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ABSTRACT 
Fire regimes in coniferous forests in Central Mexico have been severely disturbed by land use change and fire management activities. 
Hence, it is critical to assess the contribution of anthropic and environmental factors that drive the occurrence of fires in these forests. 
This information is essential for the effective planning of fire management and wildfire prevention policies. In this study, we identified 
the potential drivers of fire occurrence within the Monarch Butterfly Biosphere Reserve (MBBR) and modeled their spatial pattern 
through generalized linear mixed models. We employed fire event data for five years (2009-2013) and the spatial distribution of anthropic 
infrastructure and biophysical variables such as forest biomass and slope. We found fire occurrence increased with total population and 
forest edge density. The derived spatial model showed an acceptable accuracy (AUC = 0.71) for fire occurrence based on 2014 and 2015 
fire events used to evaluate the model. To improve the model, we suggest the incorporation of direct fuel measurements. From our 
analyses, we suggest to develop fire management guidelines particularly in sites with high population density and close to forest fragments 
within the MBBR. 

KEYWORDS: human factors; coniferous forest; generalized linear mixed models; spatial probability. 

RESUMEN 
Los regímenes de incendios en bosques de coníferas en el centro de México han sido severamente modificados por el cambio de uso de 
la tierra y las actividades de manejo de incendios. Por lo tanto, es crítico evaluar la contribución de factores antrópicos y ambientales que 
impulsan la ocurrencia de incendios en estos bosques. Esta información es esencial para la planificación eficaz de la gestión de incendios 
y las políticas de prevención de incendios forestales. En este estudio, identificamos los potenciales causantes de la aparición de incendios 
dentro de la Reserva de la Biosfera de las Mariposas Monarca (RBMM) y modelamos su patrón espacial a través de modelos lineales 
generalizados y mixtos. Utilizamos datos de eventos de incendios durante cinco años (2009-2013) y la distribución espacial de la 
infraestructura antrópica y variables biofísicas como la biomasa forestal y la pendiente. Se encontró que la ocurrencia de incendios 
aumentó con la población total y la densidad de los bordes del bosque. El modelo espacial derivado mostró una precisión aceptable 
(AUC = 0.71) para la ocurrencia de incendios basados en los eventos de incendios de 2014 y 2015 utilizados para evaluar el modelo. Para 
mejorar el modelo, sugerimos la incorporación de mediciones directas de combustible. A partir de nuestros análisis, se sugiere desarrollar 
pautas de manejo de incendios particularmente en sitios con alta densidad de población y cerca de fragmentos de bosque dentro de la 
RBMM. 

PALABRAS CLAVE: factores humanos; bosque de coníferas; modelos mixtos lineales generalizados; probabilidad espacial. 
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INTRODUCTION 
Forest fires are a major disturbance in many parts of the 
world, with considerable impacts on vegetation and on 
human societies (Pyne, Andrews and Laven, 1996; Bowman 
et al., 2009). In sites with little direct human impact, 
variables associated with natural fire regimes, such as 
frequency, size, seasonality and intensity of fires, are 
governed by natural processes and biophysical conditions, 
such as climate, vegetation, and topography. In human 
dominated landscapes, anthropogenic activities modify fire 
regimes through actions such as fire suppression or an 
increase in the incidence of ignitions through activities 
associated with land use (Heyerdahl et al., 2003; Krebs, 
Pezzatti, Mazzoleni, Talbot and Conedera, 2010). Clearly, 
human pressure through land use and fire management 
activities have altered fire regimes both at local and global 
scales (Chuvieco, Giglio and Justice, 2008; Marlon et al., 
2008; Martínez, Vega-Garcia and Chuvieco, 2009). 
Consequently, the current patterns of fire regimes have 
dramatically changed during the last decades (Moreno, 
Vázquez and Vélez, 1988; Westerling, Hidalgo, Cayan and 
Swetnam, 2006; Martínez-Torres, Cantú-Fernández, 
Ramírez-Ramírez y Pérez-Salicrup, 2015), becoming one of 
the main drivers of forest degradation. 

