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Resumen 

Los sensores remotos en combinación con información derivada de los inventarios forestales 

estiman variables de interés con precisión y bajo costo. El objetivo de este trabajo fue estimar 

el área basal (AB), volumen maderable (VTA) y biomasa aérea (B) en diferentes ecosistemas 

de selvas mediante información Landsat ETM+ e Inventario Nacional Forestal y de Suelos 

(INFyS) en Quintana Roo, México. Se generó una matriz de correlación entre datos del INFyS 

e información espectral, posteriormente, un modelo de regresión lineal múltiple. Con las 

ecuaciones seleccionadas se generaron mapas de distribución espacial de AB (m2 ha-1), VTA 

(m3 ha-1) y B (Mg ha-1). El inventario total se estimó mediante tres enfoques: i) estimadores de 

razón (ERaz), ii) estimadores de regresión (EReg) y iii) estimadores del muestreo simple al azar. 

Los dos primeros enfoques corresponden al inventario alternativo mediante sensores remotos y 

el tercero al inventario tradicional. El coeficiente de correlación resultó mayor del índice de 

diferencia normalizada con 0.35, 0.39 y 0.39 para AB, VTA y B. Los modelos de regresión 

presentaron coeficientes de determinación ajustada de 0.28, 0.32 y 0.32 para estimar AB, VTA 

y B, respectivamente. Los tres estimadores son estadísticamente diferentes y muestran que el 

EReg es el más conservador y con precisión en AB, VTA y B de 2.73%, 2.92% y 2.71%, 

respectivamente, además de intervalos de confianza de menor amplitud que el MSA y ERaz. 

Con la actualización del inventario mediante sensores remotos se mejora el proceso de 

evaluación de los recursos forestales y su planificación. 

Palabras clave: biomasa aérea, estructura forestal, Landsat, modelos de regresión, sensores 

remotos. 
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Abstract 

Remote sensors in combination with information derived from forest inventories estimate 

variables of interest with precision and low cost. The objective was to estimate the basal area 

(AB), timber volume (VTA) and aboveground biomass (B) in different forest ecosystems using 

Landsat ETM information and National Forest and Soil Inventory (INFyS) in Quintana Roo, 

Mexico. A correlation matrix was generated between INFyS data and spectral information, and 

later, a multiple linear regression model. With the selected equations, spatial distribution maps 

of AB (m2 ha-1), VTA (m3 ha-1) and B (Mg ha-1) were generated. The total inventory was 

estimated using three approaches: i) Reason Estimators (ERaz), ii) Regression Estimators 

(EReg), and iii) Estimators of Random Simple Sampling. The first two approaches correspond 

to the alternative inventory using remote sensors and the third corresponds to the traditional 

inventory. The correlation coefficient was greater than the normalized difference index with 

0.35, 0.39 and 0.39 for AB, VTA and B. The regression models had adjusted determination 

coefficients of 0.28, 0.32 and 0.32 to estimate AB, VTA and B, respectively. The three 

estimators are statistically different and show that the EReg is the most conservative and with 

precision in AB, VTA and B of 2.73%, 2.92% and 2.71%, respectively, in addition to confidence 

intervals of smaller amplitude than the MSA and ERaz. By updating the inventory using remote 

sensors, the process of evaluating forest resources and their planning is improved. 

Keywords: aerial biomass, forest structure, Landsat, regression models, remote sensing. 

Introducción 
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Los sensores remotos en combinación con información derivada de los inventarios forestales 

por medio de muestreo estiman las variables de interés con precisión aceptable y a costo 

relativamente accesible en comparación con los inventarios forestales tradicionales, razón por 

la cual, hoy en día han adquirido mayor importancia en la evaluación de las variables forestales 

(Solberg, Astrup, Breidenbach, Nilsen y Weydahl, 2013; Zhu y Liu, 2014; Aslan, Rahman, 

Warren y Robeson, 2016). Los bosques y selvas constantemente se encuentran en riesgo de 

degradación por las actividades antropogénicas y, de acuerdo con Rosete-Vergés et al. (2014), 

la tasa anual de deforestación en México oscila alrededor de 534 707 ha y donde los ecosistemas 

tropicales tienen la mayor tasa de cambio de usos de suelo con alrededor de 146 mil (Gobierno 

de la Republica, 2014). Por lo general, las selvas son valoradas por su diversidad y productividad 

alta (Martínez-Ramos et al., 2007), por lo cual, es fundamental conocer su potencial productivo, 

y comprender el papel de estos ecosistemas (Huang, 2003; Peralta-Rivero, Galindo-Mendoza, 

Contreras-Servín, Algara-Siller y Mas-Caussel, 2016) en la captura de carbono y poder realizar 

aprovechamiento sostenible de sus recursos forestales, es necesario generar herramientas 

estadísticas que permitan evaluar las variables forestales con precisión aceptable (Acosta, Pérez, 

Romero, González y Martínez, 2017). 

Generalmente, el método más empleado para estimar variables forestales (área basal (AB), 

volumen maderable (VTA), biomasa aérea total (B), entre otros) a pequeña o gran escala es por 

medio del inventario forestal basado en mediciones directas por medio de un muestreo (Solberg 

et al., 2013; Ortiz-Reyes et al., 2015). Sin embargo, este tipo de inventario implica tiempo y 

costos elevados en la evaluación de las variables forestales (Hawbaker et al., 2010). Por tal 

razón, los métodos indirectos, como los que ofrecen los sensores remotos en combinación con 
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los datos del inventario forestal adquieren mayor relevancia en la actualidad porque ofrecen 

información actualizada de la estructura del bosque a costo relativamente accesible (Acosta et 

al., 2017), con una optimización en tiempo, además ofrecen la ventaja de construir mapas 

cartográficos de la distribución espacial de cada variable forestal (Foody, Boyd y Cutler, 2003).  

