoritmo general para optimizar los parámetros cinéticos utilizando mínimos cuadrados. 

Fuente: Elaboración del autor.
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Las etapas número dos y tres están íntimamente relacionadas. Con el 
preprocesamiento de los datos nos referimos a la manera en la cual se deben 
presentar los datos (generalmente a un programa matemático) y con ello fa-
cilitar los cálculos inherentes al paso 3. Esto puede incluir pasos como: sim-
plificar la forma en que resultó la solución analítica de sistema ED o norma-
lizar los datos, entre otros.

Etapa tres (integrador). Aquí la operación fundamental es resolver el sis-
tema de ED. Hay ecuaciones muy simples que se pueden integrar fácilmente. 
Algunos sistemas de ecuaciones diferenciales ordinarias también tienen re-
soluciones analíticas y, en cambio, también existen sistemas más complejos 
que solo tienen resolución numérica. Algunos de los métodos numéricos 
más utilizados en este punto son del tipo Runge-Kutta.

El procedimiento que lleva al ajuste es la minimización de la SSE, líneas 
abajo se presenta cómo se genera esta suma y su importancia en el ajuste. El 
procedimiento para la minimización de la SSE puede ser muy simple si es-
tamos ajustando una sola reaccion (porque la ecuación cinética asociada es 
muy simple) o complicada, por ejemplo, con un sistema de varias reacciones. 
Generalmente, el criterio de decisión es si ya se alcanzó un valor predetermi-
nado en la SSE; si es así terminamos la optimización. En caso contrario se 
tienen que predecir unos nuevos parámetros, regresar a la resolución del sis-
tema ED y comparar los valores de esta solución con los datos experimen-
tales, y de nuevo evaluar la suma de errores. El error (E) por cada punto se 
define como:

	 E = dato experimental –f (supuesta)	 (1)

¿Por qué es importante la suma de errores SSE? Tómese en cuenta la fi-
gura 2. Con la optimización de parámetros lo que buscamos es, con una fun-
ción (f) propuesta, responder la pregunta: ¿con cuáles parámetros f se acerca 
lo más posible a los datos experimentales? Al obtener esos parámetros ten-
dríamos el ajuste. Inicialmente requerimos una buena suposición de los va-
lores de los parámetros (coeficientes cinéticos en nuestro caso) que describen 
el esquema de reacción. Con esta suposición, se traza la función supuesta (f), 
véase la figura (2a). Se calcula la distancia (E) entre la curva y los puntos expe-
rimentales (ecuación 2). El ajuste debe pasar a la menor distancia posible a los 
puntos. Esta distancia es la sumatoria de todos los errores Σ(E). Para trabajar 
solo con números positivos se usa el cuadrado de cada distancia. Se genera una 
nueva suposición (figura 2b), si la nueva suposición se realiza en la dirección 
correcta Σ (E)2 debe disminuir. En la figura 2, como puede observarse la supo-
sición fue simplemente un menor valor del parámetro ordenada en el origen. 
Así, estamos trabajando con la sumatoria del cuadrado de los errores (SSE). A 
la suma de cuadrados de errores también se acostumbra llamarla suma de resi-
duos. La connotación de residuo es, entonces, la diferencia entre los puntos 
generados por la función supuesta y los datos experimentales.
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Si bien algunos casos son simples y se ajusta un único valor de k, para al-
gunos otros problemas debemos ajustar más de un parámetro, de esta ma-
nera se usa un conjunto de parámetros (vector kT = {k1, k2, k3, … , kn}). En-
tonces, f(supuesta) es una función de los parámetros a ajustar (coeficientes 
cinéticos) y la variable independiente (tiempo), es decir f(t, k). De tal modo, 
debemos buscar cuál valor para todas las k (parámetros en el modelo) da lugar 
a la menor SSE = Σ(E)2. Entonces, la suma de los cuadrados de los errores 
SSE(k) es la función objetivo que se minimiza.

	 (2)

argmin significa que realizamos una búsqueda de los parámetros (k) que 
convierten la sumatoria en un mínimo. Además, como se utilizan cuadrados, 
se acostumbra llamar a los métodos de búsqueda de los mejores parámetros 
métodos de mínimos cuadrados. La forma más simple de este tipo de méto-
dos es el método de mínimos cuadrados lineal (regresión lineal) y también 
hay métodos para mínimos cuadrados no lineales.

Métodos de optimización de valores de los parámetros  
por mínimos cuadrados

Regresión lineal
El ajuste más simple de mínimos cuadrados se corresponde con una función 
lineal. Resulta que el procedimiento de optimización es tan simple que admi-
te una solución analítica. El matemático francés Andréi-Marie Legendre fue 
el primero en publicarlo en 1805, aunque existen indicios de que antes tra-
bajó en el tema el matemático alemán Carl Friedrich Gauss, quien lo planteó 
en 1794; pero, no lo publicó sino hasta 1809 (Mayorga y Osear 1988).

