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Resumen
La relación entre datos de instrumentos de percepción remota y datos de inventario de bosque, en particular de la complejidad es-
tructural de los elementos leñosos del dosel es un asunto pobremente entendido no obstante su importancia en ecología, silvicultura y 
manejo de recursos. En el presente trabajo se evaluó por medio de técnicas multivariadas (biplot) y Modelos Lineales Generalizados 
(MLG), la influencia de los diferentes estratos leñosos del dosel de cuatro variables de estructura (altura, DAP, diámetro de copa y 
densidad de individuos) sobre la reflectancia de datos Landsat TM en tres tipos de bosque en el Parque Nacional Cofre de Perote. Los 
resultados biplot indican diferencias relacionadas con el tipo de bosque y la expresión métrica de los atributos estructurales. MLG 
indican que la reflectancia total es dependiente de la complejidad estructural del dosel, del tipo de bosque con ciertas limitaciones 
derivadas de la sensitividad de los sensores. Las bandas Landsat 1-3, 5-7 mostraron una más clara relación con atributos de la com-
plejidad forestal, en particular para bosque de Pinus hartwegii y bosque mixto, al parecer las dimensiones estructurales del bosque y 
limitaciones en la sensitividad de los sensores Landsat impiden explicar la reflectancia a partir de la complejidad en el bosque de A. 
religiosa.

Palabras clave: atributos de bosque, bosque de coníferas, dosel, estructura del bosque, imágenes de satélite, respuesta espectral.

Abstract
Despite its importance in ecology, forestry and resource management the relationship between remote sensing data and forest inven-
tory data are still poorly understood, in particular regarding the structural complexity of woody canopy elements. In this paper we 
evaluate by multivariate techniques and Generalized Linear Models (GLM), the influence of 4 woody canopy structure variables by 
strata (height, DBH, crown diameter and density) on the Landsat TM reflectance data. We analyzed three forest types in the Cofre de 
Perote National Park. Biplots suggest differences related to the type of forest and the metric expression of structural attributes. GLM 
indicate that the total reflectance shows differential response that can be associated to canopy structural complexity and the type of 
forest with some limitations related to the sensitivity of the sensors. Landsat bands 1-3, 5-7 showed a better association with forest 
complexity variables, in particular for Pinus hartwegii forest and mixed forest. Apparently forest structural attributes and limitations 
of Landsat sensor sensitivity itself prevents the identification of reliable association between reflectance and complexity variables in 
Abies religiosa forest.

Key words: forest attributes, conifer forest, canopy, forest structure, satellite images, spectral response.
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Introducción

Los bosques son ecosistemas que proveen bienes materia-

les y servicios ambientales indispensables para el bienestar 

humano (Millennium Ecosystem Assessment, 2005). Por 

su importancia, es cada vez más urgente disponer de 

información confiable de su estado actual y de cómo cam-

bian a través del tiempo (Franklin, 2001; Wulder et al., 

2004). En este sentido los datos derivados de sensores de 

percepción remota son una opción idónea para adquirir 

información de extensas superficies de bosque con un 

costo razonable y aceptable exactitud (Lu et al., 2004). La 

suposición básica en percepción remota es que cada tipo 

de superficie interactúa de manera característica con la 

radiación incidente. Dicha conducta genera una curva que 

representa el comportamiento del objetivo a lo largo del 

espectro electromagnético (Mather, 2004). Esta respuesta 

ha sido denominada firma espectral, respuesta espectral o 

reflectancia, y se ha demostrado ampliamente que provee 

información útil en ecología y manejo de recursos, al per-

mitir hacer inferencias confiables sobre la naturaleza de la 

superficie reflectante.

El interés por disponer de información precisa de la 

superficie terrestre ha propiciado el estudio de la interac-

ción de una gran variedad de tipos de coberturas con la 

radiación electromagnética. En el caso de los bosques, ha 

permitido derivar estimadores que vinculan la relación 

entre la reflectancia y atributos del bosque, datos de inven-

tario, índices de vitalidad, ecológicos, eco-fisiológicos y 

bioquímicos (Nilson et al., 2003). Este tipo de informa-

ción ha sido útil y crítica en muchos aspectos del manejo 

de recursos, la toma de decisiones a escala de paisaje e 

indispensable en la construcción de modelos de procesos 

ecológicos.