Although human activities have clearly altered fire 
regimes, this process is not globally homogeneous and is 
dependent on the types of ecosystem and associated human 
activity. In fact, regional studies hint at a complex 
relationship between fire regime characteristics and human 
activities. For instance, Syphard et al. (2007), found in 
California that fire density was strongly associated with 
distance to the wildland-urban interface, and by population 
density and vegetation type, but fire frequency was only 
associated by vegetation type. Di Bella, Jobbágy, Paruelo 
and Pinnoc (2006) found that in South America, agriculture 
suppresses fire density in arid regions but enhances it in 
humid environments, suggesting that agriculture prevents 
biomass burning in semiarid areas but enhances it in humid 
environments, where biomass accumulates at faster rates. 
In general terms, Guyette, Muzika and Dey (2002), 
identified four ways in which humans influence the amount 

of burnt land (or the burned area fraction): anthropogenic 
ignitions, fuel production, fuel fragmentation, and cultural 
behavior. All these factors are linked to population density. 

Human caused changes in fire regimes are particularly 
critical near or in natural protected areas. More important, 
understanding the effects of human activities on several 
aspects of a fire regime is essential and would allow for the 
generation of more realistic fire management plans. 
Protecting nature reserves from catastrophic disturbances 
associated with wildfires requires a management strategy 
that considers the driving factors of forest fire occurrence, 
and adjustment of local strategies. Under this approach 
there are several studies that have evaluated the 
relationships between different types of driving factors like 
landscape elements such as distance to roads with effects in 
the frequency of human-ignited fires (Alencar, Solorzano 
and Nepstad, 2004; Syphard et al., 2007). Also, fire 
occurrence appears to be positively associated with 
population density (Keeley and Fotheringham 2001; 
Guyette et al., 2002). Furthermore, the agricultural frontier 
provides abundant ignition sources, where fires frequently 
escape beyond their intended boundaries and ignite 
adjacent forests (Nepstad et al., 1999; Alencar et al., 2004). 

There have been only few studies in Mexico that 
address the pattern of fire occurrence in coniferous forests 
based on landscape elements (Roman and Martinez, 2006; 
Ávila-Flores et al., 2010). Furthermore, Mexico is a country 
where a great proportion of forest resources is distributed 
in special land tenure system. In "ejidos" and "indigenous 
communities" land is owned by farmers and indigenous 
communities, decisions about forest management are taken 
collectively, and human presence in forested ecosystems is 
extremely conspicuous, particularly in the central and 
southern portions of the country (Martínez-Torres, 
Castillo, Ramírez and Pérez-Salicrup, 2016). 

In this study, we evaluated which anthropic landscape 
factors are associated with the occurrence of fire in the 
Monarch Butterfly Biosphere Reserve (MBBR), where the 
implementation of fire management actions must 
overcome the daunting problems related to land use change 
(i.e., conversion to pastures and agriculture), illegal logging, 
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and an inadequate management of forest resources 
(Ramírez, Azcárate and Luna, 2003; Merino and 
Hernández, 2004; Honey-Rosés 2009; Brower et al., 2016). 
We first assessed the driving factors from the landscape 
using historical fire records (2009-2013), as well as 
environmental and anthropogenic variables associated to 
fire ignition. Then, we developed a spatially explicit model 
of forest fire probability within the MBBR. 

OBJECTIVES 
The main objective of the current study is to assess the 
influence of several driving factors like anthropogenic and 
biophysical landscape elements on the performance of 
static, spatially explicit fire occurrence probability. 

MATERIALS AND METHODS 

Study area 

Location. The MBBR is located in central Mexico, between 
Mexico and Michoacan States (Fig. 1). The MBBR 
constitutes the largest hibernation habitat of the monarch 
butterfly (Danaus plexippus L.), which migrates from the 
eastern portions of the United States and Canada to these 
forests (Slayback and Brower, 2007). Its territory 
encompasses a total area of 56 259 ha, divided in two buffer 
(42 707 ha) and three (13 551 ha) core zones (Comisión 
Nacional de Áreas Naturales Protegidas [Conanp], 2001). 
The core zones are the Altamirano Mountain in the north, 
the Chincua, Campanario, Chivati-Huacal, and Lomas de 
Aparicio Hills in the center, and the Pelón Mountain in the 
south. Cerro Altamirano constitutes a single mountain 
detached from the larger part of the reserve. In this study, 
we excluded it from our analyses. 
Relief, Vegetation Types and Land Uses. The MBBR is 
part of the Trans-Mexican Volcanic Belt physiographic 
province (Ferrusquía-Villafranca 1990), which includes 
basically mountainous areas in central Mexico. It is 
characterized by a discontinuous mountain system, 
intensely dissected by strong tectonic processes, consisting 
of a set of hills and low hills, with a maximum elevation in 
the northern part of 3640 meters above sea level and with 