La existencia de sensores de resoluciones alta (SPOT 5 y 6, Quickbird, Ikonos, y otros), 

moderada (Landsat 5 TM, Landsat 7 ETM+ y Landsat 8 OLI) y baja (Aqua/Terra MODIS) 

permiten evaluar las variables forestales minimizando costos y tiempo (Hawbaker et al., 2010; 

Torres-Rojas, Romero-Sánchez, Velasco-Bautista y González-Hernández, 2016; Nelson et al., 

2017), representan una opción para estimar las variables forestales de manera eficiente y 

confiable (Ortiz-Reyes et al., 2015; Acosta et al., 2017). 

La asociación de las variables forestales con los datos espectrales de los sensores remotos no 

depende de manera directa en la escala que se analicen la información, sino del tipo de 

ecosistema y de la técnica de medición en campo, de esta forma es más fiable elegir el tipo de 

sensor que más se adecue para evaluar las variables forestales (Wulder, 1998; Nelson et al., 

2017). Por ejemplo, las imágenes Landsat han sido empleadas para evaluar las variables 

forestales para grandes áreas con precisión aceptable y de forma factible, aun cuando presentan 

una resolución moderada (Zhu y Liu, 2014; López-Serrano et al., 2015), esto ha demostrado que 

la alta resolución espacial no aumenta la auto correlación y la estimación con las variables 

forestales (Torres-Rojas et al., 2016). 

Objetivos 

Estimar el inventario del AB, VTA y B en diferentes ecosistemas de selvas mediante la 

combinación de la información del sensor Landsat ETM+ y del Inventario Nacional Forestal y 
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de Suelos (INFyS) en Quintana Roo, México, bajo la hipótesis de que los resultados de los 

estimadores obtenidos con información del inventario forestal tradicional y con sensores 

remotos no son estadísticamente diferentes entre ellos. 

Materiales y métodos 

Descripción del área de estudio 

El estado de Quintana Roo, se ubica en el sureste de México en la parte oriental de la Península 

de Yucatán. Su extensión territorial es de 4 455 627.42 hectáreas de las cuales 3 773 023.27 ha 

(84.68%) se consideran como superficie forestal, las restantes 682 604.15 ha (15.32%) son 

consideradas como de uso agrícola, pastizal, demográfico, cuerpos de agua y áreas desprovistas 

de vegetación (Comisión Nacional Forestal [Conafor], 2014). De la superficie forestal total, 2 

891 578.75 ha (76.6%) corresponden a selvas medianas y altas, 481 165.08 ha (12.8%) a selvas 

bajas, 217 036.5 ha (5.7%) a otras áreas forestales, y 183 242.94 ha (4.9%) a manglares 

(Conafor, 2014). 

El clima que predomina corresponde al grupo cálido (A), particularmente, Am que corresponde 

al cálido húmedo con abundantes lluvias en verano, y Aw de tipo cálido subhúmedo con 

diferentes variaciones en la presencia de lluvias invernales (Instituto Nacional de Estadística y 

Geografía [Inegi], 2000; Inegi, 2015). Cuenta con una temperatura media anual de 26 °C 

(Conafor, 2014) y precipitación media anual de 1325 mm (Inegi, 2015). El relieve es plano, con 

una altitud promedio de 10 m sobre el nivel del mar y una leve inclinación que se presenta hacia 

el Mar Caribe (Inegi, 2015). 

La hidrografía estatal consta de dos Regiones Hidrológicas: Yucatán Norte (RH32) y Yucatán 

Este (RH33), con una superficie de 30.9% y 69.1%, respectivamente. Los suelos predominantes 
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son: gleysol, leptosol, luvisol, regosol, phaeozem y vertisol (Inegi, 2015). 

Datos derivados del inventario nacional forestal y de suelos (INFyS) 

Los datos de campo se recolectaron de 2004, 2005 y 2006 en ecosistemas de selvas bajas, 

medianas y altas en Quintana Roo. En el área de estudio se establecieron 798 conglomerados o 

Unidad de Muestreo Primario (UMP) de tipo circular con una superficie de una ha, de acuerdo 

con el diseño por conglomerados (Conafor, 2014) (Fig. 1).  

De acuerdo con la Conafor (2014), el diseño de las UMP corresponde a una parcela circular 

de una hectárea (56.42 m de radio) que se distribuyen a una equidistancia entre conglomerados 

de 5 km × 5 km para selvas medianas y altas, y de 10 km × 10 km para selvas bajas. Cada UMP 

está integrada por cuatro unidades de muestreo secundarias (UMS) rectangulares de 400 m2, 

dispuestas geométricamente en forma de una “Y” invertida con respecto al Norte. La UMS uno 

constituye el centro y las UMS dos, tres y cuatro son consideradas periféricas (Conafor, 2014; 

Muñoz-Ruiz, Valdez-Lazalde, De los Santos-Posadas, Ángeles-Pérez y Monterroso-Rivas, 

2014; Velasco-Bautista, Santos-Posadas, Ramírez-Maldonado y Rendón-Sánchez, 2016). 
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Figura 1. Ubicación del área de estudio, diseño y distribución de las unidades de muestreo en 

Quintana Roo, México.  