No obstante, aún persiste incertidumbre sobre la 

relación entre la estructura del bosque y la reflectancia 

respecto a las longitudes de onda más adecuadas para 

representar diferencias sutiles en la estructura, tipo y con-

dición de la vegetación (Hill et al., 2011). La principal 

causa es que la utilidad, tipo y fortaleza de las relaciones 

entre datos espectrales y atributos del bosque son específi-

cos al sensor y sitio, lo cual dificulta hacer generalizacio-

nes entre estudios de diferentes sitios e incluso de tiempos 

distintos en una misma zona (Steininger, 2000; Wood-

cock et al., 2001; Foody et al., 2001, 2003; He et al., 

2013).

Existe evidencia de que la reflectancia del bosque es 

determinada por la distribución vertical de parámetros 

biofísicos y bioquímicos del dosel (Wang y Li, 2013), y 

que los estratos interiores e incluso la vegetación a ras del 

suelo desempeñan un papel significativo (Danson y 

Curran, 1993). También se han detectado complejas inte-

racciones entre variables estructurales como biomasa, 

edad, densidad, altura y área basal. Otros atributos 

importantes son la composición de especies, composición 

química de las hojas y naturaleza del suelo (Rock et al., 

1986; Peterson et al., 1987; Gerard y North, 1997; Lee y 

Nakane, 1997; Asner, 1998; Baret, 1991; Houborg et al., 

2009). Además, influyen factores relacionados con el sen-

sor, como la orientación del sol, sobre todo el azimuth 

solar, la altura del sol en el cielo (ángulo de elevación) y la 

dirección en que apunta el sensor en relación al nadir 

(ángulo de visión) (Mather 2004).

Se han logrado grandes avances en el entendimiento 

de la reflectancia, no obstante persisten carencias, especí-

ficamente en relación con el efecto de la variabilidad 

estructural de los elementos leñosos del dosel en la forma-

ción de la señal. Se considera que el entendimiento básico 

de este complejo proceso es relevante en ecología y silvi-

cultura porque puede contribuir a estimaciones más preci-

sas de volumen de madera, así como proveer información 

valiosa para el mapeo detallado de la estructura que 

incluya los estratos inferiores de la vegetación. Es impor-

tante resaltar que no se encontraron en la bibliografía 

antecedentes de este tipo y con el detalle usado en este 

trabajo.

Objetivos

El presente trabajo tuvo como objetivo analizar por medio 

de métodos empíricos, la influencia de los diferentes estra-

tos del dosel en la formación de la reflectancia de datos 

Landsat TM. El estudio incluye cuatro variables estructu-

rales de interés agronómico (altura, DAP, diámetro de copa 
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y densidad de individuos) cuya relación con la reflectancia 

fue evaluada en tres tipos de bosque. 

Materiales y métodos

Área de estudio

El presente trabajo se realizó en el Parque Nacional Cofre 

de Perote (PNCP), un área natural protegida situada en la 

región montañosa del centro de México, entre los parale-

los 19° 34’ 02” y 19° 25’ 39” de latitud norte y los meri-

dianos 97° 12’ 49” y los 97° 06’ 09” de longitud oeste. El 

PNCP ocupa una superficie de 11 530 ha, y se ubica por 

arriba de la curva de nivel de los 3000 m hasta los 4250 m 

snm en la cumbre.

Los tipos de suelo dominantes son andosol ócrico 

(80,9% de la superficie total) y el andosol húmico (17,85%), 

con una pequeña superficie de regosol eútrico (1,2%) (Ini-

fap-Conabio, 1995). Los climas son del tipo semifrío 

húmedo y subhúmedo con temperatura media anual entre 

5 °C y 12 °C (García-Conabio, 1998). La precipitación 

oscila entre 600 mm y 1200 mm anuales, con una pequeña 

superficie que capta entre 400 mm y 600 mm en la región 

más seca (Vidal-Zepeda, 1990).

La vegetación arbórea ocupa 56,4% de la superficie 

total del parque y está constituida por bosque de Pinus, 

bosque de Abies, y bosque de Pinus-Quercus (denomi-

nado aquí bosque mixto). Cuarenta y seis por ciento de la 

superficie restante está ocupada por agricultura de tempo-

ral y pastizal de origen antropogénico, con el 2,6% res-

tante correspondiente a la pradera de alta montaña (Inegi, 

2011).

