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ABSTRACT

Fire regimes in coniferous forests in Central Mexico have been severely disturbed by land use change and fire management activities.
Hence, it is critical to assess the contribution of anthropic and environmental factors that drive the occurrence of fires in these forests.
This information is essential for the effective planning of fire management and wildfire prevention policies. In this study, we identified
the potential drivers of fire occurrence within the Monarch Butterfly Biosphere Reserve (MBBR) and modeled their spatial pattern
through generalized linear mixed models. We employed fire event data for five years (2009-2013) and the spatial distribution of anthropic
infrastructure and biophysical variables such as forest biomass and slope. We found fire occurrence increased with total population and
forest edge density. The derived spatial model showed an acceptable accuracy (AUC = 0.71) for fire occurrence based on 2014 and 2015
fire events used to evaluate the model. To improve the model, we suggest the incorporation of direct fuel measurements. From our
analyses, we suggest to develop fire management guidelines particularly in sites with high population density and close to forest fragments
within the MBBR.

KEYWORDS: human factors; coniferous forest; generalized linear mixed models; spatial probability.

RESUMEN

Los regimenes de incendios en bosques de coniferas en el centro de México han sido severamente modificados por el cambio de uso de
la tierra y las actividades de manejo de incendios. Por lo tanto, es critico evaluar la contribucién de factores antrépicos y ambientales que
impulsan la ocurrencia de incendios en estos bosques. Esta informacion es esencial para la planificacion eficaz de la gestion de incendios
y las politicas de prevencién de incendios forestales. En este estudio, identificamos los potenciales causantes de la aparicién de incendios
dentro de la Reserva de la Biosfera de las Mariposas Monarca (RBMM) y modelamos su patrén espacial a través de modelos lineales
generalizados y mixtos. Utilizamos datos de eventos de incendios durante cinco afios (2009-2013) y la distribucién espacial de la
infraestructura antrépica y variables biofisicas como la biomasa forestal y la pendiente. Se encontré que la ocurrencia de incendios
aument6 con la poblacién total y la densidad de los bordes del bosque. El modelo espacial derivado mostré una precisiéon aceptable
(AUC = 0.71) para la ocurrencia de incendios basados en los eventos de incendios de 2014 y 2015 utilizados para evaluar el modelo. Para
mejorar el modelo, sugerimos la incorporacién de mediciones directas de combustible. A partir de nuestros analisis, se sugiere desarrollar
pautas de manejo de incendios particularmente en sitios con alta densidad de poblacién y cerca de fragmentos de bosque dentro de la
RBMM.

PALABRAS CLAVE: factores humanos; bosque de coniferas; modelos mixtos lineales generalizados; probabilidad espacial.
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INTRODUCTION
Forest fires are a major disturbance in many parts of the
world, with considerable impacts on vegetation and on
human societies (Pyne, Andrews and Laven, 1996; Bowman
et al, 2009). In sites with little direct human impact,
variables associated with natural fire regimes, such as
frequency, size, seasonality and intensity of fires, are
governed by natural processes and biophysical conditions,
such as climate, vegetation, and topography. In human
dominated landscapes, anthropogenic activities modify fire
regimes through actions such as fire suppression or an
increase in the incidence of ignitions through activities
associated with land use (Heyerdahl ez 4/, 2003; Krebs,
Pezzatti, Mazzoleni, Talbot and Conedera, 2010). Cleatly,
human pressure through land use and fire management
activities have altered fire regimes both at local and global
scales (Chuvieco, Giglio and Justice, 2008; Matlon ¢7 al.,
2008; Martinez, Vega-Garcia and Chuvieco, 2009).
Consequently, the current patterns of fire regimes have
dramatically changed during the last decades (Moreno,
Vazquez and Vélez, 1988; Westerling, Hidalgo, Cayan and
Swetnam,  20006;

Ramirez-Ramirez y Pérez-Salicrup, 2015), becoming one of

Martinez-Torres, Cantd-Fernandez,
the main drivers of forest degradation.