FIGURA 2. Ajuste de parámetros: a) inicio del ajuste de parámetros con una suposición de parámetros 
inicial; b) con la metodología el ajuste mejora suposición. 

Fuente: Elaboración del autor.
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El método de regresión lineal se define como el procedimiento de aná-
lisis numérico en el que, dados un conjunto de datos experimentales de los 
que se sospecha siguen un comportamiento determinado por una función 
simple lineal con la variable independiente, se intenta determinar la recta 
(línea de mejor ajuste o línea de regresión) que mejor se aproxime a los datos 
experimentales. Dado que se tiene una gráfica, la representación sencilla 
proporciona una demostración visual de la relación entre los puntos (véase 
figura 2). 

El término lineal es porque la función supuesta se refiere a la ecuación 
de una línea recta:

	 y = mx + b	 (3)

Donde m es la pendiente y b la ordenada en el origen. Para este caso, el 
mejor estimado por mínimos cuadrados es: 

	 (4)

para la pendiente, y:

	 (5)

para la ordenada en el origen, donde x es la variable independiente
y = datos experimentales o la respuesta
n = número de datos experimentales.

El ajuste se obtiene de manera directa realizando las operaciones de las 
ecuaciones (4) y (5). En contraste con lo anterior, cualquier ajuste no lineal es 
mucho más difícil de realizar. A continuación se hablará de los métodos para la 
minimización de una función no lineal. Téngase en mente que se sigue ha-
blando de la minimización de los residuos.

Optimización de funciones multivariable no lineales  
por mínimos cuadrados

Con la finalidad de explicar cómo funcionan en general los métodos de opti-
mización no lineal, empezaremos recordando el método de Newton utiliza-
do métodos numéricos para obtener las raíces de una función.

Método de Newton
El método de Newton, también conocido como Newton-Raphson, fue imple-
mentado por Newton originalmente para obtener la raíz de un polinomio. Es 
conveniente aclarar que Newton veía su método como puramente algebraico 
y no hizo ningún intento de conectarlo al cálculo. A diferencia de la versión 
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original del método, la versión moderna implementa las sucesiones y, por lo 
tanto, crea un algoritmo (Kerst 1946). En su versión más simple el método 
de Newton-Raphson es un algoritmo para encontrar las raíces (o ceros) de 
una función de una variable f(x) que es diferenciable. Esta función tiene su 
dominio en los valores reales (R). El método produce sucesivamente mejores 
aproximaciones a las raíces con la regla de sucesión:

	 (6)

La sucesión empieza con x0 como suposición inicial y debe localizarse ra-
zonablemente cerca de la raíz buscada. El método se basa en que se estima el 
valor de f(x) = y con la tangente de la función, es decir, su derivada f’(x), esto 
es, el nuevo valor predicho de, y sería: 

		  (7)

Ahora necesitamos el valor de la nueva suposición xi + 1. Su valor se cal-
cula de la intersección con el eje de las abscisas, esto es cuando y = 0

		  (8)

Finalmente, al despejar x i+1 se obtiene la fórmula de Newton-Raphson, 
ecuación (6). Cuando el valor de x i+1 se acerca a x i, dentro del criterio que se 
asignó para el error, se dice que se localizó la raíz y el método converge.

Aunque el método es confiable, pueden surgir diversos problemas, entre 
ellos:

•	 El método falla en llegar a la convergencia, en ocasiones puede suce-
der que los valores sucesivos entren en un ciclo.

•	 Depende demasiado de la suposición inicial, una mala suposición pue-
de causar la no convergencia o un número de iteraciones excesivo.

•	 El cálculo de la derivada puede ser difícil, incluyendo el que la deri-
vada no exista en el punto asociado con la raíz.

•	 Si la primera derivada no tiene un buen comportamiento y el método 
se dispara, es decir, el siguiente valor supuesto se aleja de la solución.

•	 Existe la posibilidad de que el método alcance un punto estacionario 
y entonces los valores sucesivos ya no se mueven y no se cumple el 
criterio de convergencia.

Método de Newton multivariable
El método de Newton puede extenderse a variables múltiples, pero se debe 
considerar que en este caso cada variable tiene su raíz (cero) que atrae al pun-
to de convergencia.
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Método para k variables (o parámetros), k funciones
También se puede utilizar el método de Newton para resolver sistemas de k 
ecuaciones (no lineales), lo que equivale a encontrar los ceros de las funcio-
nes que deben ser diferenciables donde, también el vector de funciones está 
definido en los números reales: f (x1, x2, … xk) : Rk → Rk. La ecuación en este 
caso es análoga a la del método de Newton para una variable (ecuación 8) tie-
ne su equivalente en:

		  (9)

Donde Jf es la matriz del jacobiano de la función, esto es:

	 (10)