Para todos los árboles vivos y especies identificadas de la categoría diamétrica de 10 cm 

(diámetro normal igual o mayor a 7.5 cm) dentro de cada UMS se midió el diámetro normal (D, 

en centímetros) y la altura total (H, en metros). La información del D y H de todos los árboles 

fue auditada y corregida. Posteriormente, se estimaron tres variables forestales: AB en metros 

cuadrados, VTA en metros cúbicos y B en kilogramos. El AB de cada árbol se estimó utilizando 

el modelo 1: 

𝐴𝐴𝐴𝐴 = � 𝜋𝜋
40,000

× 𝐷𝐷2�          [1]. 
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Donde: 

AB = área basal (m2 arbol-1) 

D = diámetro normal con corteza (cm) 

El VTA, se estimó con los modelos 2 y 3, respectivamente: el modelo 2 fue generado por el 

proyecto “Sistema biométrico para la planeación del forestal sustentable de los ecosistemas con 

potencial maderable de México”, para 12 especies de alto valor comercial (Vargas-Larreta et 

al., 2017), mientras que el modelo 3 por SAG (1976), utilizadas ampliamente en Quintana Roo 

para especies y grupos de especies (Cruz-Leyva et al., 2010; Muñoz-Ruiz et al., 2014; Velasco-

Bautista et al., 2016). Los modelos son de la forma: 

2
30

21 DHDVTA ββ ββ +=           [2] 

( )[ ]2.1*21
0

βββ LnHLnDeVTA ++=           [3] 

Donde: 

VTA = volumen total árbol (m3) 

D = diámetro normal con corteza (cm) 

H = altura total (m) 

1.2 = factor de forma para convertir VFT a VTA 

La B de cada árbol y especies, se calculó por medio del modelo 4 desarrollada para selvas 

medianas y altas, y para selvas bajas con el modelo 5, ambos emplean como variable 

independiente el VTA (Torres y Guevara, 2002). 

𝐵𝐵 = (0.896 + 519.408 × 𝑉𝑉𝑉𝑉𝑉𝑉)        [4] 

𝐵𝐵 = (12.225 + 313,036 × 𝑉𝑉𝑉𝑉𝑉𝑉)        [5] 

Donde: 
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B = biomasa aérea total (kg) 

VTA volumen total árbol (m3) 

Finalmente, los resultados de AB, VTA y B de cada árbol, se sumaron dentro de cada UMS, 

posteriormente por UMP y se extrapolaron a la unidad de superficie (m2 ha-1, m3 ha-1 y Mg ha-

1) 

Pre-procesamiento de la información espectral del sensor Landsat 7 ETM+ 

Se adquirieron tres imágenes Landsat 7 ETM+ a nivel LT1 con resolución de 30 m × 30 m (900 

m2) de los años 2004, 2005 y 2006 a través del United States Geological Survey (USGS) en 

2017 (López-Serrano et al., 2015; Hansen et al., 2016). Se eliminaron los efectos atmosféricos, 

de radianza y reflectancia en cada una de las imágenes mediante el software ENVI 5.1 ® con el 

algoritmo Análisis Atmosférico de Línea de Visión de Hipercubos (FLAASH, por sus siglas en 

inglés). En la primera etapa del procedimiento de corrección atmosférica, los números digitales 

(ND) se convirtieron en radiancia mediante expresión 6 (Soudani, François, Le Marrie, Le 

Dantec y Dufrêne, 2006). 

𝐿𝐿𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠 = �� 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖+𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖−𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖
� 𝑥𝑥 �𝐷𝐷𝐷𝐷𝑖𝑖 − 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖� + 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖�    [6] 

Donde: 

𝐿𝐿𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠 = radiancia expresada en W-1 m-2 sr-1 μm-1 

LMAX𝑖𝑖  = ganancia × 255 

LMIN𝑖𝑖 = compensación 

DCMIN𝑖𝑖  = valores mínimos de píxel 

DCMAX𝑖𝑖 = valores máximos de píxel 

DC𝑖𝑖 = valores de píxel 
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En la segunda etapa los valores de radiación se convirtieron en unidades de reflectancia 

descontando el efecto de la radiación refractada por la atmósfera y captada por el sensor 

utilizando la expresión 7, con el propósito de utilizar imágenes multi-temporales (Soudani et al., 

2006). 

𝑝𝑝𝑖𝑖 = �𝑑𝑑2𝜋𝜋�𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖−𝐿𝐿𝑝𝑝𝑖𝑖��
�𝑇𝑇𝑉𝑉𝑖𝑖(𝑇𝑇𝑧𝑧𝑖𝑖𝐸𝐸𝑂𝑂𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶∅𝑆𝑆+𝐸𝐸𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�

         [7] 

Donde: 

𝑝𝑝𝑖𝑖 = reflectancia planetaria adimensional 

𝑇𝑇𝑉𝑉𝑖𝑖𝑦𝑦 𝑇𝑇𝑧𝑧𝑖𝑖 = transmitancia de la atmósfera en las direcciones de vista e iluminación 

𝐸𝐸𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = radiación difusa 

𝐸𝐸𝑖𝑖0 = radiación exoatmosférica que entra en la atmósfera 

∅𝑠𝑠 = ángulo zenital del sol 

d = distancia normalizada de la tierra-sol cuando las imágenes fueron adquiridas 

𝐿𝐿𝑖𝑖𝑝𝑝 = radiación de camino debido a los efectos atmosféricos 
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Variables espectrales e índices de vegetación 

Los valores de reflectancia de las cinco bandas de la imagen Landsat ETM+ y un índice de 

vegetación fueron utilizadas en este estudio: azul (A), verde (V), rojo (R), infrarrojo cercano 

(IRC), infrarrojo medio (IRM) y el índice de diferencia normalizada (NDVI) calculado con la 

expresión 8, por su utilidad diversos autores han empleado el NDVI debido a que presentan alta 

correlación con la variables forestales (Rouse, Haas, Schell, Deerino y Harlan, 1974; Aguirre-

Salado, Valdez-Lazalde, Ángeles-Pérez, De los Santos-Posadas y Aguirre-Salado, 2011; Muñoz 

et al., 2014; Acosta et al., 2017; Torres-Vivar, Valdez-Lazalde, Ángeles-Pérez, Santos Posadas, 

y Aguirre-Salado, 2017). En las imágenes Landsat ETM+ se georreferenciaron las UMS de cada 

UMP con coordenadas UTM, posteriormente, los valores de las variables espectrales y del 

NDVI fueron extraídas como un valor promedio de los píxeles correspondiente a un buffer de 

10 000 m2, mediante el procedimiento del comando Zonal Statistics as Table del programa 