abrupt slopes. Vegetation types include dense conifer 
forests dominated or codominated by Abies religiosa (locally 
known as oyamel), Pinus spp., and Cupressus lusitanica; and 
mixed conifer and broad-leaved forests which include 
species of the genera Quercus, Alnus, Arbutus, and Cleyera, 
among others (Espejo, Brunhuber, Segura and Ibarra, 1992; 
Madrigal, 1994). Agriculture is the most important 
economic activity in the study area, where the dominant 
land uses are irrigated and rainfed agriculture with rotation 
cycles, followed by cattle pastures and forest management 
activities associated with timber extraction (Ramírez et al., 
2003). 
Forest Fire Regime. Knowledge regarding the forest fire 
regimes at MBBR is still limited. According to Martínez-
Torres et al. (2016), the monitoring institutions of fire 
occurrence at MBBR are the National Forestry 
Commission (Conafor) and the Natural Protected Areas 
National Commission (Conanp) brigades' reports. 
Thereafter, Cantú (2013) assessed the reliability of the fire 
database of 2012. Most of the fires recorded were described 
as having low or moderate intensities in accordance with 
Agee (1993) and Sugihara, van Wagtendonk and Fites-
Kaufman (2006). 

Fire Database 

We used the fire database from various federal institutions, 
such as Conafor and Conanp. The former government-
based agency coordinates operations for fire prevention 
and control and keeps a registry of all fire events in the 
country along with latitude and longitude coordinates. We 
used information on fires from 2009 to 2013. The latter is 
the government agency in charge of natural protected areas. 
Only the fires of 2012 and 2013 were verified on the field. 
The heterogeneity of this fire data base makes it difficult to 
assess data quality in the extension of the surface area 
burned. Therefore, we used only records of geographic 
coordinates as occurrences fire events, with a total of 41 
records of fire occurrence. We did not use the hotspot of 
MODIS sensor that are accessible through the Comisión 
Nacional para el Conocimiento y Uso de la Biodiversidad 
[Conabio] (2015).
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FIGURE 1. Location of the MBBR and fire occurrence pattern during the period of 2009 to 2013. 
 
 
Empirical Variables 

Since we hypothesized that anthropogenic factors shape 
fire occurrence, we gathered data related to ignition sources 
and human presence (Table 1). To express these variables, 
we compiled spatial data of land use types (Ramírez-
Ramírez, 2001), roads (Instituto Nacional de Estadística y 
Geografía [Inegi], 2011), human population per locality 
(Inegi, 2010), total tree biomass, and dead tree and stump 
density (Inventario Nacional Forestal y de Suelos 2009-2012; 
Conafor, 2012). We employed the digital elevation model 

from the Shuttle Radar Topography Mission (CGIAR 
Consortium for Spatial Information [CGIAR-CSI] 
undated) to estimate the slope and aspect factors. The 
friction map is based on the notion that movement in the 
terrain usually requires certain amount of effort and/or 
energy. Due to this "friction", spatial interactions tend to 
occur more often over short distances and low-grade 
slopes. We estimated this variable from road maps (scale 
1:250 000) and 90 m. digital resolution elevation models 
(DEM) (Farfán, Mas and Osorio, 2012). We generated four 
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classes for the friction map, 1- zero friction, 2 -moderate 
friction, 3- high friction, and 4 - very high friction. Finally, 
we defined edge density using a classification between 
forest and non-forest cover from the vegetation and land 
use map updated from the first version by Ramírez-
Ramírez (2001) every three years. Therefore, we use the 
updated version for 2012 and then we estimated the mean 
forest cover binary raster (forest = 1) using ARCGIS 
(version 10.2) "focal statistics" tool with a 20 × 20 pixel 

window. The resulting raster contained values from zero to 
1, where zero represents pixels in non-forest areas away 
from the edge of the forest, and one-valued pixels are away 
from forest edges but within the forest. As we wanted to 
assess the impact of edge, we set a value of 0.5 as the 
maximum value, where the influence of forest and non-
forest is the same. Pixels with values > 0.5 were reclassified 
by their complement (1 - pixel value). The spatial resolution 
of the cells of each aforementioned variables was 90 m.