Procesamiento de la imagen

En el estudio se utilizaron dos imágenes Landsat. En pri-

mera instancia una escena ETM+ previa al muestreo con 

fecha de adquisición 7 de marzo de 2009 (path 25/row 46) 

fue analizada generando el Índice de Vegetación de Dife-

rencia Normalizada (NDVI) y usada únicamente para 

estratificar y guiar el muestreo. Los valores de NDVI fue-

ron agrupados en clases con Arcgis. NDVI fue elegido por 

su capacidad de representar cantidad de biomasa (Zheng 

et al., 2004; Gillespie et al., 2006). En NDVI, valores de 

0,1 o menor corresponden a zonas áridas, roca, arena, o 

nieve, valores moderados, entre 0,2-0,3 representan 

arbustos o pastizales y valores altos, entre 0,6-0,8 indican 

bosques templados o tropicales.

La segunda imagen fue usada para los análisis esta-

dísticos, corresponde a datos Landsat 5 TM (path 25/row 

46), con fecha de adquisición 12 de diciembre de 2009. 

Datos TM fueron elegidos debido al problema en el correc-

tor de la línea de escaneo del sensor ETM+, por no presen-

tar nubes para el polígono del PNCP y por ser la más 

próxima a la realización del muestreo. La imagen fue cali-

brada para convertir los valores digitales a radiancia y 

posteriormente a reflectancia usando los coeficientes de 

calibración para datos Landsat de Chander et al. (2009). 

Con la imagen calibrada se corrigió el efecto de la atmos-

fera por el método de extracción del objeto obscuro de 

Chávez (1996). La calibración y corrección atmosférica se 

realizó con ENVI. Los valores de reflectancia se extrajeron 

por el método ventana de 3x3 pixeles con Arcgis. Esta 

técnica permite eliminar errores de geoposición cuando se 

relacionan valores de pixel con muestreos de vegetación 

(Hall et al., 2006; Luther et al., 2006). Debido a la coinci-

dencia espacial de ambas imágenes con las cartas topográ-

ficas vectoriales 1:50 000 de Inegi no se realizó  rectificación 

geométrica.

Muestreo

Un muestreo estratificado aleatorio se realizó en octubre 

de 2009 usando como datos auxiliares nueve categorías 

de NDVI correspondientes a vegetación arbórea, la ads-

cripción a tipo de vegetación en campo y un perímetro de 

restricción de 500 m en relación con las vías de comunica-

ción (terracerías y brechas). La selección de grupos homo-

géneos o clases se realizó con ayuda de SIG por medio de 

inspección visual, identificando dentro del perímetro de 

restricción las microcuencas donde cada categoría de 

NDVI-tipo de vegetación presentó fragmentos de mayor 

área. Cuando alguna categoría se observó altamente frag-

mentada dentro del área preestablecida, se procedió a su 

muestreo fuera de esta. En cada fragmento elegido se esta-
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blecieron 4(5) puntos aleatorios a una distancia mínima 

entre sí de 90 m. En total se ubicaron 90 puntos en los 3 

tipos de vegetación arbórea dominantes.

Para guiar el muestreo en campo el mapa de NDVI, los 

archivos vectoriales de vías de comunicación, el perímetro 

de restricción y los puntos elegidos aleatoriamente fueron 

“cargados” en un geoposicionador global (GPS) con recep-

ción bajo dosel. En cada punto aleatorio se trazó un cua-

dro de 10 m x 10 m, donde se midió a cada individuo 

leñoso igual o mayor a 2 m la altura, DAP y diámetro de 

copa. La altura se estimó con un clinómetro electrónico 

con un error de ± 30 cm, el DAP con cinta diamétrica y el 

diámetro de copa con cinta métrica estándar.

Basado en la altura, la adscripción de los individuos a 

un estrato del dosel particular se realizó con el siguiente 

criterio: estrato 1 (E1) individuos cuya altura corresponde 

entre 100% y 80% de la altura total registrada en el cua-

dro, estrato 2 (E2) 80% - 50% de la altura total, estrato 3 

(E3) 50% de la altura total hasta 2 m. Con la estratificación 

derivada de la altura, se calcularon los promedios para los 

diferentes estratos de altura, DAP y diámetro de copa, 

excepto la densidad que fue representada con un conteo.

