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RESUMEN

La relacion entre datos de instrumentos de percepcion remota y datos de inventario de bosque, en particular de la complejidad es-
tructural de los elementos lefiosos del dosel es un asunto pobremente entendido no obstante su importancia en ecologia, silvicultura y
manejo de recursos. En el presente trabajo se evalu6 por medio de técnicas multivariadas (biplot) y Modelos Lineales Generalizados
(MLG), la influencia de los diferentes estratos lefiosos del dosel de cuatro variables de estructura (altura, DAP, didmetro de copa y
densidad de individuos) sobre la reflectancia de datos Landsat TM en tres tipos de bosque en el Parque Nacional Cofre de Perote. Los
resultados biplot indican diferencias relacionadas con el tipo de bosque y la expresiéon métrica de los atributos estructurales. MLG
indican que la reflectancia total es dependiente de la complejidad estructural del dosel, del tipo de bosque con ciertas limitaciones
derivadas de la sensitividad de los sensores. Las bandas Landsat 1-3, 5-7 mostraron una m4s clara relacion con atributos de la com-
plejidad forestal, en particular para bosque de Pinus hartwegii y bosque mixto, al parecer las dimensiones estructurales del bosque y
limitaciones en la sensitividad de los sensores Landsat impiden explicar la reflectancia a partir de la complejidad en el bosque de A.
religiosa.

PALABRAS CLAVE: atributos de bosque, bosque de coniferas, dosel, estructura del bosque, imagenes de satélite, respuesta espectral.

ABSTRACT

Despite its importance in ecology, forestry and resource management the relationship between remote sensing data and forest inven-
tory data are still poorly understood, in particular regarding the structural complexity of woody canopy elements. In this paper we
evaluate by multivariate techniques and Generalized Linear Models (GLM), the influence of 4 woody canopy structure variables by
strata (height, DBH, crown diameter and density) on the Landsat TM reflectance data. We analyzed three forest types in the Cofre de
Perote National Park. Biplots suggest differences related to the type of forest and the metric expression of structural attributes. GLM
indicate that the total reflectance shows differential response that can be associated to canopy structural complexity and the type of
forest with some limitations related to the sensitivity of the sensors. Landsat bands 1-3, 5-7 showed a better association with forest
complexity variables, in particular for Pinus hartwegii forest and mixed forest. Apparently forest structural attributes and limitations
of Landsat sensor sensitivity itself prevents the identification of reliable association between reflectance and complexity variables in
Abies religiosa forest.

KEY wORDS: forest attributes, conifer forest, canopy, forest structure, satellite images, spectral response.
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INTRODUCCION

Los bosques son ecosistemas que proveen bienes materia-
les y servicios ambientales indispensables para el bienestar
humano (Millennium Ecosystem Assessment, 2005). Por
su importancia, es cada vez mas urgente disponer de
informacién confiable de su estado actual y de cémo cam-
bian a través del tiempo (Franklin, 2001; Wulder et al.,
2004). En este sentido los datos derivados de sensores de
percepcién remota son una opcién idonea para adquirir
informacion de extensas superficies de bosque con un
costo razonable y aceptable exactitud (Lu et al., 2004). La
suposicion bdsica en percepcion remota es que cada tipo
de superficie interactia de manera caracteristica con la
radiacion incidente. Dicha conducta genera una curva que
representa el comportamiento del objetivo a lo largo del
espectro electromagnético (Mather, 2004). Esta respuesta
ha sido denominada firma espectral, respuesta espectral o
reflectancia, y se ha demostrado ampliamente que provee
informacion util en ecologia y manejo de recursos, al per-
mitir hacer inferencias confiables sobre la naturaleza de la
superficie reflectante.

El interés por disponer de informacién precisa de la
superficie terrestre ha propiciado el estudio de la interac-
cion de una gran variedad de tipos de coberturas con la
radiacion electromagnética. En el caso de los bosques, ha
permitido derivar estimadores que vinculan la relacion
entre la reflectancia y atributos del bosque, datos de inven-
tario, indices de vitalidad, ecoldgicos, eco-fisiologicos y
bioquimicos (Nilson et al., 2003). Este tipo de informa-
cién ha sido atil y critica en muchos aspectos del manejo
de recursos, la toma de decisiones a escala de paisaje e
indispensable en la construccion de modelos de procesos
ecologicos.