Although human activities have clearly altered fire
regimes, this process is not globally homogeneous and is
dependent on the types of ecosystem and associated human
activity. In fact, regional studies hint at a complex
relationship between fire regime characteristics and human
activities. For instance, Syphard ez /. (2007), found in
California that fire density was strongly associated with
distance to the wildland-urban interface, and by population
density and vegetation type, but fire frequency was only
associated by vegetation type. Di Bella, Jobbagy, Paruelo
and Pinnoc (2006) found that in South America, agriculture
suppresses fire density in arid regions but enhances it in
humid environments, suggesting that agriculture prevents
biomass burning in semiarid areas but enhances it in humid
environments, where biomass accumulates at faster rates.
In general terms, Guyette, Muzika and Dey (2002),

identified four ways in which humans influence the amount
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of burnt land (or the burned area fraction): anthropogenic
ignitions, fuel production, fuel fragmentation, and cultural
behavior. All these factors are linked to population density.

Human caused changes in fire regimes are particularly
critical near or in natural protected areas. More important,
understanding the effects of human activities on several
aspects of a fire regime is essential and would allow for the
generation of more realistic fire management plans.
Protecting nature reserves from catastrophic disturbances
associated with wildfires requires a management strategy
that considers the driving factors of forest fire occurrence,
and adjustment of local strategies. Under this approach
there are several studies that have evaluated the
relationships between different types of driving factors like
landscape elements such as distance to roads with effects in
the frequency of human-ignited fires (Alencar, Solorzano
and Nepstad, 2004; Syphard e¢r al, 2007). Also, fire
occurrence appears to be positively associated with
population density (Keeley and Fotheringham 2001;
Guyette ez al., 2002). Furthermore, the agricultural frontier
provides abundant ignition sources, where fires frequently
escape beyond their intended boundaries and ignite
adjacent forests (Nepstad ez al., 1999; Alencar et al., 2004).

There have been only few studies in Mexico that
address the pattern of fire occurrence in coniferous forests
based on landscape elements (Roman and Martinez, 20006;
Avila-Flotes e al., 2010). Furthermore, Mexico is a country
where a great proportion of forest resources is distributed
in special land tenure system. In "ejidos" and "indigenous
communities”" land is owned by farmers and indigenous
communities, decisions about forest management are taken
collectively, and human presence in forested ecosystems is
extremely conspicuous, particularly in the central and
southern portions of the country (Martinez-Torres,
Castillo, Ramirez and Pérez-Salicrup, 2010).

In this study, we evaluated which anthropic landscape
factors are associated with the occurrence of fire in the
Monarch Butterfly Biosphere Reserve (MBBR), where the
implementation of fire management actions must
overcome the daunting problems related to land use change

(i.e., conversion to pastures and agriculture), illegal logging,



Madera y Bosques vol. 24, num. 3, 2431591

and an inadequate management of forest resources
(Ramirez, Azcarate and Luna, 2003; Merino and
Hernandez, 2004; Honey-Rosés 2009; Brower e# al., 2016).
We first assessed the driving factors from the landscape
using historical fire records (2009-2013), as well as
environmental and anthropogenic variables associated to
fire ignition. Then, we developed a spatially explicit model
of forest fire probability within the MBBR.

OBJECTIVES

The main objective of the current study is to assess the
influence of several driving factors like anthropogenic and
biophysical landscape elements on the performance of

static, spatially explicit fire occurrence probability.
MATERIALS AND METHODS

Study area

Location. The MBBR is located in central Mexico, between
Mexico and Michoacan States (Fig. 1). The MBBR
constitutes the largest hibernation habitat of the monarch
butterfly (Danans plexippus L.), which migrates from the
eastern portions of the United States and Canada to these
forests (Slayback and Brower, 2007). Its territory
encompasses a total area of 56 259 ha, divided in two buffer
(42 707 ha) and three (13 551 ha) core zones (Comisioén
Nacional de Areas Naturales Protegidas [Conanp], 2001).
The cote zones are the Altamirano Mountain in the north,
the Chincua, Campanario, Chivati-Huacal, and Lomas de
Aparicio Hills in the center, and the Pelén Mountain in the
south. Cerro Altamirano constitutes a single mountain
detached from the larger part of the reserve. In this study,
we excluded it from our analyses.