 
 
TABLE 1. Empirical variables selected as a source of explanatory fire occurrence pattern at the Monarch Butterfly Biosphere Reserve, 
México.   

Types of 
variables 

Variable Description Data Source CODE 

Environmental 

Total biomass 
Interpolated using IDW method by 

ArcGis 10.2 spatial analyst tool 
Inventario Nacional Forestal y de 

Suelos (INFyS) B 

Dead trees 
density 

Number of dead trees per hectare 
interpolated using IDW method by 

ArcGis 10.2 spatial analyst tool 
INFyS DTD 

Slope Slope in degrees calculated by ArcGis 
10.2 surface analysis tool 

Shuttle Radar Topography 
Mission 

S 

Stump density 
Number of stumps per hectare 

interpolated using IDW method by 
ArcGis 10.2 spatial analyst tool 

INFyS SD 

Anthropic 

Total 
population per 

locality 

Interpolated using IDW method by 
ArcGis 10.2 spatial analyst tool 

Instituto Nacional de Estadística 
y Geografía (Inegi 2010) TP 

Friction 
Four categories: 1- zero friction, 2 -

moderate friction, 3- high friction, and 4 
- very high friction 

Farfán et al. (2012) FR 

Road density 
Number of roads per hectare calculated 

using DINAMICA EGO Inegi RD 

Distance to 
road 

Euclidian distance in meters calculated 
by ArcGis 10.2 spatial analyst tool 

Inegi (2011) DR 

Distance to 
core zone 

Euclidian distance in meters Comisión Nacional de Áreas 
Naturales Protegidas (Conanp) 

DCZ 

Distance to 
cattle pasture 

Euclidian distance in meters 

Ramírez-Ramírez (2012) 

DP 

Distance to 
agriculture DA 

Distance to 
urban zone DUZ 

Edge density 
Average of the number of forest pixels 

in a 20 × 20 window calculated by 
ArcGis 10.2 with focal statistics tool 

ED 
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Data Analyses 

Generalized Linear Mixed Models and Model Averaging. 

We analyzed the correlation degree between variables by 
Spearman coefficient analyses and assessed which variables 
were correlated. When two variables had a correlation 
coefficient ≥ 0.6 (r ≥ 0.6) we retained only one of the 
variables, and discarded the other to avoid variance inflation 
for correlated variables (i.e. redundant variables were 
excluded; Wintle, Elith and Potts 2005; Zhang, Lim and 
Sharples et al., 2017). We evaluated the remaining response 
variables by means of generalized linear mixed models 
(GLMMs). We fitted a binomial distribution with a logit 
function to build a set of models representing all possible 
combinations of one (N = 14), two (N = 77) and three (N = 
285) response variables, and used the southern aspect as a 
random variable to control for variability among the 
explanatory variables most closely associated with fire 
occurrence (Demidenko, 1987). We corrected the models for 
overdispersion (Crawley, 2002), and dis-carded resulting 
models with non-significant intercept values and a variance 
inflation factor (VIF) ≥ 2 (Fox, 2008). We assessed the level 
of support of the remaining models (N = 44) through the 
small-sized bias-correction version of Akaike Index Criterion 
(AICc), and selected those with a ∆AICc < 2 (Burnham and 
Anderson, 2002). Then we estimated the conditional 
(GLMM R2c) and marginal (GLMM R2m) R2 of the best-
supported GLMMs models, following Nakagawa and 
Schielzeth (2013) procedures. The first represents the 
amount of variability explained by the whole model (fixed 
and random effects), while R2m is the variability explained 
only by the fixed effects. 