ArcMap 10.2 ®. 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = �𝐼𝐼𝐼𝐼𝐼𝐼−𝑅𝑅
𝐼𝐼𝐼𝐼𝐼𝐼+𝑅𝑅

�          [8] 

Donde: 

NDVI = índice de diferencia normalizada 

R = banda rojo 

IRC = banda infrarrojo cercano 

Análisis estadísticos de las variables de campo y de imágenes Landsat ETM+ 

Mediante un análisis de Matriz de Correlación de Pearson, se estudiaron las correlaciones 

asociadas entre las variables forestales con las variables espectrales e índices de vegetación, 

siendo esta una medida estadística para evaluar si dos variables cuantitativas guardan una 
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relación lineal. La información derivada de este análisis permitió seleccionar las variables 

espectrales e índice de vegetación de mayor grado de asociación con las variables forestales, 

como variables auxiliares para estimar el inventario total mediante los estimadores de razón 

(ERaz) y de regresión (EReg) (Acosta et al., 2017).  

Ajuste de modelos de regresión lineal 

El método de ajuste utilizado para construir los modelos de regresión para estimar el AB (m2 ha-

1), VTA (m3 ha-1) y B (Mg ha-1) fue el procedimiento estadístico de STEPWISE (selección por 

pasos) del paquete estadístico SAS/ETS® (Institute, Inc. SAS, 2008). La estructura del modelo 

se expresa en la ecuación 9 (Huang, 2003; Ortiz-Reyes et al., 2015; Zhang, 2016). 

Yi = β0 + β1X1 + β2X2+. . . +βkXk + εi       [9] 

Donde: 

Yi = variable forestal de interés (B (Mg ha-1), VTA (m3 ha-1) y (AB m2 ha-1)) 

Xi bandas; A, V, R, IRC, IRM, NDVI 

βi coeficientes de regresión 

εi vector de error aleatorio 

Con la finalidad de seleccionar y medir la capacidad predictiva de los modelos, se evaluaron 

tres indicadores de ajuste: i) mayor valor de coeficiente de determinación ajustado �Radj
2 �; ii) 

menor valor de la raíz del cuadrado medio de error (RMSE); y iii) valor de probabilidad de 

rechazo en la prueba de hipótesis de los parámetros menor al 0.05 de confiabilidad (Avitabile, 

Baccini, Friedl, y Schmullius, 2012; López-Serrano et al., 2015; Acosta et al., 2017). Los 

modelos más precisos de cada variable fueron utilizados para generar mapas que describen la 
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distribución espacial de las variables forestales mediante la calculadora Raster del programa 

ArcMap 10.2 ® (Torres-Vivar et al., 2017). 

Estimadores muestrales para estimar el inventario total 

La superficie utilizada para determinar el inventario total en AB, VTA y B fue de 3 372 743.83 

ha, que corresponden a las selvas bajas, medianas y altas (Conafor, 2014). Para estimar el 

inventario total de cada variable, se emplearon estimadores clásicos basados en diseños como: 

Muestreo Simple al Azar (MSA), Estimadores de Razón (ERaz) y Regresión (EReg), que usan 

una media poblacional (𝜇𝜇𝑥𝑥) como valor verdadero. Uno de los supuestos básicos es que el valor 

de la variable auxiliar a nivel poblacional (N) es conocido sin error de muestreo, de forma que 

es posible lograr que el muestreo sea eficiente en términos de costo y tiempo, además, si el 

tamaño de la muestra es robusto, el estimador es más eficiente y de menor sesgo (Roldan, 2013). 

Por lo tanto, es posible estimar la media poblacional de las variables de interés Yi (AB, VTA y 

B), con mayor precisión, cuando la variable auxiliar Xi (datos espectrales e índices de 

vegetación), muestran una alta correlación con la variable Yi (Scheaffer, Mendenhall y Ott, 1986; 

Valdez-Lazalde, González-Guillén, y Santos-Posadas, 2006; Roldán-Cortés et al., 2013; Ortiz-

Reyes et al., 2015). En la tabla 1 se muestran las expresiones matemáticas de las ecuaciones que 

describen a los estimadores del MSA, ME, ERaz y EReg. 
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Tabla 1. Estimadores utilizados para determinar las existencias totales en AB, VTA y B. 
Estimadores Parámetro Ecuación Expresión 

MSA 

Media y� =
1
n� yi

n

i=1
 10 

Varianza muestral Sy2 = � yi2
n

i=1

− �
yi − y�

n �
2

n − 1�  11 

Varianza de la media Sy�2 =
S2

n �
N − n

N � 12 

Límite superior e 
inferior  L. S e L. I = y� ± tn,gl�Sy�2 13 

La precisión de la 
media P = ta,gl�Sy�2 𝑦𝑦�⁄ × 100 14 

Inventario total 𝑇𝑇� = 𝑁𝑁 × 𝑦𝑦� 15 

ER 

Razón R =
μy
μx

 16 

Estimador de razón R� =
y�
x� =

∑ yin
i=1
n

∑ xin
i=1
n�  17 

Media población de la 
razón y�R� = R� × μx 18 

Varianza de la media 
de la razón SR�

2 =
∑ yi2n
i=1 + R�2 ∑ xi2n

i=1 − 2R� ∑ xiyin
i=1

n − 1
n × �1 −

n
N
� 19 

Límite superior e 
inferior  L. S e L. I = y�R� ± tn,gl�SR�

2  20 

La precisión de la 
media P = ta,gl�SR�

2 y�R�⁄ × 100 21 

Inventario total 𝑇𝑇� = 𝑁𝑁 × y�R�  22 

EReg 

Media y�REG = y� + β�(μx − x�) 23 

Pendiente β� =
∑ (yi − y�)n
i=1 (xi − x�)
∑ (xi − x�)2n
i=1

 24 

Varianza de la media SY�REG
2 =

∑ (yi − y�)2 − β2 ∑ (xi − x�)2n
i=1

n
i=1

n − 2
n × �1 −

n
N
� 25 

Límite superior e 
inferior  L. S e L. I = y�REG ± tn,gl�SY�REG

2  26 

La precisión de la 
media P = ta,gl�Sy�2 y�REG⁄ × 100 10 

Inventario total 𝑇𝑇� = 𝑁𝑁 × y�REG 11 
y� = media muestral del AB m2 ha-1, V m3 ha-1 y B Mg ha-1 observado en el i-ésimo UMP, 𝑥̅𝑥 = media muestral del 