No obstante, atn persiste incertidumbre sobre la
relacion entre la estructura del bosque y la reflectancia
respecto a las longitudes de onda mas adecuadas para
representar diferencias sutiles en la estructura, tipo y con-
dicion de la vegetacion (Hill et al., 2011). La principal
causa es que la utilidad, tipo y fortaleza de las relaciones
entre datos espectrales y atributos del bosque son especifi-

cos al sensor vy sitio, lo cual dificulta hacer generalizacio-

nes entre estudios de diferentes sitios e incluso de tiempos
distintos en una misma zona (Steininger, 2000; Wood-
cock et al., 2001; Foody et al., 2001, 2003; He et al.,
2013).

Existe evidencia de que la reflectancia del bosque es
determinada por la distribucién vertical de parametros
biofisicos y bioquimicos del dosel (Wang y Li, 2013), y
que los estratos interiores e incluso la vegetacion a ras del
suelo desempefian un papel significativo (Danson vy
Curran, 1993). También se han detectado complejas inte-
racciones entre variables estructurales como biomasa,
edad, densidad, altura y d4rea basal. Otros atributos
importantes son la composicion de especies, composicion
quimica de las hojas y naturaleza del suelo (Rock et al.,
1986; Peterson et al., 1987; Gerard y North, 1997; Lee y
Nakane, 1997; Asner, 1998; Baret, 1991; Houborg et al.,
2009). Ademas, influyen factores relacionados con el sen-
sor, como la orientacién del sol, sobre todo el azimuth
solar, la altura del sol en el cielo (dngulo de elevacion) y la
direccion en que apunta el sensor en relacion al nadir
(dngulo de vision) (Mather 2004).

Se han logrado grandes avances en el entendimiento
de la reflectancia, no obstante persisten carencias, especi-
ficamente en relacién con el efecto de la variabilidad
estructural de los elementos lefiosos del dosel en la forma-
cién de la senial. Se considera que el entendimiento basico
de este complejo proceso es relevante en ecologia vy silvi-
cultura porque puede contribuir a estimaciones mas preci-
sas de volumen de madera, asi como proveer informacién
valiosa para el mapeo detallado de la estructura que
incluya los estratos inferiores de la vegetacion. Es impor-
tante resaltar que no se encontraron en la bibliografia
antecedentes de este tipo y con el detalle usado en este

trabajo.

OBJETIVOS

El presente trabajo tuvo como objetivo analizar por medio
de métodos empiricos, la influencia de los diferentes estra-
tos del dosel en la formacion de la reflectancia de datos
Landsat T™M. El estudio incluye cuatro variables estructu-

rales de interés agrondmico (altura, DAP, didmetro de copa
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y densidad de individuos) cuya relacion con la reflectancia

fue evaluada en tres tipos de bosque.
MATERIALES Y METODOS

Area de estudio

El presente trabajo se realiz6 en el Parque Nacional Cofre
de Perote (PNCP), un area natural protegida situada en la
region montafiosa del centro de México, entre los parale-
los 19° 34> 02” y 19° 25” 39” de latitud norte y los meri-
dianos 97° 12> 49” y los 97° 06’ 09” de longitud oeste. El
PNCP ocupa una superficie de 11 530 ha, y se ubica por
arriba de la curva de nivel de los 3000 m hasta los 4250 m
snm en la cumbre.

Los tipos de suelo dominantes son andosol dcrico
(80,9% de la superficie total) y el andosol humico (17,85%),
con una pequena superficie de regosol eutrico (1,2%) (Ini-
fap-Conabio, 1995). Los climas son del tipo semifrio
himedo y subhtiimedo con temperatura media anual entre
5 °C y 12 °C (Garcia-Conabio, 1998). La precipitacion
oscila entre 600 mm y 1200 mm anuales, con una pequefia
superficie que capta entre 400 mm y 600 mm en la region
mas seca (Vidal-Zepeda, 1990).

La vegetacion arborea ocupa 56,4% de la superficie
total del parque y estd constituida por bosque de Pinus,
bosque de Abies, y bosque de Pinus-Quercus (denomi-
nado aqui bosque mixto). Cuarenta y seis por ciento de la
superficie restante esta ocupada por agricultura de tempo-
ral y pastizal de origen antropogénico, con el 2,6% res-
tante correspondiente a la pradera de alta montafia (Inegi,
2011).

Procesamiento de laimagen

En el estudio se utilizaron dos imagenes Landsat. En pri-
mera instancia una escena ETM+ previa al muestreo con
fecha de adquisicion 7 de marzo de 2009 (path 25/row 46)
fue analizada generando el Indice de Vegetacion de Dife-
rencia Normalizada (NDVI) y usada dnicamente para
estratificar y guiar el muestreo. Los valores de NDVI fue-
ron agrupados en clases con Arcgis. NDVI fue elegido por

su capacidad de representar cantidad de biomasa (Zheng
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et al., 2004; Gillespie et al., 2006). En NDVI, valores de
0,1 o menor corresponden a zonas dridas, roca, arena, o
nieve, valores moderados, entre 0,2-0,3 representan
arbustos o pastizales y valores altos, entre 0,6-0,8 indican
bosques templados o tropicales.