Finally, to identify the influential variables of fire 
occurrence, we built a subset of models representing all 
possible combinations of the response variables found in the 
best-supported models from above. We averaged all the 
models to obtain the mean and 95% confidence interval (CI) 
of the variables coefficients, and considered those variables 
whose values did not include zero as influential. We 
performed all statistical analyses in the program R (R 
Development Core Team, http://www.R-project.org/). We 
employed the coefficients derived from the best model to 

generate a fire probability map at one square kilometer grid 
cell resolution with a total of 836 cells. 
Model Validation. The relative operating characteristic 
(ROC) analysis is a widely used quantitative method to assess 
the performance of spatial models that produce a probability 
map, which presents the sequence in which the model selects 
grid cells to determine the occurrence of a certain event 
(Pontius Jr. and Schneider, 2001; Mas, Soares Filho, Pontius, 
Farfán Gutiérrez and Rodrigues, 2013). In this study, ROC 
was employed to assess the effectiveness of the model in 
predicting the probability of occurrence of fire. ROC 
measures the accuracy of the model by comparing the map 
of predicted fire probabilities with the binary burned vs. 
unburned map of subsequent observed fires of 2014 and 
2015. If the true events coincide perfectly with the higher 
ranked probabilities, then the area under the curve (AUC) is 
equal to one, since the ROC curve begins at the point (0,0), 
goes up the horizontal axis to the point (0,1), and shifts to 
the right reaching the point (1,1). A random probability map 
produces a diagonal ROC curve in which the true positive 
rate equals the false positive rate at all threshold points. Any 
probability map that has a ROC curve below the diagonal has 
less predictive power than a random map (Mas et al., 2013). 

RESULTS 

Spearman Correlation Analysis 

Two pairs of variables were correlated (r ≥ 0.6): road 
density (RD) with distance to roads (DR); and biomass (B) 
with density of dead trees (DTD) (Fig. 2). We selected 
distance to roads and biomass for inclusion in the GLMM 
regression analysis. 

Generalized Linear Mixed Models 

The GLMM regression analysis produced a prediction of fire 
occurrence with six best-fitted models (Table 2). The first 
best model suggested that this occurrence was significantly 
correlated with the variables ‘total population’ and ‘edge 
density’. Although models that are more complex explained 
greater variability, only population density and edge density 
were influential to explain fire occurrence, according to the 
averaged models (Fig. 3).
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FIGURE 2. Spearman Correlation matrix with all the empirical variables.  FR: friction, DP: distance to cattle pasture, DTD: dead trees 
density, SD: stump density, B: total biomass, RD: road density, DA: distance to agriculture, DUZ: distance to urban zone, S: slope, TP: 
total population per locality, DR: distance to roads, DCZ: distance to core zone, ED: edge density.  The font size of the numbers 
reflects correlation degree between variables. 
 
 
 
 
TABLE 2. Summary of the best-fitted GLMMs for explaining fire occurrence at the Monarch Butterfly Biosphere Reserve, Mexico. 

Modela Intercept (SE) AICcb  ΔAICc - LLc R2md R2ce 

TP + ED ˗2.7 (0.96) 103 0 ˗ 48.32 0.28 0.28 

S + TP + ED ˗2.28 (1.03) 103.8 0.84 ˗ 47.63 0.30 0.30 

DR + TP + ED  ˗3.31 (1.16) 104.1 1.17 ˗ 47.8 0.31 0.31 

DUZ + TP + ED  ˗3.24 (1.17) 104.6 1.61 ˗ 48.02 0.28 0.3 

DCZ + TP + ED ˗2.79 (0.98) 104.9 1.92 ˗ 48.17 0.28 0.28 

SD + TP + ED ˗3.00 (1.09) 104.9 1.95 ˗ 48.19 0.28 0.28 

aTP = Total population, ED = Edge density, S = Slope, DR = Distance to roads DUZ = Distance to urban zone, DCZ = Distance to core zone, SD = 
Stump density.  
bAICc = Small-sized bias-correction version of Akaike Index Criterion  
c-LL = Negative log-likelihood function. 
dR2m = Marginal R2  
eR2c = Conditional R2 
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FIGURE 3. Estimated parameters of each variable obtained by model averaging (N = 64). 
(A and B) The points and the vertical lines represent the mean and 95 % confidence intervals (CI). *Influential variables, whose CI did not include zero. SD: stump 
density, DUZ: Distance to urban zone, S: slope, TP: total population per locality, DR: distance to roads, DCZ: distance to core zone, ED: edge density. 