La comparación con el método de Newton original muestra que como 
resultado de trabajar con funciones multivariable se sustituye la multiplica-
ción de 1/f’(x) por la inversa de la matriz jacobiana Jf

–1(xi ). 
Al realizar las operaciones de cómputo se puede ahorrar tiempo cuando 

en lugar de resolver la inversa de la matriz jacobiana, se resuelve el sistema 
de ecuaciones lineales:

		  (11)

Quizá en este momento nos preguntamos: ¿y esto qué tiene que ver con 
la optimización? Pues regresemos a las clases de cálculo diferencial e inte-
gral. ¿Cómo se localiza un mínimo (o máximo)? Pues el criterio más simple 
es utilizar la primera derivada. En el mínimo (o máximo) la primera derivada 
tiene un valor de cero. Así que, en el contexto de la optimización de paráme-
tros, la optimización se realiza con la búsqueda del conjunto de parámetros 
que acerquen el valor de la SSE a cero, es decir, la minimizan.

Algoritmo Gauss-Newton
El ajuste de funciones no lineales es complicado porque requiere encontrar 
matrices jacobianas y derivadas parciales (Glen, 2017). No obstante, exis-
ten algoritmos para realizarlo, por ejemplo, el algoritmo Gauss-Newton 
(GNA: por sus siglas en inglés Gauss-Newton algoritm) que es una modifi-
cación del método de Newton. El GNA es un algoritmo iterativo para resol-
ver problemas no lineales de mínimos cuadrados. Iterativo significa que 
utiliza una sucesión de cálculos basados en conjeturas iniciales (x0) para 
calcular valores (x i) donde cada valor de x i se acerca a la solución. El GNA se 
utiliza generalmente para encontrar el modelo teórico de mejor ajuste, aun-
que también podría ser utilizado para localizar un solo punto. Dado que el 
algoritmo está basado en el método de Newton puede presentar los si-
guientes problemas:
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•	 Si la conjetura inicial no es buena, encontrar una solución es muy di-
fícil —de encontrar (converger)— o puede que no se halle una en 
absoluto.

•	 El procedimiento no es adecuado para matrices jacobianas que es-
tán mal condicionadas o deficientes en el rango.

•	 Si los residuos relativos son muy grandes, el procedimiento perderá 
una gran cantidad de información.

En algunos casos, el GNA puede llevarse cientos de iteraciones el encon-
trar una solución (suponiendo que exista). Por lo tanto, se realiza casi exclu-
sivamente con software. Los pasos básicos que realizará el software (tome en 
cuenta que los pasos siguientes son para una sola iteración):

1.	 Haga una suposición inicial x0 para x i
2.	 Haga una suposición para i = 1
3.	 Crear un vector f(x i) con las funciones f (x i)
4.	 Crear una matriz jacobiana para JF
5.	 Resolver (JF(x i)(x i+1 − x n) = − f(x n))
6.	 La siguiente suposición corresponde a la ecuación recursiva:
	 x i+1 = x i + JF (xi)–1 F(xi).
7.	 Repita los pasos 1 a 6 hasta la convergencia.

Método del gradiente (descendente)
Consideremos la siguiente situación: tenemos que subir en bicicleta una 
cuesta muy empinada. Esto es más fácil si se sigue un camino en zigzag, por-
que después de cada vuelta el ángulo de subida es menor al de la pendiente; 
pero la distancia recorrida es mayor. En contraste, si tuviéramos la fuerza de 
piernas, podríamos subir más rápidamente. En la situación contraria, si 
queremos llegar rápidamente a la parte más baja de la colina (equivalente a 
un valle o en matemáticas un mínimo), podemos tomar el camino recto (y 
quizá tendríamos problemas con el control). El algoritmo del gradiente des-
cendente DGA (descent gradient algoritm), se obtiene con la traducción de 
este concepto a términos matemáticos. Para encontrar el mínimo de una 
función en un menor número de pasos debemos tomar la dirección contra-
ria a donde se produce el cambio máximo. La derivada direccional de máxi-
mo cambio de una función es una de las definiciones de gradiente. Por lo 
tanto, la regla recursiva para realizar las iteraciones (equivalente a la ecua-
ción 8) es:

		  (12)

Donde γ, pertenece a los números reales. El vector gradiente de una fun-
ción (∇F(xi) o grad(F(xi )) está definido por:
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	 (13)

En la ecuación 12, si γ es lo suficientemente pequeña y como la dirección 
elegida es contraria a incrementos de f(xi ); entonces se genera una secuencia 
monotónica descendente:

		  (14)

Y entonces esperamos que converja en un mínimo, que de preferencia 
debe ser global.