La segunda imagen fue usada para los andlisis esta-
disticos, corresponde a datos Landsat 5 T™M (path 25/row
46), con fecha de adquisicion 12 de diciembre de 2009.
Datos T™ fueron elegidos debido al problema en el correc-
tor de la linea de escaneo del sensor ETM+, por no presen-
tar nubes para el poligono del PNCP y por ser la mas
proxima a la realizacion del muestreo. La imagen fue cali-
brada para convertir los valores digitales a radiancia y
posteriormente a reflectancia usando los coeficientes de
calibracion para datos Landsat de Chander et al. (2009).
Con la imagen calibrada se corrigi6 el efecto de la atmos-
fera por el método de extraccion del objeto obscuro de
Chévez (1996). La calibracion y correccién atmosférica se
realiz6 con ENVI. Los valores de reflectancia se extrajeron
por el método ventana de 3x3 pixeles con Arcgis. Esta
técnica permite eliminar errores de geoposicion cuando se
relacionan valores de pixel con muestreos de vegetacion
(Hall et al., 2006; Luther et al., 2006). Debido a la coinci-
dencia espacial de ambas imdgenes con las cartas topogra-
ficas vectoriales 1:50 000 de Inegino se realizé rectificacion

geométrica.

Muestreo

Un muestreo estratificado aleatorio se realizé en octubre
de 2009 usando como datos auxiliares nueve categorias
de NDVI correspondientes a vegetacién arboérea, la ads-
cripcion a tipo de vegetacion en campo y un perimetro de
restriccion de 500 m en relacion con las vias de comunica-
cion (terracerias y brechas). La seleccion de grupos homo-
géneos o clases se realizé con ayuda de SIG por medio de
inspeccion visual, identificando dentro del perimetro de
restriccion las microcuencas donde cada categoria de
NDVI-tipo de vegetacion presentd fragmentos de mayor
area. Cuando alguna categoria se observo altamente frag-
mentada dentro del drea preestablecida, se procedié a su

muestreo fuera de esta. En cada fragmento elegido se esta-
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blecieron 4(5) puntos aleatorios a una distancia minima
entre si de 90 m. En total se ubicaron 90 puntos en los 3
tipos de vegetacion arborea dominantes.

Para guiar el muestreo en campo el mapa de NDVI, los
archivos vectoriales de vias de comunicacion, el perimetro
de restriccion y los puntos elegidos aleatoriamente fueron
“cargados” en un geoposicionador global (GPS) con recep-
cién bajo dosel. En cada punto aleatorio se trazd un cua-
dro de 10 m x 10 m, donde se midi6 a cada individuo
lefioso igual o mayor a 2 m la altura, DAP y didmetro de
copa. La altura se estimd con un clinémetro electrénico
con un error de = 30 cm, el DAP con cinta diamétrica y el
didmetro de copa con cinta métrica estandar.

Basado en la altura, la adscripcion de los individuos a
un estrato del dosel particular se realiz6 con el siguiente
criterio: estrato 1 (E1) individuos cuya altura corresponde
entre 100% y 80% de la altura total registrada en el cua-
dro, estrato 2 (E2) 80% - 50% de la altura total, estrato 3
(E3) 50% de la altura total hasta 2 m. Con la estratificacién
derivada de la altura, se calcularon los promedios para los
diferentes estratos de altura, DAP y didmetro de copa,

excepto la densidad que fue representada con un conteo.

Analisis estadistico
Los andlisis se realizaron con R (R Development Core
Team, 2012). La relacién entre valores espectrales y atri-
butos de estructura se analizé con Biplot. Dicha técnica
proyecta conjuntos de datos multivariados que grafican la
estructura de varianza-covarianza entre variables. Repre-
senta distancias euclidianas entre variables y es usado
para revelar agrupamiento y multicolinearidad (Gabriel,
1971; Kohler y Luniak, 2005; La Grange, 2009). El biplot
se obtuvo por medio del paquete HSAUR de R (Everitt y
Hothorn, 2012). Los componentes principales fueron
construidos con la funcién prcomp a partir de la matriz
de correlacion y estandarizados para evitar que las dife-
rentes escalas (reflectancia, m, cm, conteo) influyan en la
longitud de los vectores y dominancia de alguna de las
variables (La Grange, 2009; Rawlings et al., 1998).