NDVI),𝜇𝜇𝑥𝑥 = media poblacional del NDVI expresado como X� = 1
N
∑ xiN
i=1 , n = tamaño de la muestra, N = tamaño de 

la población, 𝛽̂𝛽 = son estimados a partir de los datos de la muestra mediante mínimos cuadrados ordinarios (MCO), 

t distribución de Student a 95% de confiabilidad con n-1 grados de libertad (gl).  

Con la finalidad de seleccionar y calificar al mejor estimador de muestreo en eficiencia 

estadística, se evaluaron con base en el menor valor la media del inventario (m3 ha-1), la más 

alta precisión (P, en porcentaje). Para la comparación anterior, se tomaron como referencia los 
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estimadores de los parámetros obtenidos con el MSA. Lo anterior permitió proponer una 

estrategia de muestreo (estimadores muestrales) práctico y eficiente en términos de tiempo y 

costo. 

Resultados 

Estadísticas descriptivas de las variables forestales 

Los principales estadísticos de las variables forestales en el área de estudio se resumen en la 

tabla 2. El AB promedio estimado fue de 18.92 m3 ha-1, VTA de 149.47 m2 ha-1 y B de 78.47 

Mg ha-1. 

Tabla 2. Estadísticas descriptivas de las variables forestales  

Estadísticos Área basal (m2 ha-1) Volumen (m3 ha-1) Biomasa (Mg ha-1) 

Media 18.92 149.47 78.47 

Mínimo 1.64 10.53 6.04 

Máximo  43.79 381.07 199.53 

Muestra 798 798 798 

Correlación entre variables forestales y los datos espectrales 

La asociación entre las variables forestales y las reflectancias del sensor Landsat mostraron 

tendencias negativas, mientras que para los índices de vegetación fueron positivas (Tabla 3). 

Todas las correlaciones son altamente significativas con un 𝛼𝛼 = 0.05. 
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Tabla 3. Coeficientes de correlación de Pearson entre las variables espectrales y las variables 
forestales. 

Variables espectrales e índices de 
vegetación AB VTA B 

Azul -0.23 -0.24 -0.24 
Verde -0.33 -0.33 -0.34 
Rojo -0.34 -0.36 -0.36 
Infrarrojo cercano (IRC) 0.12 0.17 0.17 
Infrarrojo medio (IRM) -0.33 -0.32 -0.32 
NDVI 0.35 0.39 0.39 

AB = área basal en m2 ha-1, VTA = volumen en m3 ha-1, B = biomasa en Mg ha-1, NDVI = índice de diferencia 

normalizada.  

El NDVI presentó coeficientes de correlación positivos mayores a las diferencias de las 

bandas espectrales, resultado que se atribuye a la reflectancia en respuesta a la clorofila de la 

vegetación. Por tanto, el NDVI mostró mayor asociación con las variables forestales con 

coeficientes de correlación mayor (r) de 0.35, 0.32 y 0.59 para AB, V, B, respectivamente. 

Modelo de regresión lineal propuesto con el método STEPWISE 

Los resultados de ajustes y significancia de los parámetros en los modelos evaluados mediante 

el procedimiento STEPWISE para estimar el AB, VTA, y B se resumen en la tabla 4. Los 

estimadores de los parámetros obtenidos en el ajuste fueron altamente significativos a 95% de 

confiabilidad.  

Tabla 4. Parámetros e indicadores de ajuste de los modelos de regresión ajustados. 

Modelo Ecuación 𝑹𝑹𝒂𝒂𝒂𝒂𝒂𝒂𝟐𝟐  RMSE ρ Ψ ε† α 

1 𝐴𝐴𝐴𝐴 = 𝛼𝛼0 + 𝛼𝛼1𝑋𝑋1 + 𝛼𝛼2𝑋𝑋2 0.28 7.64 𝛼𝛼0 31.58161  5.2973 0.0001 

𝛼𝛼1 -936.624 70.8154 0.0001 

𝛼𝛼2 63.68698  4.6533 0.0001 

2 𝑉𝑉𝑉𝑉𝑉𝑉 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1 + 𝛽𝛽2𝑋𝑋2 0.32 68.39 𝛽𝛽0  230.433 47.4341 0.0001 

𝛽𝛽1 -8817.75   634.1 0.0001 
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𝛽𝛽2 650.5635 41.6673 0.0001 

3 𝐵𝐵 = 𝛼𝛼0 + 𝛼𝛼1𝑋𝑋1 + 𝛼𝛼2𝑋𝑋2 0.32 35.65 𝛼𝛼0 124.9765 24.7243 0.0001 

𝛼𝛼1 -4656.05   330.5 0.0001 

𝛼𝛼2  338.289 21.7184 0.0001 

AB = área basal (m2 ha-1), VTA= volumen total árbol (m3 ha-1), B= biomasa (Mg ha-1), 𝑋𝑋1= banda verde, 𝑋𝑋2= 

NDVI, ρ = parámetros del modelo, Ψ = valor de los parámetros, ε† = error estándar de los parámetros. α = nivel de 

significancia de los estimadores de los parámetros. 

Los modelos de regresión propuestos consideran dos variables independientes: la banda 

verde que evalúa el vigor de la vegetación por medio la radiancia captada por las células de la 

vegetación, y el NDVI que expresa la reflectancia de las bandas espectrales del R y del IRC, 

mismas que ayudaron a generar estadísticos consistentes para estimar el AB, VTA y B. 