Relief, Vegetation Types and Land Uses. The MBBR is
part of the Trans-Mexican Volcanic Belt physiographic
province (Ferrusquia-Villafranca 1990), which includes
basically mountainous areas in central Mexico. It is
characterized by a discontinuous mountain system,
intensely dissected by strong tectonic processes, consisting
of a set of hills and low hills, with 2 maximum elevation in

the northern part of 3640 meters above sea level and with
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abrupt slopes. Vegetation types include dense conifer
forests dominated ot codominated by Abies religiosa (locally
known as oyamel), Pinus spp., and Cupressus lusitanica; and
mixed conifer and broad-leaved forests which include
species of the genera Quercus, Alnus, Arbutus, and Cleyera,
among others (Espejo, Brunhuber, Segura and Ibarra, 1992;
Madrigal, 1994). Agriculture is the most important
economic activity in the study area, where the dominant
land uses are irrigated and rainfed agriculture with rotation
cycles, followed by cattle pastures and forest management
activities associated with timber extraction (Ramirez ef a/,
2003).

Forest Fire Regime. Knowledge regarding the forest fire
regimes at MBBR is still limited. According to Martinez-
Torres ¢t al. (2016), the monitoring institutions of fire
occurrence at MBBR are the National Forestry
Commission (Conafor) and the Natural Protected Areas
National Commission  (Conanp)
Thereafter, Canta (2013) assessed the reliability of the fire

database of 2012. Most of the fires recorded were described

brigades'  reports.

as having low or moderate intensities in accordance with
Agee (1993) and Sugihara, van Wagtendonk and Fites-
Kaufman (2000).

Fire Database

We used the fire database from various federal institutions,
such as Conafor and Conanp. The former government-
based agency coordinates operations for fire prevention
and control and keeps a registry of all fire events in the
country along with latitude and longitude coordinates. We
used information on fires from 2009 to 2013. The latter is
the government agency in charge of natural protected areas.
Only the fires of 2012 and 2013 were verified on the field.
The heterogeneity of this fire data base makes it difficult to
assess data quality in the extension of the surface area
burned. Therefore, we used only records of geographic
coordinates as occurrences fire events, with a total of 41
records of fire occurrence. We did not use the hotspot of
MODIS sensor that are accessible through the Comision
Nacional para el Conocimiento y Uso de la Biodiversidad
[Conabio] (2015).
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FIGURE 1. Location of the MBBR and fire occurrence pattern during the period of 2009 to 2013.

Empirical Variables

Since we hypothesized that anthropogenic factors shape
fire occurrence, we gathered data related to ignition sources
and human presence (Table 1). To express these variables,
we compiled spatial data of land use types (Ramirez-
Ramirez, 2001), roads (Instituto Nacional de Estadistica y
Geograffa [Inegi], 2011), human population per locality
(Inegi, 2010), total tree biomass, and dead tree and stump
density (Imventario Nacional Forestal y de Suelos 2009-2012;
Conafor, 2012). We employed the digital elevation model

from the Shuttle Radar Topography Mission (CGIAR
[CGIAR-CSI]