Algoritmo Levenberg-Marquardt
El algoritmo Levenberg-Marquardt (LMA, Levenberg-Marquardt algoritm). 
Realiza una interpolación entre los métodos Gauss-Newton y el gradiente 
descendente. Este algoritmo fue publicado en 1944 por Kenneth Levenberg 
y redescubierto por Donald Marquardt (Marquardt, 1963). Regresando al 
problema de la minimización por mínimos cuadrados planteado, más arriba, 
en la ecuación (2):

	 (2)

Para empezar la búsqueda del mínimo, debemos proponer un vector de 
estimaciones iniciales kT = (k1, …, ki). Para la búsqueda del mínimo global, 
las suposiciones de cada uno de los parámetros k (en las mediciones ciné-
ticas, los coeficientes) deberían estar preferentemente cerca de la solución 
final.

En el algoritmo LMA, la regla de sucesión ocupa ligeras modificaciones 
del vector de parámetros k, que es remplazado por una nueva estimación k + 
𝛅 en principio, el desplazamiento (𝛅) también puede ser un vector. Entonces, 
la nueva respuesta f(xi, ki + 𝛅i) se estima considerando una linealización de 
la función f(xi, k):

		  (15)

Donde Ji es de nuevo la matriz jacobiana; pero ahora, note que f es fun-
ción de xi y del vector de parámetros ki.

	 (16)

En este momento, la nueva aproximación para la suma de residuos 
SSE(k) sería:

	 (17)
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Tomando la derivada de SSE(k + 𝛅) con respecto de 𝛅, e igualando el re-
sultado a cero, el sistema se resuelve con: 

		  (18)

La contribución del método LMA es que se sustituye la ecuación ante-
rior con:

		  (19)

Comparación del comportamiento de los diferentes métodos  
de minimización
En la siguiente serie de gráficas es posible estudiar el comportamiento de los 
métodos de minimización. El ajuste que se está realizando es el crecimiento 
de levadura, modelado con la ecuación logística. El punto rojo es el mínimo de 
la función, que tiene la forma de un tazón. También se presentan las curvas 
de nivel. Las figuras se realizan en el software mathematica™ y son adapta-
das de una demostración de Ruskeepää (Ruskeepää 2009).

En la figura 3a, se observa claramente la forma de proceder del método 
Newton-Raphson, la primera iteración se proyecta fuera de la gráfica. Mien-
tras que la segunda ya se acerca al mínimo; pero está del lado contrario de las 
suposiciones iniciales. Para el método del gradiente descendente note en las 
figuras 3a y 3c que el camino para el mínimo es el mismo; porque es el que 
tiene el valor de máximo cambio. El algoritmo Levenberg-Marquardt es una 

FIGURA 3. Comparación del comportamiento de métodos de minimización Levenberg-Marquardt, 
Gauss-Newton, y Gradiente en cuanto cambian las suposiciones iniciales. 

Fuente: Elaboración del autor.
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combinación de los de Newton-Raphson y GNA y en la segunda iteración ya 
está muy cerca del mínimo. También se presenta el comportamiento si se 
trabaja con mejores suposiciones iniciales.

Ejemplo 1:
La condensación del formaldehído (F) con el parasulfonato de sodio (B) fue 
estudiada por Stults y McCarthy (1952) en un reactor intermitente. Los da-
tos de la rapidez de formación del monómero (MA) se siguieron a 100 ºC y 
pH = 8.35. Inicialmente, las cantidades presentes de A y B eran iguales. Ajus-
te la expresión de ley de potencias.

Empezaremos suponiendo una ley de potencia de primer orden; la ecua-
ción es tan simple que la solución analítica es inmediata: 

Separando variables e integrando:

Lo que nos pide la ecuación anterior es que el preprocesamiento de los 
datos es simplemente calcular –ln(CA/CA0), obtenemos:

La ecuación resultante es una línea recta kt = –ln(CA/CA0); así es que una 
regresión lineal simple es nuestro método de minimización y es suficiente. 
Esto se puede realizar con software, por ejemplo, Microsoft Excel™. El agregar 
una línea de tendencia nos da la pendiente k y el coeficiente de correlación. 
Es más recomendable trabajar con Excel™ regresión lineal en la sección aná-
lisis de datos. Los resultados se presentan en la figura 4.

TABLA 1. Datos obtenidos en laboratorio.

CF, gmol/L 0.131 0.123 0.121 0.117 0.111 0.104

t, min 0 10 20 30 40 60
Fuente: Elaboración del autor.

TABLA 2. Datos a utilizar en el ajuste para un primer orden.

t, min 0 10 20 30 40 50

CA0/CA 1 1.0650 1.0826 1.1196 1.1801 1.2596

ln CA0/CA 0 0.0630 0.0794 0.1130 0.1657 0.2308
Fuente: Elaboración del autor.
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Criterios de confiabilidad estadística para el ajuste de una función
Una vez que la computadora arroja el resultado de un ajuste corresponde al 
investigador decidir qué tan bueno es el ajuste y aceptar o no los resultados. 
Para ello se apoya en criterios estadísticos para tomar la decisión. A conti-
nuación, se discutirán algunos de los criterios más comunes.