Las estimaciones de las variables forestales obtenidas con el modelo de regresión lineal 

múltiple presentaron errores (RMSE) y coeficientes de determinación ajustado (Radj
2 ) 

aceptables. Los valores de RMSE fueron de 7.64 m2 ha-1, 68.39 m3 ha-1 y 35.65 Mg ha-1 para el 

AB, VTA y B; mientras que los valores de Radj
2  fueron de 0.28, 0.32 y 0.32 para el AB, VTA y B. 

Distribución espacial de las variables forestales en Quintana Roo: Las ecuaciones de regresión 

lineal múltiple propuestas fueron utilizadas para estimar cada variable en toda el área de estudio, 

píxel por píxel, y en donde cada uno representa una superficie de 900 m2. Las diferentes 

tonalidades de colores describen la distribución espacial del AB (m2 ha-1), VTA (m3 ha-1) y B 

(Mg ha-1) para el área de estudio. La superficie en blanco con valores de 0 representa a los 

terrenos no forestales.  

La variación espacial es similar en las variables evaluadas, es decir, en las áreas donde se 

registran los valores más altos en AB (Fig. 2), también se encuentra los más altos valores del 

VTA (Fig. 3) y B (Fig. 4). Las distribuciones espaciales de las variables forestales adquieren 
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importancia en la planeación y en el manejo sostenible de los recursos forestales, ya que permite 

objetivamente realizar un esquema de manejo más eficiente e integrarlos en proyectos de pagos 

por servicios ambientales, tales como la captura de carbono. También, ofrecen la ventaja de 

detectar las tasas de cambio de usos de suelo mediante la observación visual de las zonas que 

han presentado mayor pérdida en la cobertura forestal y de esta manera proponer políticas 

ambientales para la optimización de los recursos forestales, fomentar la conservación de la 

biodiversidad y de la cultura forestal. 

Las áreas con densidad baja y media en AB (0 m2 ha-1 a 30 m2 ha-1), VTA (0 m2 ha-1 a 200 m3 

ha-1) y B (0 Mg ha-1 a 100 Mg ha-1) cubren alrededor de 80% de la superficie total del estado y 

corresponden a bosques con densidad arbórea baja, bosques degradados por actividades 

antropogénicas, por incendios forestales, la tala clandestina, el cambio de usos suelos y la 

fragmentación de los bosques por actividades propias de cultivos agrícolas y de pastoreo. 

Las áreas con densidad alta en AB (30 m2 ha-1 a 40 m2 ha-1), VTA (200 m3 ha-1 a 300 m3 ha-1) 

y B (100 Mg ha-1 a 150 Mg ha-1) cubren cerca de 20% de la superficie total y corresponden a 

bosques con densidad arbórea alta o bosques denso con una mínima perturbación, áreas 

naturales protegidas o localizados en áreas sujetas a manejo forestal intensivo bajo un esquema 

sostenible. 
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Figura 2. Distribución espacial de área basal estimada mediante regresión lineal múltiple 

para selva mediana en Quintana Roo. 
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Figura 3. Distribución espacial de volumen estimado mediante regresión lineal múltiple 

para selva mediana en Quintana Roo. 
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Figura 4. Distribución espacial de biomasa estimada mediante regresión lineal múltiple 

para selva mediana en Quintana Roo. 

Estimaciones del inventario con el método tradicional vs percepción remota 

En la tabla 5 se presentan las estimaciones del inventario en AB, VTA y B obtenidos con el 

método tradicional (MSA) y percepción remota (ERaz y EReg). Para los cálculos de inventario 

total, se trabajó con una superficie correspondiente a 2 891 579 ha con el objetivo de comparar 

cuál de los métodos presentan mejores estimaciones en términos de inventario, amplitud de 

intervalos de confianza y precisión. 

El EReg presentó la más alta precisión (error menor a 10%) comparado con el MSA y el 

ERaz, esto es posible atribuir a la correlación existente entre el AB, el VTA y la B con el NDVI. 
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La ventaja del EReg es que incorpora variables auxiliares (NDVI) conocidas a nivel poblacional, 

es decir, considera toda la gama de variación en el área de estudio, lo que a su vez permitió 

mejorar la precisión con respecto al MSA y ERaz. El EReg presentó valores de precisión en AB, 

VTA y B de 2.73% 2.72% y 2.71%, respectivamente. 

Tabla 5. Comparación del inventario tradicional vs método alternativo mediante percepción 

remota. 

Inventario Estimadores  Parámetro AB (m2 ha-1) VTA (m3 ha-1) B (Mg ha-1) 

    Media   18.92   149.47   78.47  

Tradicional MSA 

L.I  18.29   143.69   75.45  

L.S  19.55   155.25   81.49  

P (%) 3.32 3.87 3.85 

Inventario  63 806 331  504 133 736  264 655 154  

Percepción 

remota 

ERaz 

Media   18.51   146.26   76.78  

L.I  17.91   145.66   76.18  

L.S  19.11   146.85   77.38  

P (%) 3.23 3.76 3.74 

Inventario  62 433 221  493 284 790  258 959 781  

Reg 

Media   18.13   141.50   74.31  

L.I  17.64   137.66   72.30  

L.S  18.63   145.35   76.32  

P (%) 2.73 2.72 2.71 

Inventario  61 155 868  477 249 759  250 627 328  

MSA = muestreo simple al azar; L.I y L.S = intervalo de confianza inferior y superior a 95% de confiabilidad. 

Estadísticamente, los métodos alternativos con respecto al método clásico ubicaron sus 

inventarios totales dentro del intervalo de confianza del MSA. Los dos métodos presentaron 

resultados muy similares en inventarios totales para cada variable de interés, aunque el MSA 

(método clásico) genero estimaciones más optimistas en inventarios y sus intervalos presentaron 
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mayor amplitud respecto al inventario estimado con los métodos alternativos: i) ERaz, y ii) 

EReg. 