undated) to estimate the slope and aspect factors. The

Consortium  for Spatial Information
friction map is based on the notion that movement in the
terrain usually requires certain amount of effort and/or
energy. Due to this "friction", spatial interactions tend to
occur more often over short distances and low-grade
slopes. We estimated this variable from road maps (scale
1:250 000) and 90 m. digital resolution elevation models
(DEM) (Farfan, Mas and Osorio, 2012). We generated four
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classes for the friction map, 1- zero friction, 2 -moderate
friction, 3- high friction, and 4 - very high friction. Finally,
we defined edge density using a classification between
forest and non-forest cover from the vegetation and land
use map updated from the first version by Ramirez-
Ramirez (2001) every three years. Therefore, we use the
updated version for 2012 and then we estimated the mean
forest cover binary raster (forest = 1) using ARCGIS
(version 10.2) "focal statistics" tool with a 20 X 20 pixel
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window. The resulting raster contained values from zero to
1, where zero represents pixels in non-forest areas away
from the edge of the forest, and one-valued pixels are away
from forest edges but within the forest. As we wanted to
assess the impact of edge, we set a value of 0.5 as the
maximum value, where the influence of forest and non-
forest is the same. Pixels with values > 0.5 were reclassified
by their complement (1 - pixel value). The spatial resolution

of the cells of each aforementioned variables was 90 m.

TABLE 1. Empirical variables selected as a source of explanatory fire occurrence pattern at the Monarch Butterfly Biosphere Reserve,

México.

Types of

; Variable
variables

Description

Data Source CODE

Total biomass

Interpolated using IDW method by
ArcGis 10.2 spatial analyst tool

Inventario Nacional Forestal y de B
Suelos (INFyS)

Number of dead trees per hectare

Dead l1€esinterpolated using IDW method by INFyS DTD

] y ArcGis 10.2 spatial analyst tool
Environmental
Slope in degrees calculated by ArcGis Shuttle Radar Topography
Slope : . S
10.2 surface analysis tool Mission

Number of stumps per hectare

Stump density interpolated using IDW method by INFyS SD

ArcGis 10.2 spatial analyst tool

o u-:-:tti?aln or Interpolated using IDW method by Instituto Nacional de Estadistica ™
P plocality P ArcGis 10.2 spatial analyst tool y Geografia (Inegi 2010)
Four categories: 1- zero friction, 2 -
Friction moderate friction, 3- high friction, and 4 Farfan et al. (2012) FR
- very high friction
. Number of roads per hectare calculated .
Road density using DINAMICA EGO Inegi RD
Distanceto  Euclidian distance in meters calculated .
road by ArcGis 10.2 spatial analyst tool Inegi (2011) DR
Anthropic Distance to Euclidian distance in meters Comision NaC|o_naI de Areas DCZ
core zone Naturales Protegidas (Conanp)
Distance to DP
cattle pasture
DlsFance to Euclidian distance in meters DA
agriculture
Distance to Ramirez-Ramirez (2012)
DUz
urban zone
Average of the number of forest pixels
Edge density in a 20 x 20 window calculated by ED

ArcGis 10.2 with focal statistics tool




Data Analyses

Generalized Linear Mixed Models and Model Averaging.
We analyzed the correlation degree between variables by
Spearman coefficient analyses and assessed which variables
were correlated. When two vatiables had a correlation
coefficient = 0.6 (r = 0.6) we retained only one of the
variables, and discarded the other to avoid variance inflation
for correlated variables (ie. redundant variables were
excluded; Wintle, Elith and Potts 2005; Zhang, Lim and
Sharples ez al., 2017). We evaluated the remaining response
variables by means of generalized linear mixed models
(GLMMs). We fitted a binomial distribution with a logit
function to build a set of models representing all possible
combinations of one (N = 14), two (N = 77) and three (N =
285) response variables, and used the southern aspect as a
random variable to control for wvariability among the
explanatory variables most closely associated with fire
occurrence (Demidenko, 1987). We corrected the models for
overdispersion (Crawley, 2002), and dis-carded resulting
models with non-significant intercept values and a variance
inflation factor (VIF) = 2 (Fox, 2008). We assessed the level
of support of the remaining models (N = 44) through the
small-sized bias-correction version of Akaike Index Criterion
(AICc), and selected those with a AAICc < 2 (Burnham and
Anderson, 2002). Then we estimated the conditional
(GLMM R2c) and marginal (GLMM R?m) R? of the best-
supported GLMMs models, following Nakagawa and
Schielzeth (2013) procedures. The first represents the
amount of variability explained by the whole model (fixed
and random effects), while R?m is the variability explained
only by the fixed effects.