Coeficiente de correlación (R2)
El coeficiente de correlación se utiliza para determinar la “bondad” de un 
ajuste. Esto quiere decir qué tan cercanos son los valores del ajuste a los da-
tos experimentales. El coeficiente de correlación siempre se encuentra en el 
intervalo 0 ≤ R2 ≤1. Algunos autores consideran que el ajuste es bueno si R2 
≥ 0.98, pero esto en realidad depende del número de datos experimentales.

Residuos
Recordando nuestra función para los mínimos cuadrados:

	 (2)

Los residuos o errores SE(k) son las diferencias entre los datos experi-
mentales y el mejor ajuste obtenido. Esto se puede representar en la figura 5.

Los residuos deben distribuirse normalmente alrededor de la línea cero. 
Dicha línea representa el caso en que no hay diferencia entre el modelo ajus-
tado y el valor predicho. También existe un menor error si los valores en el 
eje de las ordenadas, residuos, son lo más pequeños posibles. Nótese que con 
esta grafica se pueden identificar algunos de los puntos problemáticos, es 
decir, fuera del comportamiento normal; o, si hay un patrón en la distribu-
ción de los puntos, ambos casos significarían que se debe buscar un mejor 
ajuste.

FIGURA 4. Resultado del ajuste de primer orden de una cinética. 

Fuente: Elaboración del autor.
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Grafica de paridad
La grafica de paridad compara los datos experimentales contra los valores 
predichos del modelo ajustado. En estas graficas se acostumbra representar 
la línea x = y como referencia; esta línea significa que los valores experimen-
tales (x) son exactamente los predichos por el modelo (y). Lo ideal en esta re-
presentación es que en un buen modelo los puntos se localicen cerca de esa 
línea. Como ejemplo de este tipo de gráficas se tiene la figura 11 (Alonso-Ra-
mírez et al. 2019).

Intervalo de confianza
El objetivo de esta gráfica es mostrar los límites donde al menos cae un por-
centaje de los datos con los parámetros ajustados. Así, un límite de 95% sig-
nifica que se tiene un 95% de probabilidad de que el valor “verdadero” del pa-
rámetro esté en ese intervalo. En otras palabras, si se realizaran experimentos 
independientes, para cada experimento y a partir de los datos obtenidos y 
sus respectivos ajustes, el valor del parámetro estaría en ese intervalo del 
95% de las experiencias. En general, cuanto más cerca estén los límites de 
confianza del 95% del valor del parámetro, mejor será el ajuste. Como ejem-
plo se presenta la figura 6.

Aquí se introduce otra situación para mejorar los resultados y la con-
fianza que podemos tener en nuestros resultados; se está hablando de la re-
petición de los experimentos. Existen técnicas estadísticas para calcular cuál 
es el mínimo número de experimentos necesarios para dar confianza a los re-
sultados, estamos hablando del diseño (estadístico) de experimentos, tema 
fuera del objetivo este artículo.

Gráfica de perturbaciones
Ya se señaló que cuando estamos realizando un ajuste de una ecuación con 
varios parámetros, cada parámetro presenta su propio ajuste, y durante el 

FIGURA 5. Gráfica de residuos después del ajuste de un modelo cinético. 

Fuente: Elaboración del autor.



15e

www.mundonano.unam.mx | artículos de revisión | Mundo Nano 
https://doi.org/10.22201/ceiich.24485691e.2021.26.69639 | 14(26), 1e-25e, enero–junio 2021 

Rogelio Cuevas García 

ajuste cada una de las k estimadas tienden a su mínimo. Entonces, ¿cómo se 
distingue si nos encontramos en el mínimo global? Para ello se realiza la grá-
fica de perturbaciones. Con el ajuste obtenido se elige cualquiera de los pará-
metros (coeficientes cinéticos) y se le agrega (o resta) una cierta cantidad, 
creando, con ello, una perturbación en el modelo. Se calculan los valores de 
las otras k y se grafican los resultados. Estamos en un mínimo global si las 
perturbaciones en todas las k coinciden al mismo mínimo independiente-
mente de la perturbación creada. Un ejemplo de este tipo de graficas se pre-
senta en la figura 13. 

Medidas de actividad catalítica en las publicaciones

En esta sección revisaremos algunos ejemplos de cómo se ha reportado en la 
literatura la actividad catalítica. Se muestran dos ejemplos que tienen esque-
mas de reacción muy complejos y cómo se ha avanzado en esos campos. En 
general, para las medidas de conversión se reportan intervalos de confianza. 
Si se han desarrollado y aceptado esquemas de reacción se pueden ajustar co-
eficientes cinéticos y cuando se conoce más se obtiene información sobre 
cómo funciona el nanocatalizador. 