Discusión 

Los promedios estimados en el estudio (AB = 18.92 m2 ha-1, VTA = 149.47 m3 ha-1 y B = 78.47 

Mg ha-1) difieren a los valores registrados por la Conafor (2014) con VTA y AB de 112.83 m3 

ha-1 y 17.59 m2 ha-1; y con los obtenidos por Cartus et al. (2014) al estimar las existencias de 

biomasa y carbono mayores a los 100 Mg ha-1 y 50 t ha-1, respectivamente, ambos al utilizar 

datos del inventario forestal estatal del Estado de Quintana Roo, pero mostraron similitud a lo 

estimado por Rodríguez-Veiga, Saatchi, Tansey y Balzter (2016) quienes indican una media de 

B de 60 Mg ha-1. Estas diferencias en AB, VTA y B, se consideran debido al empleo de las 

nuevas ecuaciones desarrolladas para ciertas especies en el estado de Quintana Roo por el 

proyecto “Sistema biométrico para la planeación del forestal sustentable de los ecosistemas con 

potencial maderable de México” (Vargas-Larreta et al., 2017). 

Las correlaciones negativas entre la asociación de variables forestales con las reflectancias 

del sensor Landsat y los índices positivos de vegetación coinciden con lo obtenido por Torres-

Vivar et al. (2017) al realizar un inventario y mapeo de un bosque bajo manejo de pino con datos 

del sensor SPOT 6 y los obtenidos por Acosta et al. (2017) al realizar la estimación de la 

densidad forestal mediante imágenes Landsat ETM+. 

La mayor asociación del NDVI con las variables forestales expresada a través del coeficiente 

de correlación concuerdan con Torres-Rojas et al. (2016), quienes señalan una asociación 

similar del NDVI con el carbono, con valores de r = 0.48 con información derivada del sensor 

QuickBird, y r = 0.66 con el sensor SPOT. Por su parte, Martínez et al. (2016), al utilizar 
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imágenes del sensor Landsat ETM+ para evaluar las variables forestales en los bosques de 

coníferas de Durango, México, obtuvieron para el NDVI valores de  r = 0.47 y   r = 0.48 para la 

B y C; mientras que Acosta et al. (2017) registraron valores con el NDVI de r = 0.56 a 0.61 para 

las mismas variables forestales estudiadas. Lo anterior, explica por qué el AB es una variable 

asociada linealmente con el VTA y la B, además de que está fuertemente correlacionada con la 

cobertura y área foliar (Cruz-Leyva, Valdez-Lazalde, Ángeles-Pérez y De los Santos-Posadas, 

2010).  

La correlación obtenida entre AB, V y B con el NDVI en términos reales no es elevada, sin 

embargo, es similar a los estudios citados anteriormente, y por tanto los resultados son 

aceptables y más para el tipo de ecosistema evaluado. A pesar de ello, el presente estudio es una 

de las pocas investigaciones realizadas para las selvas de Quintana Roo, razón por la cual puede 

servir como marco referencial para nuevas investigaciones en pro de seguir mejorando los 

análisis estadísticos entre los datos de campo y de los sensores remotos. 

Wulder (1998) propone que el NDVI adquiere información por la cantidad de radiación 

absorbida por la vegetación, por lo que valores cercanos a 1 son producto de un alto valor del 

infrarrojo cercano (IRC) y un bajo valor del rojo visible (R), señalando que existe vegetación 

densa, caso contrario cuando existe poca o nula densidad de vegetación (suelo desnudo).  

Los resultados obtenidos con los modelos de regresión y los inventarios totales mediante 

sensores remotos son confiables y demuestra la importancia que tiene el NDVI para estimar de 

forma indirecta las variables forestales, dado su alto nivel de asociación con las mismas. Sin 

embargo, el valor de NDVI obtenido para selvas es inferior con respecto a otros estudios 

desarrollados en ecosistemas de coníferas. Tales diferencias en el NDVI probablemente 
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respondan a que las especies que coexisten en selvas son de hoja caduca y en consecuencia 

existe una baja reflectividad o albedo que es captado por el sensor Landsat. 

Tucker (1979) discute que el NDVI es un índice que expresa las características de la 

vegetación, como B y el contenido de clorofila, lo que explica la correlación mayor que existe 

entre el NDVI con el AB, VTA y B. Por su parte Heiskanen (2006) menciona que el valor de 

NDVI mayor representa a una vegetación saludable, lo que responde a una densidad mayor en 

las variables de AB, V y B. El NDVI mostró mayor correlación por lo que se optó utilizar como 

variable auxiliar (n muestral y N poblacional) para estimar el inventario total del AB, VTA y B 

mediante los estimadores de razón y de regresión. El presente estudio es uno de los primeros 

realizados para las selvas del estado de Quintana Roo y demuestra la importancia que tiene 

NDVI al generar estimaciones confiables en la estimación de cada variable forestal e inclusive 

generó resultados más conservadores en los inventarios totales. Sin embargo, es necesario seguir 

explorando con imágenes de teledetección de alta resolución y con los datos LiDAR (Light 

Detection And Ranging), esta última ofrece información tridimensional del bosque y es una de 

las novedades para estudiar variables forestales, pero los estudios con este tipo de información 

son demasiado costosos. 

La banda verde y el IRC empleado en el modelo de regresión propuesto, es una respuesta de 

la absorción de la energía emitida por una vegetación saludable, clorofila y por los aspectos 

estructurales de las células que guardan la humedad de acuerdo con la mencionado por Harris 

(1987). Por lo tanto, es factible atribuir que los valores de Radj
2  fueron bajos debido a que los 

valores de reflectancia y NDVI fueron inferiores a los de una vegetación con follaje perenne o 
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persistente, pero no necesariamente sugiera una vegetación no saludable, al contrario, es una 

condición propia de las selvas de tipo caducifolias. 