 
 
 
The best-fit model indicated that fire occurrence was 
favored where human population and forest fragmentation 
scored high values (Fig. 4). In figure 5 it is possible to 
observe the spatial distribution of the values taken by these 
two variables. 

The spatial model of fire occurrence from the best-
fitted model (Table 2, Fig. 6) showed that the highest 
probabilities of fire occurrence are located at the 
surroundings of the MBBR core areas, where high total 
population and forest edge scores are present. We interpret 

the significance and direction of influence of these variables 
to indicate that increased human activity increased the 
probability of fire occurrence in the region. 

The AUC of the ROC analysis of this model was 0.71 
(Fig. 6), indicating a 71% of concordance between 
predicted probabilities and observed outcomes. The curve 
represents the cumulative tallies of false and true positives 
for all the cells in the modeled area. True positives are cells 
where the model and observed forest condition “burned” 
coincide.
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Figure 4. Response curves of fire occurrence to significant predictor variables, total population per locality and edge density. 
With pointwise twice-standard-error curves (dotted lines). 

 

 
FIGURE 5. A) Forest edge density and B) total population per locality. 
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FIGURE 6. Forest fire probability map based on total population  and edge density and the fire occurrence of 2014 and 2015 which 
were used as validation records of the model.  
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DISCUSSION 
Identifying the driving factors of forest fires is essential for 
their management (Ávila-Flores et al., 2010). There are few 
studies that have focused on the causes of forest fire 
occurrence from the geographical perspective for 
Michoacan and Estado de Mexico states. Our results 
suggest that the occurrence of fire at the MBBR is 
influenced by a combination of factors that vary across the 
region and involve both physical and anthropogenic 
characteristics of the landscape. The significant positive 
correlation of fire occurrence with edge density is 
consistent with numerous studies where fires are more 
common along forest edges (Cochrane, 2001; Cochrane 
and Laurance, 2002). This association might be caused by 
the fact that forest edges are drier (Kapos, Ganade, Matsui 
and Victoria, 1993) and have higher tree mortality (Ferreira 
and Laurance, 1997; Laurance et al., 1997), than the core of 
a forest fragment, which might in turn increase fuel loads. 
In addition, forest edges in our study area are the boundary 
of agriculture and areas with cattle pastures, where land 
burning for crop and pasture regrowth is commonly 
employed as a management tool (Martínez-Torres et al., 
2016). Fine litter, dead woody debris and canopy openness 
at forest edges might increase with the frequency and 
intensity of the adjoining land burning, thus creating a 
positive feedback where fire risk and danger increase. The 
spatial scale of fire occurrence is also driven by the shape 
of the forest fragments, whose complexity is correlated to 
its edge density. Hence, in the MBBR, total population, 
which in turn could be associated with an increase in the 
activities that generate forest fragmentation, may increase 
forest susceptibility to fire. 

Total population per locality was an important variable 
in our model. This variable showed a positive influence on 
ignition occurrence, meaning a higher probability of 
ignition in the more populated areas, as was previously 
hypothesized. In regions where most fires are human-
caused, this is a logical result, and in several other studies, 
total population, changes in population, and population 
density were found to positively relate to wildfire ignitions 
(Cardille, Ventura and Turner, 2001; Mercer and 

Prestemon, 2005). While these studies employed linear 
methods to investigate fire occurrence, studies using 
nonlinear methods often show that, after a threshold, fire 
occurrence tended to decrease with higher population 
densities. It appears that this is associated with declines in 
ignitions when human population density and development 
results in a reduction of forested area (Keeley, 2005; 
Syphard et al., 2007; Syphard, Radeloff, Hawbaker and 
Stewart, 2009). This pattern is not reflected by our results, 
probably because the sparse location of settlement within 
the MBBR, the persistence of forested areas, and the lack 
of localities with a high total population keep the 
relationship in the range of positive linear relation. 
Although the aforementioned studies have used population 
density, we used total population by localities and obtained 
a positive correlation. These results imply that fire 
managers must consider human influence together with 
biophysical characteristics such as those represented for the 
variable forest edge density when making decisions 
regarding the allocation of suppression and hazard 
mitigation resources. If human presence is not explicitly 
included in decision making, inefficient decisions may 
result, because fire occurrence is related to human presence 
on the landscape. 