Análisis estadístico

Los análisis se realizaron con R (R Development Core 

Team, 2012). La relación entre valores espectrales y atri-

butos de estructura se analizó con Biplot. Dicha técnica 

proyecta conjuntos de datos multivariados que grafican la 

estructura de varianza-covarianza entre variables. Repre-

senta distancias euclidianas entre variables y es usado 

para revelar agrupamiento y multicolinearidad (Gabriel, 

1971; Kohler y Luniak, 2005; La Grange, 2009). El biplot 

se obtuvo por medio del paquete HSAUR de R (Everitt y 

Hothorn, 2012). Los componentes principales fueron 

construidos con la función prcomp a partir de la matriz 

de correlación y estandarizados para evitar que las dife-

rentes escalas (reflectancia, m, cm, conteo) influyan en la 

longitud de los vectores y dominancia de alguna de las 

variables (La Grange, 2009; Rawlings et al., 1998).

La influencia de los estratos del dosel en la reflectan-

cia se evaluó con MLG. Este tipo de modelos permite cons-

truir funciones de regresión y ajuste con diferentes tipos 

de error (binomial, Poisson, gamma). Son adecuados 

cuando la distribución de los errores no sigue una distri-

bución normal, la varianza es dependiente de la media y la 

variable de respuesta no se relaciona linealmente con las 

variables independientes. Su estructura incluye tres com-

ponentes, el predictor lineal, la estructura del error y la 

función de vínculo o link (Crawley, 2007; Nelder y 

Wedderburn, 1972).

El análisis de cada banda Landsat TM se realizó por 

tipo de bosque. Para evitar problemas por colinearidad y 

debido a la alta correlación entre las cuatro variables expli-

cativas (altura, DAP, diámetro de copa y densidad), cada 

atributo estructural (formado por tres estratos) se evaluó 

por separado (Zuur et al., 2010). Determinar colinearidad 

es importante porque el uso de variables correlacionadas 

produce estimaciones inestables de los parámetros 

(Crawley, 2007) y es crítico para identificar variables 

importantes en un proceso (Rawlings et al. 1998).

La colinearidad no esencial fue tratada restando la 

media a las variables predictoras. Cada modelo fue verifi-

cado para el factor de inflación de varianza (FIV) con el 

paquete VIF de R (Lin et al., 2011). FIV es un estimador de 

colinearidad. Valores de 1 indican carencia de redundan-

cia, >4 multicolinearidad y >10 indican multicolinearidad 

grave, que es indicativo que ciertas variables no se deben 

usar simultáneamente (Mandeville, 2008).

Por la naturaleza cuantitativa continua de los datos se 

usó la distribución de la familia exponencial gamma y la 

función link identity. El análisis incluye los tres estratos 

de estructura y las interacciones y se incluyó un término 

cuadrático a cada variable para determinar si la relación 

es lineal. El modelo máximo es el siguiente:

Y ~ E1 + E2 + E3 + I(E1^2) + I(E2^2) + I(E3^2) + 

E1:E2 + E1:E3 + E2:E3 + E1:E2:E3, family = 

Gamma(link =identity)

La selección de variables se hizo con una significancia 

mínima de α=0,05, la proporción de devianza explicada (%) 

y el Criterio de Información Akaike (AIC), un estadístico útil, 
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porque penaliza parámetros superfluos en un modelo, cuanto 

más pequeño es el AIC, mejor es el ajuste (Crawley, 2007).

Resultados

Análisis Biplot

La ordenación por medio de Biplot a lo largo del CP1 y CP2 

agrupó los sitios de muestreo de acuerdo con el tipo de bos-

que. Los CP1 y CP2 informan 60,8% de la varianza total de 

los datos, alcanzando en el CP5 83,8%. Por su dirección y 

magnitud se aprecia la formación de dos grupos importan-

tes de variables en el CP1, uno constituido por las bandas 

Landsat TM, B1-B3, B5, B7 y otro formado por variables de 

altura (ALTE1, ALTE2, ALTE3), de DAP (DAPE2, DAPE3) y diá-

metro de copa (COPE2, COPE3); en el CP2, se agruparon los 

tres estratos de densidad, correlacionados negativamente 

con DAPE1, COPE1 y la B4 (Fig. 1).

Aunque en el biplot ningún vector destaca particular-

mente del resto por su magnitud, la revisión del aporte de 

cada variable a cada componente indica en orden de 

importancia que en el CP1 las B7, B3, B5, B2, y B1 presenta-

ron la mayor longitud de contribución negativa, mientras 

que de forma positiva los más importantes son ALTE2, 

ALTE3 y ALTE1. En el CP2 la mayor longitud de tipo posi-

tiva se observó en COPE1, DAPE1 y B4, y de forma negativa 

para DENE1 y DENE2 (Tabla 1).

Análisis MLG

Bosque de P. hartwegii

Los resultados son significativos para todas las bandas 

(excepto B4) y todos los atributos estructurales (Tabla 2). 