Producción de biocrudo utilizando microalgas
Si se está analizando un sistema muy complejo, por ejemplo, en el caso de pro-
ducción de biocrudo a partir de biomasa el número de productos es muy gran-
de. Se procesan diferentes tipos de biocompuestos: proteínas, carbohidratos y 
lípidos. Los carbohidratos pueden ser simples (azúcares) o complejos (celulo-
sa). Por su parte, los lípidos pueden ser: fosfídicos, polares, no polares, entre 
otros. Cada biocompuesto es susceptible de sufrir reacciones distintas, por lo 
cual se generan demasiados compuestos; se desconocen también las posibles 

FIGURA 6. Grafica del ajuste de los coeficientes cinéticos de la reacción del dibenzotiofeno (DBT) para 
catalizadores NiMo/Al2O3. 

Nota: Se incluyen los intervalos de confianza.
Fuente: Cuevas-García (2004).
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rutas de reacción. En la figura 7, se presenta un cromatograma típico del bio-
crudo obtenido con el proceso HTL (hydrothermal liquefaction),1 donde se ob-
serva el gran número de compuestos químicos formados y de ahí la compleji-
dad de estos. Con los problemas descritos, solo se está en condiciones de 
reportar balances en masa y los rendimientos, también en masa. En la figura 7 
se presentan cromatogramas después de procesar un consorcio de microalgas. 
Y en la figura 8 las conversiones por biocompuesto que pueden obtenerse 
(Gonzáles-Gálvez et al. 2020). 

	 1 La HTL consiste en el tratamiento de la microalga con agua como solvente, pero en condi-
ciones subcríticas o supercríticas.

FIGURA 8. Conversiones por biomolécula en el proceso de solvólisis de un consorcio de microalgas rico 
en Spiruluna sp. En función de la temperatura. 

Fuente: González-Gálvez et al. (2020). 

FIGURA 7. Cromatogramas de biocrudo obtenidos para tres condiciones de cosechado de microalgas.

Fuente: Nava Bravo et al. (2019).
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De cualquier manera, en este tema, por el momento, todo experimento 
debe repetirse y entonces habrá que advertir cómo se reportan intervalos de 
confianza para cada medición. 

Mejoramiento de crudos pesados
El objetivo de estos procesos es lograr un mejor aprovechamiento del crudo, 
transformando gran parte de los cortes más pesados (asfaltenos, residuos de 
vacío y atmosféricos) a cortes más ligeros. Se consideran mucho más valiosos 
los llamados destilados intermedios, porque en estos cortes encontramos a los 
precursores del diesel, keroseno, turbosina y gasolina. No es recomendable 
“sobretratar” el crudo porque entonces se pierden destilados intermedios al 
producir demasiado gas. El problema en este tema es el número de componen-
tes que se encuentran en el crudo. Como ilustración se presenta, en la figura 9, 
un cromatograma de solo una fracción del crudo que es la fracción de satura-
dos (compuestos donde predomina el comportamiento químico de las olefi-
nas). La mezcla total de crudo incluye, además, las fracciones de aromáticos, 
resinas y asfaltenos. Destacan como los picos de mayor intensidad precisa-
mente los saturados, empezando por el heptano (C7) cerca de los 10 min y lle-
gando hasta C27.

Discutiremos algunas gráficas tomadas del trabajo de Alonso-Ramírez et 
al. (2019), en cuyos experimentos se estudia el efecto de la temperatura (380, 
390 y 400 °C) y tiempo (1, 2.5 y 4 horas) sobre la posible distribución de pro-
ductos después de la destilación primaria. Como se puede observar, la figura 
10 está construida con porcentaje en peso. En las refinerías, la destilación pri-
maria genera cortes distribuidos en función de la temperatura de ebullición. 
Los principales son gases ligeros (GAS), nafta (NAP), keroseno (KER), gasóleo 
(GO), residuo atmosférico (AR) y residuo de vacío (VR). Cuando tratamos un 
crudo pesado y si el proceso funciona consumimos AR y VG y sus rendimientos 
son negativos. Si estuviéramos interesados en producir gasóleo (GO) o kero-
seno (KER), lo mejor sería trabajar a 400 °C por 2.5 horas. Pero para nafta (an-
tecedente de la gasolina) sería preferible operar por 4h y 400 °C.

FIGURA 9. Cromatograma de la fracción de saturados de un crudo pesado. 

Fuente: Alonso-Ramírez et al. (2019).
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Pero las investigaciones están avanzando y es posible predecir de qué 
corte antecedente puede provenir el corte generado y así optimizar las con-
diciones de operación para obtener el mejor rendimiento. Pero, para ello, hay 
que proponer un esquema de reacción. Para llegar al esquema de reaccion op-
timizado se propusieron y analizaron hasta 50 esquemas distintos. El es-
quema optimizado se muestra en la figura 11.