La influencia de los estratos del dosel en la reflectan-

cia se evalué con MLG. Este tipo de modelos permite cons-

truir funciones de regresion y ajuste con diferentes tipos
de error (binomial, Poisson, gamma). Son adecuados
cuando la distribucion de los errores no sigue una distri-
bucién normal, la varianza es dependiente de la media y la
variable de respuesta no se relaciona linealmente con las
variables independientes. Su estructura incluye tres com-
ponentes, el predictor lineal, la estructura del error y la
funciéon de vinculo o link (Crawley, 2007; Nelder y
Wedderburn, 1972).

El anilisis de cada banda Landsat T™M se realiz6 por
tipo de bosque. Para evitar problemas por colinearidad y
debido a la alta correlacion entre las cuatro variables expli-
cativas (altura, DAP, didmetro de copa y densidad), cada
atributo estructural (formado por tres estratos) se evalud
por separado (Zuur et al., 2010). Determinar colinearidad
es importante porque el uso de variables correlacionadas
produce estimaciones inestables de los pardametros
(Crawley, 2007) y es critico para identificar variables
importantes en un proceso (Rawlings et al. 1998).

La colinearidad no esencial fue tratada restando la
media a las variables predictoras. Cada modelo fue verifi-
cado para el factor de inflacion de varianza (FIV) con el
paquete VIF de R (Lin et al., 2011). FIV es un estimador de
colinearidad. Valores de 1 indican carencia de redundan-
cia, >4 multicolinearidad y >10 indican multicolinearidad
grave, que es indicativo que ciertas variables no se deben
usar simultidneamente (Mandeville, 2008).

Por la naturaleza cuantitativa continua de los datos se
us6 la distribucion de la familia exponencial gamma y la
funcioén link identiry. El analisis incluye los tres estratos
de estructura y las interacciones y se incluyd un término
cuadrdtico a cada variable para determinar si la relacion

es lineal. El modelo maximo es el siguiente:

Y~El+E2+E3+I(E1"2) + I(E2"2) + [(E3"2) +
E1:E2 + E1:E3 + E2:E3 + E1:E2:E3, family =
Gamma(link =identity)

La seleccion de variables se hizo con una significancia
minima de a=0,03, la proporcién de devianza explicada (%)

y el Criterio de Informacion Akaike (AIC), un estadistico util,
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porque penaliza pardmetros superfluos en un modelo, cuanto

mas pequeno es el AIC, mejor es el ajuste (Crawley, 2007).

RESULTADOS

Analisis Biplot

La ordenacion por medio de Biplot a lo largo del CP1y CP2
agrupo los sitios de muestreo de acuerdo con el tipo de bos-
que. Los CP1y CP2 informan 60,8% de la varianza total de
los datos, alcanzando en el CPs 83,8%. Por su direccion y
magnitud se aprecia la formacion de dos grupos importan-
tes de variables en el CP1, uno constituido por las bandas
Landsat TM, B1-B3, BS, B7 y otro formado por variables de
altura (ALTE1, ALTE2, ALTE3), de DAP (DAPE2, DAPE3) y dia-
metro de copa (COPE2, COPE3); en el CP2, se agruparon los
tres estratos de densidad, correlacionados negativamente

con DAPE1, COPE1 y la B4 (Fig. 1).
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Aunque en el biplot ningtin vector destaca particular-
mente del resto por su magnitud, la revisioén del aporte de
cada variable a cada componente indica en orden de
importancia que en el CP1 las B7, B3, BS, B2, y Bl presenta-
ron la mayor longitud de contribucion negativa, mientras
que de forma positiva los mds importantes son ALTE2,
ALTE3 y ALTE1. En el CP2 la mayor longitud de tipo posi-
tiva se observo en COPE1, DAPE1 y B4, y de forma negativa
para DENE1 y DENE2 (Tabla 1).

Analisis MLG

Bosque de P. hartwegii

Los resultados son significativos para todas las bandas
(excepto B4) y todos los atributos estructurales (Tabla 2).
La altura del estrato superior (ALTE1) es altamente signifi-

cativa en una relacion cuadratica para B1-B3, BS, B7, con la
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Ficura 1. Biplot incluyendo el CP1 y CP2 para los tres tipos de bosque y todos los atributos estructurales.
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Tasra 1. Contribucién de cada variable a la construccion de los primeros 5 componentes principales (CP).