Our model explains roughly one-third of the total 
deviation in fire occurrence. Several reasons may be 
responsible for this limited explanatory power. First, it 
would be illusive to pretend that such a multifaceted 
phenomenon as the occurrence of forest fires in a highly 
complex topography can be explained by only a few 
variables. Other variables such as socio-economic aspects 
and forest management practices would be needed to 
develop a more complete understanding of the 
determinants of forest fire occurrence. 

Second, because of the lack of direct data, proxies had 
to be used as predictors. We hypothesized that these 
proxies could influence fire drivers, which in turn might 
impact fire occurrence. From our analyses, we suggest that 
not all hypotheses regarding the proxies can be confirmed. 
For example, distance to pasture and distance to agriculture 
on fire occurrence. 
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Hosmer and Lemsow (2000) established that ROC is a 
threshold-independent measure of model discrimination, 
where a value of 0.5 indicates no discrimination. When 0.7 
≤ ROC < 0.8, discrimination is acceptable, and 0.8 ≤ ROC 
< 0.9 denotes an excellent discrimination. Alencar et al. 
(2004) developed empirical functions to relate occurrence 
of understory forest fire to landscape features, throughout 
regression analyses, separating for years of the El Niño 
Southern Oscillation (ENSO), and non-ENSO years. The 
ROC of the model that best predicted understory fires in 
both ENSO and non-ENSO years, was 0.778 and 0.751 
respectively. Alonso-Betanzos and others (2003) developed 
a fire prediction model based on neural networks. They 
assessed AUC ROC curves for several years, ranging from 
0.757 to 0.915. Lozano, Suárez-Seoane and de Luis (2007) 
assessed several spectral indices derived from satellite image 
data to modeling fire occurrence probability throughout 
logistic regression. The ROC values varied from 0.70 to 
0.85 for all the assessed regression models. As mentioned 
earlier, our result of 0.71 indicates that the model has 
acceptable discrimination. 

To discern the relative weight of each variable more 
accurately, we suggest integrating other analytical methods. 
Ouyang, Yung Han and Tong (2016) have found that 
machine learning algorithms, like random forest or 
conditional inference trees, showed greater predicting 
power of AUC than logistic regression. These also 
prevented bias detected in classification and regression tree 
algorithms. However, to achieve this, they used over 1,000 
sample points. On the other hand, the three-dimensional 
kernel density estimator, a nonparametric descriptor tool, 
has been used to draw up smoothed maps which represent 
the continuous spatial density distribution of forest fires, 
including its time evolution (Tonini, Pereira and Parente, 
2017). 

Finally, we must underscore the lack data on fuel loads. 
Fuel loading is one of the three basic elements (oxygen, heat 
and fuel) that fires need to ignite. Fuel quantification can be 
done through direct measures in periodic forest inventories. 
The inclusion of this factor may be essential in modeling 
fire occurrence in the study area. It is clear that models will 

not improve considerably unless fuels loads are quantified, 
particularly in response to fire management practices. 

CONCLUSIONS 
This study highlights the importance of examining multiple 
causes of forest fire occurrence in the emblematic MBBR. 
Fires at the MBBR are not randomly spread throughout the 
landscape but are mediated by the condition of the 
remaining forest and present human activity. Specifically 
our study shows that human influences, such as land use 
change and the creation of forest edges, is strongly related 
with fire occurrence. The mapped probabilities of fire 
occurrence show the places where such condition is 
present. Forest fragmentation combined with slope and 
total population, correlates with a high likelihood of forest 
fires. These factors should be considered as fundamental 
elements in the design of forest fire prevention programs. 

To increase the certainty of the model it would be 
necessary to incorporate other explanatory factors which 
were not analyzed here (e.g., fuel loadings, soil humidity, 
etc.) in combination with a longer period of fire occurrence 
records. This would produce a more comprehensive 
understanding of the factors underlying fire occurrence 
patterns and their spatial relationships. Nevertheless, the 
probabilities estimated here can be useful in the 
development of a fire management plan at MBBR. 
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