Los ajustes se consiguieron con el algoritmo Levenberg-Marquardt (LMA). 
Para analizar la confianza en los resultados, se crea la gráfica de paridad de los 
valores de fracción en masa experimentales versus los predichos con el mo-
delo (figura 12). Un modelo confiable es cuando los valores predichos corres-
ponden con los experimentales. Lo que está señalado con la línea a 45° en la 
gráfica.

Como se ajustan hasta 15 coeficientes cinéticos, el trabajo no termina 
ahí, pues se debe garantizar que se alcanza un mínimo global, lo cual se rea-
liza con la gráfica de perturbaciones. 

FIGURA 10. Rendimiento a diferentes fracciones después del proceso de mejoramiento de un crudo 
pesado en función de la temperatura y tiempo de reacción. 

Fuente: Alonso-Ramírez et al. (2019).

FIGURA 11. Esquema de reaccion de la fracción de saturados y sus efectos en los cortes de la destila-
ción primaria. 

Fuente: Alonso-Ramírez et al. (2019).
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Reacción de HDS del dibenzotiofeno
Ahora se hablará de un esquema bastante más desarrollado en el tema de los 
nanocatalizadores de hidrotratamiento (HDT). Los catalizadores de (HDT) 
se utilizan para eliminar heteroátomos de diferentes cortes de crudo, en par-
ticular el azufre. Así, gracias a estos catalizadores tenemos gasolinas y diesel 
con bajos contenidos de azufre y se evitan problemas de contaminación. Los 
catalizadores de HDT son sulfuros de Mo, NiMo o CoMo soportados en alú-
mina. En estos nanocatalizadores se ha identificado plenamente la fase acti-
va; en general, se habla de dos tipos de sitios donde ocurren reacciones de hi-
drogenación o reacciones de desulfuración. Se han aplicado varias técnicas 
de caracterización para identificar y cuantificar los sitios activos. Esta infor-
mación es importante para mejorar el diseño del catalizador y/u orientar la 
preparación para procesar de mejor manera los distintos cortes de crudo.

FIGURA 12. Curva de paridad para un modelo cinético propuesto por Alonso-Ramírez et al. (2019). 

Fuente: Alonso-Ramírez et al. (2019).

FIGURA 13. Gráfica de perturbaciones para los coeficientes cinéticos calculados en el modelo presen-
tado por Alonso-Ramírez et al. (2019). 

Fuente: Alonso-Ramírez et al. (2019).
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Ejemplo 2:
Analizaremos la reaccion de HDS del dibenzotiofeno (DBT). Y la utilizare-
mos para mostrar todo el proceso de ajuste usando Microsoft Excel™. Para 
esta reacción, se conoce el esquema de reacción, véase la figura 14. Los tetra 
y hexahidro DBT son intermediarios de reacción, así que, generalmente, no 
los podemos detectar y se puede considerar que la reacción va del DBT al 
CHB y DF. En algunos nanocatalizadores se considera que la reacción del DF 
al CHB no existe. Y si el catalizador presenta una función hidrogenante fuer-
te se produce DCH

El proceso se realiza a presiones de hidrogeno altas; así, cada reacción se 
considera de pseudo primer orden. Del esquema construimos el sistema de 
ecuaciones diferenciales, en este caso ordinarias (EDO) (Cuevas-García, 2004):

	 (20)

	 (21)

	 (22)

	 (23)

Este sistema de ecuaciones diferenciales puede resolverse analítica-
mente (Cuevas-García 2004), para obtener:

FIGURA 14. Esquema de reacción para el DBT. 

Fuente: Cuevas-García (2004).
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	 (24)

	 (25)

	 (26)

	 (27)

	 (28)

Nótese que, como resultado del procedimiento de solución en el prepro-
cesamiento, los datos deben normalizarse como Ci/CDBT0 que, a su vez, es una 
definición de rendimiento. Como ejemplo se presenta, en la figura 15, una 
captura de pantalla en Microsoft Excel™. Dado que fue posible resolver las 
ecuaciones analíticamente, se introducen las soluciones de cada ecuación 
(ecuaciones 24 a 28) en las celdas respectivas (celdas F11: J18). Por ejemplo, 
para el DBT calculado (DBTc), la variación de Ci/C0 en función del tiempo se 
muestra de las celdas F11: F18, y en cada celda se encuentra la ecuación 24. Se 
procede en forma similar con los otros compuestos. Como información adi-
cional, en el ejemplo se evaluaban selectividades de hidrodesulfuración/hi-
drogenación y por eso se presenta una columna con la suma de los productos 
de hidrogenación CHB+DCH.

FIGURA 15. Captura de pantalla de Microsoft Excel para el ajuste de los coeficientes cinéticos del es-
quema del DBT. 