La altura del estrato superior (ALTE1) es altamente signifi-

cativa en una relación cuadrática para B1-B3, B5, B7, con la 

Figura 1. Biplot incluyendo el CP1 y CP2 para los tres tipos de bosque y todos los atributos estructurales.
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particularidad que B1 incluye un efecto de interacción 

entre ALTE1 y ALTE3. El modelo usando B1 explica la 

mayor proporción de devianza (75,55%), con el resto de 

los modelos entre 54,3% y 59,26%. Usando estratos de 

DAP como predictor, se obtuvieron resultados significati-

vos en B2-B3, B5 y B7 para DAPE3 en una relación cuadrá-

tica, con devianza explicada entre 40,05% y 52,17%. En 

B1, la estructura tiene un efecto complejo en la reflectan-

cia, con resultados significativos para DAPE1, DAPE3, 

DAPE3^2 y DAPE1:DAPE3. La devianza explicada por los 

estratos de DAP en B1 es la más alta (57,24%).

Con diámetro de copa, el único estrato importante 

fue COPE3 en una relación cuadrática significativa para 

B1-B3, B5 y B7, con B7 registrando la mayor devianza expli-

cada (47,22%). De los estratos de densidad, son significa-

tivos el estrato superior (DENE1) e inferior (DENE3) en B1, 

B3, B5 y B7, con la más alta proporción de devianza para 

Tabla 1. Contribución de cada variable a la construcción de los primeros 5 componentes principales (CP).

CP1 CP2 CP3 CP4 CP5

Banda Landsat 1 (B1) -0,31 0,25 -0,03 0,10 -0,05

Banda Landsat  2 (B2) -0,32 0,25 -0,03 0,10 -0,09

Banda Landsat  3 (B3) -0,34 0,17 -0,06 0,06 -0,13

Banda Landsat  4 (B4) -0,09 0,30 0,04 0,20 0,10

Banda Landsat  5 (B5) -0,32 0,22 -0,03 0,14 -0,05

Banda Landsat  7 (B7) -0,35 0,16 -0,07 0,10 -0,10

Altura estrato 1 (ALTE1) 0,28 0,23 0,07 -0,19 0,13

Altura estrato 2 (ALTE2) 0,29 0,11 -0,37 0,07 -0,06

Altura estrato 3 (ALTE3) 0,29 0,15 0,24 0,32 0,00

DAP estrato 1 (DAPE1) 0,12 0,34 0,23 -0,32 -0,06

DAP estrato 2 (DAPE2) 0,21 0,20 -0,52 -0,01 -0,10

DAP estrato 3 (DAPE3) 0,21 0,25 0,22 0,39 -0,05

Diámetro copa estrato 1 (COPE1) 0,12 0,35 0,15 -0,30 -0,01

Diámetro copa estrato 2 (COPE2) 0,18 0,19 -0,53 0,02 -0,12

Diámetro copa estrato 3 (COPE3) 0,23 0,27 0,18 0,37 -0,04

Densidad estrato 1 (DENE1) 0,05 -0,23 -0,01 0,39 0,43

Densidad estrato 2 (DENE2) 0,06 -0,27 -0,07 0,33 -0,51

Densidad estrato 3 (DENE3) 0,11 -0,12 0,25 -0,10 -0,67

las B3, B5 y B7, entre estas, en B7 se observó la mayor pro-

porción (58,76%). Para la B2, los estratos significativos 

son de la parte interior del dosel (DENE2 y DENE3), aunque 

con la menor devianza (40,37%).

Bosque mixto

Usando la altura como predictor, de la B2 deriva un 

modelo complejo con la más alta devianza explicada 

(37,89%), en el que ALTE1, ALTE3, ALTE1^2 y ALTE3^2 son 

significativos. En B1 el estrato superior (ALTE1) e inferior 

(ALTE3) son los más importantes; mientras que para las B3 

y B7 el estrato inferior (ALTE3) y para B5 el estrato medio 

(ALTE2). En B3 y B5 la significancia es marginal. Para el 

DAP, el modelo más complejo deriva de la B5, en este, 

DAPE1, DAPE3 y DAPE1^2 son los estratos significativos. 

Para B1, B2, y B4, el estrato superior (DAPE1) es el más 

importante en una relación cuadrática; mientras que para 
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Tabla 2. Modelos estadísticamente significativos para el bosque de P. hartwegii.