CP1 cP2 CP3 CP4 CP5

Banda Landsat 1 (BI)
Banda Landsat 2 (B2)
Banda Landsat 3 (B3)
Banda Landsat 4 (B4)
Banda Landsat 5 (B5)
Banda Landsat 7 (B7)
Altura estrato 1 (ALTEI)
Altura estrato 2 (ALTE2)
Altura estrato 3 (ALTE3)
DAP estrato 1 (DAPEI)

DAP estrato 2 (DAPE2)

DAP estrato 3 (DAPE3)
Diametro copa estrato 1 (COPEI)
Diametro copa estrato 2 (COPE2)
Diametro copa estrato 3 (COPE3)

Densidad estrato 1 (DENEI)
Densidad estrato 2 (DENE2)

Densidad estrato 3 (DENE3)

-031 025 -003 0Jl0 -0,05
-032 025 -003 OJI0 -009
-034 017 -006 006 -0,13
-009 030 004 020 O0J0
-032 022 -003 014 -005
-035 O0jJl6 -0,07 OJ0 -0OJl0
028 023 007 -0]J9 0,3
029 oOon -037 007 -006
029 0I5 024 032 0,00
012 034 023 -032 -006
021 020 -052 -0,01 -0J0
021 025 022 039 -005
012 035 0I5 -030 -001
o018 019 -053 002 -012
023 027 0,18 037 -004
005 -023 -001 039 043
006 -027 -007 033 -05I
omn -012 025 -010 -067

particularidad que B1 incluye un efecto de interaccion
entre ALTE1 y ALTE3. El modelo usando B1 explica la
mayor proporcion de devianza (75,55%), con el resto de
los modelos entre 54,3% y 59,26%. Usando estratos de
DAP como predictor, se obtuvieron resultados significati-
vos en B2-B3, B5 y B7 para DAPE3 en una relacién cuadra-
tica, con devianza explicada entre 40,05% y 52,17%. En
B1, la estructura tiene un efecto complejo en la reflectan-
cia, con resultados significativos para DAPE1, DAPE3,
DAPE3”2 y DAPE1:DAPE3. La devianza explicada por los
estratos de DAP en Bl es la mds alta (57,24%).

Con didmetro de copa, el unico estrato importante
fue COPE3 en una relacion cuadrética significativa para
B1-B3, BS y B7, con B7 registrando la mayor devianza expli-
cada (47,22%). De los estratos de densidad, son significa-
tivos el estrato superior (DENE1) e inferior (DENE3) en B1,

B3, BS y B7, con la mas alta proporcion de devianza para

las B3, B5 y B7, entre estas, en B7 se observo la mayor pro-
porcion (58,76%). Para la B2, los estratos significativos
son de la parte interior del dosel (DENE2 y DENE3), aunque

con la menor devianza (40,37%).

Bosque mixto

Usando la altura como predictor, de la B2 deriva un
modelo complejo con la mas alta devianza explicada
(37,89%), en el que ALTE1, ALTE3, ALTE1"2 y ALTE3”2 son
significativos. En B1 el estrato superior (ALTE1) e inferior
(ALTE3) son los mas importantes; mientras que para las B3
y B7 el estrato inferior (ALTE3) y para BS el estrato medio
(ALTE2). En B3 y BS la significancia es marginal. Para el
DAP, el modelo mas complejo deriva de la BS, en este,
DAPE1, DAPE3 y DAPE1”2 son los estratos significativos.
Para B1, B2, y B4, el estrato superior (DAPE1) es el mas

importante en una relacién cuadratica; mientras que para
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TaBLA 2. Modelos estadisticamente significativos para el bosque de P. hartwegii.