Fuente: Elaboración del autor.
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Los valores de los coeficientes cinéticos para el ajuste se presentan en las 
celdas B1: B6; en la captura de pantalla se muestra que la suposición inicial 
fue que todas las k = 1. Procedemos a realizar la minimización con la función 
solver de Microsoft Excel™. Se muestra en la figura 16 otra captura de pan-
talla con los datos para usar solver. Se elige la celda N23 porque ahí se en-
cuentra la SSE, como objetivo para la minimización; que se da a través de 
cambiar los valores de las k celdas B1: B6. Un buen método para la minimi-
zación en solver es el GRG (Generalized reduced gradient), versión basada en 
el método GDA.

A continuación, se muestra cómo funciona el ajuste de los parámetros 
en Excel™; para ello, se presentan los resultados de ciertos pasos en la itera-
ción que se va realizando, donde se busca la minimización de la SEE, como es 
usual, en el modelo se presenta como una línea recta y los puntos corres-
ponden a las experiencias experimentales. En la figura 17a se presentan las 
funciones considerando que los coeficientes cinéticos valen todos 1 (valores 
iniciales). Las figuras 17b-17d muestran claramente que la minimización 
sigue un buen camino pues las distancias entre la función supuesta con los 
valores de k de la iteración están disminuyendo todas simultáneamente. En 
la figura 17e, se muestra qué valores se van alcanzando con la reducción del 
SSE, para diferentes números de iteraciones. Finalmente, elegimos si se al-
canza el criterio de convergencia SSE ≤ 1(10–4), la optimización termina. Por 
seguridad, también debe elegirse un número de iteraciones. 

Recomendaciones

En este artículo se revisaron los métodos numéricos para realizar un ajuste 
para una ecuación cinética, y se describe la manera de realizar estos ajustes. 
Se presentó un ejemplo (esquema DBT) desde el punto de vista de cómo se 
realiza el ajuste. Aunque se trabaje con ecuaciones más complejas, básica-
mente, el procedimiento a implementar es el mismo; aunque la etapa de re-
solución debe de ser numérica. Si la complejidad del sistema es alta, se re-
quiere el uso de software matemático más avanzado como mathematica™ y 
Matlab™. Este último tiene una nueva aplicación para ajustes cinéticos; pero, 
independientemente de la facilidad del uso del software, el conocimiento de 

FIGURA 16. Localización de solver en una hoja de Microsoft Excel™ y parámetros  para la minimización.

Fuente: Elaboración del autor.
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cómo operan los métodos de mínimos cuadrados es fundamental para no 
caer en la equivocación de aceptar los resultados sin criterio.

Conclusiones 

Por el momento el ajuste de las ecuaciones cinéticas tiene como fundamentos 
los métodos de mínimos cuadrados. La manera en que se crea un método de 
mínimos cuadrados es tener la suma de errores al cuadrado (SSE) como fun-
ción objetivo y después se le aplica un método de minimización, lineal o no. 
La optimización consta de las etapas de representación de las ecuaciones ci-
néticas como un sistema de ecuaciones, obtención y preprocesamiento de los 
datos experimentales, resolución numérica o analítica del sistema de ecuacio-
nes diferenciales resultantes y obedece en gran medida al método de minimi-
zación por mínimos cuadrados. Dependiendo del sistema de ecuaciones dife-
renciales a resolver cambia el método de minimización y entre los métodos se 
cuenta con regresión lineal, Newton-Raphson, Gauss-Newton, Gradiente 
descendente y Levenberg-Marquardt, entre otros. La decisión sobre la bon-
dad del ajuste descansa sobre criterios estadísticos y existen varias formas de 

FIGURA 17. Comportamiento del ajuste para los coeficientes cinéticos de la reacción de hidrodesulfu-
ración del DBT utilizando Microsoft Excel™ y su herramienta solver. 

Nota: Se muestran diferentes números de iteraciones antes de llegar al ajuste aceptado.
Fuente: Elaboración del autor.
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mostrar la confiabilidad de los resultados, entre ellas la presentación del coe-
ficiente de correlación, la gráfica de residuos, representación del intervalo de 
confianza, la gráfica de paridad y las gráficas de perturbaciones.

Nomenclatura

Las letras negritas se refieren a funciones vectoriales.
Letra normal: Funciones escalares.
𝛅: Pequeño incremento (o disminución). 

l = Matriz de eigen valores; para resolver un sistema de ecuaciones.
b: En la ecuación de una línea recta, la ordenada en el origen.
f(x): Función matemática, aquí función que se está probando en el ajuste.
f’(x): Derivada de f(x).

JF es la matriz del jacobiano de la función: 

k: Parámetro(s) a ajustar, aquí, comúnmente, coeficientes cinéticos.
I: Matriz identidad.
m: En la ecuación de una línea recta, la pendiente.
y: Repuesta del analisis, aquí, los datos experimentales.
x: En el método de Newton Raphson, valor de la variable independiente que 

se usa en la sucesión.
x(0) = Suposición inicial.
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