Finally, to identify the influential vatriables of fire
occurrence, we built a subset of models representing all
possible combinations of the response variables found in the
best-supported models from above. We averaged all the
models to obtain the mean and 95% confidence interval (CI)
of the variables coefficients, and considered those variables
whose values did not include zero as influential. We
performed all statistical analyses in the program R (R
Development Cote Team, http://www.R-project.org/). We

employed the coefficients derived from the best model to
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generate a fire probability map at one square kilometer grid
cell resolution with a total of 836 cells.

Model Validation. The relative operating characteristic
(ROC) analysis is a widely used quantitative method to assess
the performance of spatial models that produce a probability
map, which presents the sequence in which the model selects
grid cells to determine the occurrence of a certain event
(Pontius Jr. and Schneider, 2001; Mas, Soares Filho, Pontius,
Farfan Gutiérrez and Rodrigues, 2013). In this study, ROC
was employed to assess the effectiveness of the model in
predicting the probability of occurrence of fire. ROC
measures the accuracy of the model by comparing the map
of predicted fire probabilities with the binary burned vs.
unburned map of subsequent observed fires of 2014 and
2015. If the true events coincide perfectly with the higher
ranked probabilities, then the area under the curve (AUC) is
equal to one, since the ROC curve begins at the point (0,0),
goes up the horizontal axis to the point (0,1), and shifts to
the right reaching the point (1,1). A random probability map
produces a diagonal ROC curve in which the true positive
rate equals the false positive rate at all threshold points. Any
probability map that has a ROC curve below the diagonal has
less predictive power than a random map (Mas ez a/., 2013).

RESULTS

Spearman Correlation Analysis

Two pairs of variables were correlated (r = 0.6): road
density (RD) with distance to roads (DR); and biomass (B)
with density of dead trees (DTD) (Fig. 2). We selected
distance to roads and biomass for inclusion in the GLMM

regression analysis.

Generalized Linear Mixed Models

The GLMM regression analysis produced a prediction of fire
occurrence with six best-fitted models (Table 2). The first
best model suggested that this occurrence was significantly
correlated with the variables ‘total population’ and ‘edge
density’. Although models that are more complex explained
greater variability, only population density and edge density
were influential to explain fire occurrence, according to the

averaged models (Fig. 3).
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FIGURE 2. Spearman Correlation matrix with all the empirical variables. FR: friction, DP: distance to cattle pasture, DTD: dead trees
density, SD: stump density, B: total biomass, RD: road density, DA: distance to agriculture, DUZ: distance to urban zone, S: slope, TP:
total population per locality, DR: distance to roads, DCZ: distance to core zone, ED: edge density. The font size of the numbers

reflects correlation degree between variables.

TABLE 2. Summary of the best-fitted GLMM:s for explaining fire occurrence at the Monarch Butterfly Biosphere Reserve, Mexico.

Model° Intercept (SE) AlCc? AAICc -LLc R2md R2ce
TP +ED -2.7 (0.96) 103 0 -4832 0.28 0.28
S+TP+ED -2.28 (1.03) 103.8 0.84 -47.63 030 0.30
DR+TP+ED -3.31(1.16) 1041 117 -4738 0.31 0.31
DUZ + TP + ED -3.24(1.17) 104.6 1.61 -48.02 0.28 03
DCZ +TP + ED -2.79 (0.98) 104.9 1.92 -4817 0.28 0.28
SD+ TP + ED -3.00 (1.09) 104.9 1.95 -48.19 0.28 0.28

TP = Total population, ED = Edge density, S = Slope, DR = Distance to roads DUZ = Distance to urban zone, DCZ = Distance to core zone, SD =

Stump density.