Modelo Landsat TM Estrato t P AIC Devianza % FIV
ALTEI -3,594 0,0014 ** -262,26 7555 <4,
ALTE3 -0,715 0,48133
: Bl ALTELALTE3 3,654 0,0012 **
ALTEI"2 3,642 0,00123 **
5 B2 ALTE1 -5,032 2,80E-05 rx -221,46 543 <4
ALTEI"2 3,789 0,00077 xx
ALTE1 -5,498 8,02E-06 e -212,09 59,26 <127
? 53 ALTEI"2 4,488 0,00012 ax
4 85 ALTE1 -5,255 1,54E-05 e -156,12 57.67 <1,29
ALTEI"2 4,753 5,92E-05 rx
. 57 ALTEI -5,362 1,15E-05 xx -170,74 58,96 <131
ALTEI"2 4,855 4,50E-05 i
DAPEI -2,205 0,03685 * -245,41 5724 <156
DAPE3 -3,454 0,00198 **
© Bl DAPE3"2 2,236 0,03451 *
DAPEI:DAPE3 2384 0,02504 *
DAPE3 -3,834 0,000685 e -214,66 42,79 <1,18
’ B2 DAPE3”"2 3,179 0,003684 >
DAPE3 -4,083 0,000355 e .204,72 40,05 <1,18
8 53 DAPE3"2 355 0,001435 **
DAPE3 -3,68I1 0,001023 ** -149,03 46,46 <11
? B> DAPE3"2 3,797 0,000756 xx
DAPE3 -4,065 0,000372 e -166,1 52,17 <13
0 87 DAPE3"2 4,082 0,000356 x
COPE3 -4,122 0,00032 e 24224 45,8 <11
" Bl COPE3"2 3,133 0,00414 **
COPE3 -3,517 0,00156 ** -213,23 40,03 <1,09
2 B2 COPE3"2 2932 0,00679 **
COPE3 -3,729 0,000904 *** 20327 4551 <1,08
B 53 COPE3"2 333 0,002522 **
COPE3 -3,308 0,00267 ** -146,35 415 <1,05
]4 B> COPE3"2 3328 0,00253 **
COPE3 -3,775 0,0008 e -163,11 4722 <1,08
> 87 COPE3"2 3,519 0,00155 >
DENEI -2,001 0,055532 -242,73 46,68 <11
6 Bl DENE3 -3,726 0,000909 e
DENE2 -2,223 0,03474 * -213,4 40,37 <13
v B2 DENE3 -2,774 0,00993 **
DENEI -2,235 0,0339 * -206,72 51,37 <1
'8 53 DENE3 -4,298 0,0002 e
0 Bs DENEI -2,616 0,014385 * -151,25 50,27 <11
DENE3 -3,997 0,000446 rx
0 57 DENEI -3,323 0,00257 ** -170,59 58,76 <11
DENES3 -4,748 6,00E-05 e

Codigo de significancia: ***(0,001), ** (0,01), *(0,05), . (O/])
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B3 y B7 las variables significativas son el estrato superior
(DAPE1) y el inferior (DAPE3). Los modelos derivados de la
porcion visible del espectro (B1, B2 y B3) explican la mayor
proporcion de devianza (35,82% - 40,1%), con el mas alto
valor para B1.

En los modelos con didmetro de copa, COPE1, COPE2
y COPE1”2 resultaron significativos en B1, B2, B3 y B7, mien-
tras que para la B4 inicamente COPE1 en una relacién cua-
dratica. Entre los modelos construidos con los estratos de
didmetro de copa, los correspondientes a la porcién visi-
ble del espectro tuvieron ligeramente mejor ajuste
(devianza explicada entre 35,5% y 42,97%), con el mas
alto valor para B1. En lo que respecta a la densidad B2 y B3,
mostraron resultados significativos para el estrato supe-
rior (DENE1) y el medio (DENE2), mientras que para Bl y B7
solo el estrato medio (DENE2) es importante. La mds alta
devianza explicada se obtuvo para B2 y B3 (26,1% vy
27,58%; respectivamente) (Tabla 3).

Bosque A. religiosa

Unicamente se obtuvieron resultados significativos para
DAPE1 y DAPE3 en B4 con devianza explicada de 23,05%.
Mientras que para las B1-B3, BS y B7 la densidad del estrato
superior (DENE1) fue significativa en una relacion cuadra-
tica, con la mas alta devianza explicada para B1 (36,56 %)
(Tabla 4). Cabe mencionar que los modelos para los tres
tipos de bosque presentan por colinearidad un FIV <2,
excepto para los estratos de altura en P. hartwegii (4,1) y

bosque mixto (2,68).

DIsCUsSION

El andlisis biplot indica que las relaciones entre las varia-
bles espectrales y atributos de estructura son dificiles de
discernir por la similar magnitud, sentido y proximidad
entre vectores. Esto se debe a la alta colinearidad existente
en los datos, un fenémeno observado previamente en
datos multiespectrales (Xu et al., 2003) e hiperespectrales
(Landgrebe, 1997). No obstante, el arreglo de los sitios de
muestreo por tipo de bosque revela la influencia de las
variables espectrales y de estructura, cuya importancia

puede ser analizada con MLG con un tratamiento ade-

cuado de la colinearidad. En el caso de MLG, se observd
que los estratos determinantes de la reflectancia difieren
de acuerdo con el tipo de bosque. P. hartwegii: altura (E1,
(E3)), DAP ((E1), E3), didmetro de copa (E3), densidad (E1,
E3, (E2)). Bosque mixto: altura (E1, E3, (E2)), DAP (E1, E3),
diametro de copa (E1, E2), densidad (E1, E2). A. religiosa:
DAP ((E1), (E3)), densidad (E1). Esto indica que las diferen-
cias estructurales de cada tipo de bosque inciden de
manera diferencial sobre la radiacion, generando cambios
en la reflectancia.