Los errores en las estimaciones de las variables obtenidas con el modelo de regresión lineal 

múltiple y los valores de Radj
2  fueron aceptables debido a que son ligeramente mayores a los 

errores encontrados por Muñoz-Ruiz et al. (2014), quienes presentan valores para los bosques 

templados de Hidalgo, México de RMSE para AB de 4.70 m2 ha-1 y VTA de 41.45 m3 ha-1, aunque 

los valores en Radj
2  (0.32 y 0.39 para el AB y VTA) fueron similares, tal contraste se debe al tipo 

de ecosistema que se evalúa y al manejo intensivo que se da a los bosques templados. En ese 

estudio se emplearon imágenes SPOT 4 y SPOT 5 de alta resolución espacial. 

Los valores más contrastantes son los publicados por Aguirre-Salado et al. (2011): RMSE de 

11.87 m2 ha-1, 96.81 m3 ha-1 y 52.56 Mg ha-1, y Radj
2  de 0.76, 0.56 y 0.60 para el AB, VTA y la 

B, respectivamente, en un estudio realizado en los predios de la Mojonera y Atopixco en 

Zacualtipán, Hidalgo, México, empleando datos derivados del sensor SPOT 5 HRG. 

Probablemente, ellos obtuvieron dichos resultados por la resolución espacial mejorada de SPOT 

5 HRG, es decir, 10 m en modo multiespectral respecto a la resolución espacial ofrecida por 

Landsat que es de 30 m.  

Por su parte, Martínez et al. (2016) mencionan valores de RMSE de 54.74 Mg ha-1 y Radj
2  de 

0.6241 para la B, quienes utilizaron imágenes Landsat ETM+ al evaluar la B en los bosques 

templados de cuatro municipios más productivos y representativos del sector forestal en 

Durango, México. Sin embargo, los resultados más contrastantes en RMSE son los encontrados 

por Acosta et al. (2017) quienes evaluaron la vegetación de selva baja caducifolia en el Sur del 

Estado de México mediante imágenes derivados del sensor Landsat ETM+, con valores de 
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RMSE de 3.30 m2 ha-1, 13.18 m3 ha-1 y 5.91 Mg ha-1 para el AB, VTA y la B, y corresponden al 

orden mencionado, mientas que los valores del estadístico de Radj
2  fueron de 0.52, 0.54 y 0.60 

para el AB, VTA y la B, y corresponden al orden mencionado. Valores semejantes fueron 

hallados por Torres-Vivar et al. (2017), quienes evaluaron variables forestales (AB, VTA, y B) 

en los bosques de coníferas, sujetos a manejo intensivo, en Zacualtipán, Hidalgo, México, 

mediante imágenes SPOT 6, con valores de RMSE en AB = 5.82 m2 ha-1, V = 62.3 m3 ha-1 y B = 

32 Mg ha-1 y valores de Radj
2  en AB, V y B de 0.66. 

Torres-Rojas et al. (2016) mencionan que el continuo avance en el mejoramiento de las 

capacidades de los diferentes tipos del sensor ofrece la oportunidad de desarrollar técnicas de 

análisis que maximicen las capacidades de las plataformas satelitales disponibles, sin duda 

también proporcionará resultados eficientes en los estadísticos, ante este panorama, es posible 

que tal variación en RMSE y Radj
2  se atribuye también a la resolución espacial de las imágenes 

utilizadas en cada estudio de caso, a las condiciones ambientales en las cuales fueron adquiridas 

las imágenes, y al tipo de vegetación. Acosta et al. (2017) discuten que las diferencias antes 

señaladas, probablemente se deba al tipo de vegetación, debido que los bosques tropicales, sobre 

todo selva baja caducifolia presentan los valores más pequeños en AB, VTA y B con respecto a 

lo registrado en bosques de coníferas. 

Los métodos alternativos: i) ERaz y ii) EReg presentaron intervalos de menor amplitud con 

respecto al MSA, sin embargo, el inventario derivado con el EReg fue el más conservador de los 

métodos evaluados, además, generó una precisión mayor, por lo que una característica a tomar 

en cuenta para la elección del método más preciso es con base a la amplitud de los intervalos de 

confianza y en el patrón de los datos (Ortiz-Reyes et al., 2015), este resultado es factible 
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atribuirlas a la relación que existen entre el AB, VTA y B con del NDVI, por lo que se supone 

que la dispersión de los datos pasa cerca del origen y el mejor método para evaluar el 

comportamiento biológico fue el estimador de regresión. De acuerdo con Bailes y Brooks (2004) 

indican que la consecuencia de usar variables auxiliares (NDVI) de mayor correlación con la 

variable principal (AB, VTA y B) conduce a obtener estimadores más eficientes, además ofrece 

la ventaja de que es fácil, rápida y barata de medirse en campo, lo que conduce a optimizar la 

inversión en tiempo y costo durante la ejecución de inventarios en campo. Los inventarios 

derivados del EReg fueron eficientes al aproximar sus valores al MSA; dada su semejanza entre 

ellos, se recomiendan como la mejor alternativa para evaluar variables forestales, siendo un 

método que ofrece inventarios actualizados con precisión aceptable. 

Conclusiones 

Con los modelos de regresión lineal múltiple es posible estimar indirectamente cada variable 

forestal (pixel por pixel) con precisión aceptable (error menor a 10%) utilizando como variable 

independiente el índice de diferencia normalizada y la banda del infrarrojo cercano; de esta 

forma es posible evaluar los cambios en la distribución espacial de cada variable forestal y contar 

con un inventario actualizado cada 16 días (resolución temporal del sensor Landsat ETM+), 

tiempo en el que tarda el satélite en tomar dos imágenes del mismo sitio, siendo una herramienta 

útil para la toma de decisiones a nivel regional. 

El NDVI mostró la correlación más alta con el área basal, el volumen y la biomasa, razón por 

la cual se utilizó como variable auxiliar para actualizar el inventario total de cada variable 

forestal con precisión mayor que el inventario forestal tradicional. 
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