®AlCc = Small-sized bias-correction version of ARaike Index Criterion

c-LL = Negative log-lirelihood function.
IR’m = Marginal R?
R’c = Conditional R?
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FIGURE 3. Estimated parameters of each variable obtained by model averaging (N = 64).
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The best-fit model indicated that fire occurrence was
favored where human population and forest fragmentation
scored high values (Fig. 4). In figure 5 it is possible to
observe the spatial distribution of the values taken by these
two variables.

The spatial model of fire occurrence from the best-
fitted model (Table 2, Fig. 6) showed that the highest
probabilities of fire occurrence are located at the
surroundings of the MBBR core areas, where high total

population and forest edge scores are present. We interpret

the significance and direction of influence of these variables
to indicate that increased human activity increased the
probability of fire occurrence in the region.

The AUC of the ROC analysis of this model was 0.71
(Fig. 6), indicating a 71% of concordance between
predicted probabilities and observed outcomes. The curve
represents the cumulative tallies of false and true positives
for all the cells in the modeled area. True positives are cells
where the model and observed forest condition “burned”

coincide.
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DiscussION

Identifying the driving factors of forest fires is essential for
their management (Avila-Flores ez al, 2010). There are few
studies that have focused on the causes of forest fire
occurrence from the geographical perspective for
Michoacan and Estado de Mexico states. Our results
suggest that the occurrence of fire at the MBBR is
influenced by a combination of factors that vary across the
region and involve both physical and anthropogenic
characteristics of the landscape. The significant positive
correlation of fire occurrence with edge density is
consistent with numerous studies where fires are more
common along forest edges (Cochrane, 2001; Cochrane
and Laurance, 2002). This association might be caused by
the fact that forest edges are drier (Kapos, Ganade, Matsui
and Victoria, 1993) and have higher tree mortality (Ferreira
and Laurance, 1997; Laurance ¢# a/., 1997), than the core of
a forest fragment, which might in turn increase fuel loads.
In addition, forest edges in our study area are the boundary
of agriculture and areas with cattle pastures, where land
burning for crop and pasture regrowth is commonly
employed as a management tool (Martinez-Torres et al.,
2016). Fine litter, dead woody debris and canopy openness
at forest edges might increase with the frequency and
intensity of the adjoining land burning, thus creating a
positive feedback where fire risk and danger increase. The
spatial scale of fire occurrence is also driven by the shape
of the forest fragments, whose complexity is correlated to
its edge density. Hence, in the MBBR, total population,
which in turn could be associated with an increase in the
activities that generate forest fragmentation, may increase
forest susceptibility to fire.

Total population per locality was an important variable
in our model. This variable showed a positive influence on
ignition occurrence, meaning a higher probability of
ignition in the more populated areas, as was previously
hypothesized. In regions where most fires are human-
caused, this is a logical result, and in several other studies,
total population, changes in population, and population
density were found to positively relate to wildfire ignitions
(Cardille, Ventura and Turner, 2001; Mercer and
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Prestemon, 2005). While these studies employed linear
methods to investigate fire occurrence, studies using
nonlinear methods often show that, after a threshold, fire
occurrence tended to decrease with higher population
densities. It appears that this is associated with declines in
ignitions when human population density and development
results in a reduction of forested area (Keeley, 2005;
Syphard ef al, 2007; Syphard, Radeloft, Hawbaker and
Stewart, 2009). This pattern is not reflected by our results,
probably because the sparse location of settlement within
the MBBR, the persistence of forested areas, and the lack
of localities with a high total population keep the
relationship in the range of positive linear relation.
Although the aforementioned studies have used population
density, we used total population by localities and obtained
a positive correlation. These results imply that fire
managers must consider human influence together with
biophysical characteristics such as those represented for the
variable forest edge density when making decisions
regarding the allocation of suppression and hazard
mitigation resources. If human presence is not explicitly
included in decision making, inefficient decisions may
result, because fire occurrence is related to human presence
on the landscape.