Los MLG sugieren una mayor eficacia en bosque de P.
hartwegii y mixto para explicar la reflectancia a partir de
la complejidad estructural. El trabajo pionero de Colwell
(1974), demostrd que la utilidad de datos espectrales en
relacion con la vegetacion depende del dngulo cenit de
inclinacién solar y que a 40° la reflectancia deja de ser
sensitiva a cambios en la cobertura de bosque mayor a
70%. Dado que la escena Landsat del area de estudio, se
sitia a 44° y que el bosque de A. religiosa en el PNCP es el
de mayor cobertura arbérea (entre 70% y 95% para 67%
de los sitios de muestreo), suponemos que la conjugacién
de la densidad del bosque y el dangulo cenit impiden expli-
car la reflectancia a partir de la complejidad en A. reli-
giosa.

Otro factor que posiblemente impide explicar la
reflectancia del bosque en A. religiosa es su propia estruc-
tura. Al respecto Donoghue y Watt (2006) detectaron que
la prediccion de la altura a partir de datos espectrales es
precisa hasta una talla de 10 m, distancia a partir de la
cual el poder de prediccion decrece. Por lo tanto, en bos-
que de A. religiosa las limitaciones de los sensores no per-
miten asociar la reflectancia con la altura del arbolado,
hecho que se extiende al didmetro de copa y de forma
marginal al DAP.

Un factor no incluido en los modelos pero muy impor-
tante en la respuesta espectral es la influencia del suelo.
Colwell (1974), observé que con bajos porcentajes de
cobertura el sustrato puede tener una gran influencia en la
reflectancia total. Sus observaciones mostraron que sitios
con cobertura semejante de hierbas, pero con suelos claros

tiene una reflectancia diferente a sitios con suelo obscuro.
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TaBLA 3. Modelos estadisticamente significativos para el bosque mixto.

Modelo Landsat TM Estrato t P AIC Devianza% FIV
ALTE1 2,141 0,0414 * -247 41 14,53 <15
2 ol ALTE3 -2,094 0,0458 *
ALTE1 2,486 0,01997 * -216,02 37,89 <2,68
» B2 ALTE3 -3,225 0,0035 **
ALTEI"2 -3,426 0,00212 **
ALTE3"2 2,847 0,00868 **
23 B3 ALTE3 -1,954 0,0608 -202,96 10,26 -
24 B5 ALTE2 -1,798 0,083 -123,23 8,66 -
25 B7 ALTE3 -2,253 0,0323 * -163,02 13,1 -
DAPEI 4,469 0,000127  *** -258,12 40,10 <1,06
2 Bl DAPEI"2 -3,466 0,001784 **
DAPEI 4,903 3,95E-05 ** 220,53 38,93 <1,02
7 B2 DAPEI"2 -3,416 0,00203 **
DAPEI 4,398 0,000154  *** 211,13 35,82 <1,22
28 53 DAPE3 -2465  0,020333 *
DAPEI 2,975 0,006104 ** -102,03 2796 <115
29 B DAPEIN2 -3,796  0,000757  ***
DAPEI 3325 0,00264 ** -126,52 2815 <124
30 B5 DAPE3 -2,.275 0,03141 *
DAPEI"2 -2,144 0,0416 *
DAPEI 3,206 0,00345 > -166,93 28,48 <126
. 57 DAPE3 -2,854 0,00819 **
COPEI 3,843 0,000703  *** -257,6 42,97 <1,21
32 Bi COPE2 -2,231 0,034516 *
COPEIN2 -4,04 0,000421  ***
COPEI 3,817 0,000752  *** -220,17 4217 <11,22
33 B2 COPE2 -2,294 0,030125 *
COPEIN2 -4,364 0,00018 o
COPEI 3,21 0,00352 **-208,98 355 <123
34 B3 COPE2 -2,229 0,0347 *
COPEI"2 -3,532 0,00156 **
COPEI 2,305 0,0291 * -100,67 24,66 <1,07
> B COPEI"2 -3,126 0,0042 **
COPEI 2,158 0,04031 * -163,95 26,12 <13
36 B7 COPE2 -2,177 0,03878 *
COPEI"2 -2,981 0,00617 **
37 Bi DENE2 -2,475 0,0196 * -249,18 13,87 -
DENEI -2,912 0,00712 * -214,77 26,10 <l
%8 B2 DENE2 -2,873 0,00782 **
DENEI -2,697 0,01192 * -207.47 2758 <1,01
39 53 DENE2 -3,088 0,00462 **
40 B7 DENE2 -2,286 0,03 * -162,57 11,804 -

Codigo de significancia: ***(0,001), ** (0,01}, * (0,05), . (O}))
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TaBLA 4. Modelos estadisticamente significativos para el bosque de A. religiosa.

Modelo  Landsat TM Estrato t P AIC Devianza % FIV
41 B4 DAPEI -2476  0,0198 *  -14527 23,05 <135
DAPE3 2,08 0,0472 *
42 Bl DENEI -3285 0,00283 ** -268,79 36,56 <159
DENEI"2 3,005 0,00568 **
43 B2 DENEI -2964 0,00627 ** -247,07 31,23 <1,6
DENEI2 2621 001424 *
44 B3 DENEI -3234 0,00322 ** -24599 35,06 <1,75
DENEI"2 242 0,02253 *
45 B5 DENEI -2882 0,00766 ** -1704 34,04 <156
DENEI"2 2,873 0,00783 **
46 B7 DENEI -2863 0,00801 ** -201,65 29,82 <1,67
DENEI"2 2445 0,02128 *
Codigo de significancia: ***(0,001), ** (Q,01), * (0,05)
CONCLUSION

En este estudio, se consider6 el efecto del suelo poco rele-
vante en bosque mixto (cobertura arbérea entre el 70% y
90% en 50% de la muestra) y A. religiosa (70% y 95%
cobertura para 67% de los sitios), y potencialmente acen-
tuado en P. hartwegii (solo 23% de los sitios de muestreo
tiene una cobertura arbérea entre 70% y 80%). No obs-
tante, dado que el bosque de P. hartwegii en el PNCP se
asienta unicamente en andosol 6crico (Inifap-Conabio,
1995), el suelo no puede ser considerado un factor de con-
fusion. A partir de esta consideracion se juzgan confiables
las estimaciones obtenidas.

Con base en la mayor proporcion de devianza expli-
cada por los MLG, no se encontr6 que alguna porcion del
espectro electromagnético (porcion visible, infrarrojo cer-
cano o infrarrojo medio) fuera claramente mds util para
explicar la reflectancia a partir de la complejidad del dosel,
no obstante la B1, permitié construir modelos con mayor
proporcion de devianza explicada. Bosque de P. hartwegii:
ALT-B1 (75,55%), DAP-B1 (57,24%), COP-B7 (47,22%), DEN-
B7 (58,76%). Bosque mixto: ALT-B2 (37,89%), DAP-B1
(40,1%), COP-B1 (42,97%) y DEN-B3 (27,58%). Bosque de
A. religiosa: DAP-B4 (23,05%), DEN-BI (36,56%).

La reflectancia de datos Landsat T™M en el PNCP es depen-
diente del tipo de bosque, de la variabilidad estructural
del dosel y de ciertas limitaciones relacionadas con los
sensores que dejan de ser sensitivos de acuerdo con el
angulo cenit de inclinacién solar e intervalos especificos
de cobertura y altura. Los métodos empiricos estadisticos
explorados para el drea de estudio permitieron identificar
los estratos del dosel relevantes en la formacion de la sefial
espectral y reconocer al bosque de P. hartwegii y mixto
como los tipos de vegetacion con potencial para construir
mapas de variabilidad estructural y derivar otras aplica-
ciones que requieran informacién detallada de la estruc-
tura del bosque. Para tal fin la banda 1 de Landsat T™
mostrd ser la mas util. De acuerdo con lo esperado, la
variabilidad estructural de cada tipo de bosque tiene un
efecto diferenciado en la reflectancia de las 6 bandas
espectrales Landsat TM. Como el presente trabajo indica,
los estratos mds importantes en la formacion de la sefal
son el estrato superior (E1) y el inferior (E3). Es posible que
otro tipo de codificaciéon explique mejor la formacién de

la sefial, por lo que se deben realizar pruebas al respecto.
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En el caso del bosque de A. religiosa, por las limita-
ciones de los sensores, la opcién viable es implementar la
estrategia multisensor, incorporando en estudios de
estructura datos de Lidar y radar. Se espera que la integra-
cién de estas tecnologias mds recientes con informacion
multiespectral permita la estimacién, mapeo y monitoreo
de atributos de ecosistemas no viables de estudiar usando
unicamente datos espectrales.

El presente trabajo constituye un primer acerca-
miento al entendimiento de la influencia de la complejidad
estructural de atributos de inventario e interés dasoné-
mico en la formacion de la sefial en imagenes de satélite
usando métodos empiricos y provee informacion relevante
para modelar de forma inversa los estratos inferiores del
dosel, una tarea que pese a su importancia en silvicultura
y ecologia, ha sido relegada por las dificultades metodol6-
gicas que implica. Indudablemente mas esfuerzos como
este contribuirdn al desarrollo de lineamientos para el
mapeo detallado de la variabilidad de doseles de vegeta-
cién y a proveer informacion relevante para el manejo del

bosque y la toma de decisiones a escala de paisaje.
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