Our model explains roughly one-third of the total
deviation in fire occurrence. Several reasons may be
responsible for this limited explanatory power. First, it
would be illusive to pretend that such a multifaceted
phenomenon as the occurrence of forest fires in a highly
complex topography can be explained by only a few
variables. Other variables such as socio-economic aspects
and forest management practices would be needed to
develop a more complete understanding of the
determinants of forest fire occurrence.

Second, because of the lack of direct data, proxies had
to be used as predictors. We hypothesized that these
proxies could influence fire drivers, which in turn might
impact fire occurrence. From our analyses, we suggest that
not all hypotheses regarding the proxies can be confirmed.
For example, distance to pasture and distance to agriculture

on fire occurrence.



Hosmer and Lemsow (2000) established that ROC is a
threshold-independent measure of model discrimination,
where a value of 0.5 indicates no discrimination. When 0.7
< ROC < 0.8, discrimination is acceptable, and 0.8 < ROC
< 0.9 denotes an excellent discrimination. Alencar e# al.
(2004) developed empirical functions to relate occurrence
of understory forest fire to landscape features, throughout
regression analyses, separating for years of the El Nifio
Southern Oscillation (ENSO), and non-ENSO years. The
ROC of the model that best predicted understory fires in
both ENSO and non-ENSO years, was 0.778 and 0.751
respectively. Alonso-Betanzos and others (2003) developed
a fire prediction model based on neural networks. They
assessed AUC ROC curves for several years, ranging from
0.757 to 0.915. Lozano, Suarez-Seoane and de Luis (2007)
assessed several spectral indices derived from satellite image
data to modeling fire occurrence probability throughout
logistic regression. The ROC values varied from 0.70 to
0.85 for all the assessed regression models. As mentioned
earlier, our result of 0.71 indicates that the model has
acceptable discrimination.

To discern the relative weight of each variable more
accurately, we suggest integrating other analytical methods.
Ouyang, Yung Han and Tong (2016) have found that
machine learning algorithms, like random forest or
conditional inference trees, showed greater predicting
power of AUC than logistic regression. These also
prevented bias detected in classification and regression tree
algorithms. However, to achieve this, they used over 1,000
sample points. On the other hand, the three-dimensional
kernel density estimator, a nonparametric desctiptor tool,
has been used to draw up smoothed maps which represent
the continuous spatial density distribution of forest fires,
including its time evolution (Tonini, Pereira and Parente,
2017).

Finally, we must underscore the lack data on fuel loads.
Fuel loading is one of the three basic elements (oxygen, heat
and fuel) that fires need to ignite. Fuel quantification can be
done through direct measures in periodic forest inventories.
The inclusion of this factor may be essential in modeling

fire occurrence in the study area. It is clear that models will
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not improve considerably unless fuels loads are quantified,

particularly in response to fire management practices.

CONCLUSIONS
This study highlights the importance of examining multiple
causes of forest fire occurrence in the emblematic MBBR.
Fires at the MBBR are not randomly spread throughout the
landscape but are mediated by the condition of the
remaining forest and present human activity. Specifically
our study shows that human influences, such as land use
change and the creation of forest edges, is strongly related
with fire occurrence. The mapped probabilities of fire
occurrence show the places where such condition is
present. Forest fragmentation combined with slope and
total population, correlates with a high likelihood of forest
tires. These factors should be considered as fundamental
clements in the design of forest fire prevention programs.
To increase the certainty of the model it would be
necessary to incorporate other explanatory factors which
were not analyzed here (e.g., fuel loadings, soil humidity,
etc.) in combination with a longer period of fire occurrence
records. This would produce a more comprehensive
understanding of the factors undetlying fire occurrence
patterns and their spatial relationships. Nevertheless, the
probabilities estimated here can be useful in the

development of a fire management plan at MBBR.
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