Modelo Landsat TM Estrato t P   AIC Devianza % FIV

1 B1

ALTE1 -3,594 0,0014 ** -262,26 75,55 < 4,1

ALTE3 -0,715 0,48133

ALTE1:ALTE3 3,654 0,0012 **

ALTE1^2 3,642 0,00123 **

2 B2
ALTE1 -5,032 2,80E-05 *** -221,46 54,3 < 1,4

ALTE1^2 3,789 0,00077 ***

3 B3
ALTE1 -5,498 8,02E-06 *** -212,09 59,26 <1,27

ALTE1^2 4,488 0,00012 ***

4 B5
ALTE1 -5,255 1,54E-05 *** -156,12 57,67 <1,29

ALTE1^2 4,753 5,92E-05 ***

5 B7
ALTE1 -5,362 1,15E-05 *** -170,74 58,96 <1,31

ALTE1^2 4,855 4,50E-05 ***

6 B1

DAPE1 -2,205 0,03685 * -245,41 57,24 <1,56

DAPE3 -3,454 0,00198 **

DAPE3^2 2,236 0,03451 *

DAPE1:DAPE3 2,384 0,02504 *

7 B2
DAPE3 -3,834 0,000685 *** -214,66 42,79 <1,18

DAPE3^2 3,179 0,003684 **

8 B3
DAPE3 -4,083 0,000355 *** -204,72 40,05 <1,18

DAPE3^2 3,55 0,001435 **

9 B5
DAPE3 -3,681 0,001023 ** -149,03 46,46 <1,11

DAPE3^2 3,797 0,000756 ***

10 B7
DAPE3 -4,065 0,000372 *** -166,1 52,17 <1,13

DAPE3^2 4,082 0,000356 ***

11 B1
COPE3 -4,122 0,00032 *** -242,24 45,8 <1,1

COPE3^2 3,133 0,00414 **

12 B2
COPE3 -3,517 0,00156 ** -213,23 40,03 <1,09

COPE3^2 2,932 0,00679 **

13 B3
COPE3 -3,729 0,000904 *** -203,27 45,51 <1,08

COPE3^2 3,33 0,002522 **

14 B5
COPE3 -3,308 0,00267 ** -146,35 41,5 <1,05

COPE3^2 3,328 0,00253 **

15 B7
COPE3 -3,775 0,0008 *** -163,11 47,22 <1,08

COPE3^2 3,519 0,00155 **

16 B1
DENE1 -2,001 0,055532 . -242,73 46,68 <1,1

DENE3 -3,726 0,000909 ***

17 B2
DENE2 -2,223 0,03474 * -213,4 40,37 <1,3

DENE3 -2,774 0,00993 **

18 B3
DENE1 -2,235 0,0339 * -206,72 51,37 <1,1

DENE3 -4,298 0,0002 ***

19 B5
DENE1 -2,616 0,014385 * -151,25 50,27 <1,1

DENE3 -3,997 0,000446 ***

20 B7
DENE1 -3,323 0,00257 ** -170,59 58,76 <1,1

DENE3 -4,748 6,00E-05 ***      

Código de significancia:  ***(0,001),  ** (0,01),  * (0,05),  . (0,1)
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B3 y B7 las variables significativas son el estrato superior 

(DAPE1) y el inferior (DAPE3). Los modelos derivados de la 

porción visible del espectro (B1, B2 y B3) explican la mayor 

proporción de devianza (35,82% - 40,1%), con el más alto 

valor para B1.

En los modelos con diámetro de copa, COPE1, COPE2 

y COPE1^2 resultaron significativos en B1, B2, B3 y B7, mien-

tras que para la B4 únicamente COPE1 en una relación cua-

drática. Entre los modelos construidos con los estratos de 

diámetro de copa, los correspondientes a la porción visi-

ble del espectro tuvieron ligeramente mejor ajuste 

(devianza explicada entre 35,5% y 42,97%), con el más 

alto valor para B1. En lo que respecta a la densidad B2 y B3, 

mostraron resultados significativos para el estrato supe-

rior (DENE1) y el medio (DENE2), mientras que para B1 y B7 

solo el estrato medio (DENE2) es importante. La más alta 

devianza explicada se obtuvo para B2 y B3 (26,1% y 

27,58%; respectivamente) (Tabla 3).

Bosque A. religiosa

Únicamente se obtuvieron resultados significativos para 

DAPE1 y DAPE3 en B4 con devianza explicada de 23,05%. 

Mientras que para las B1-B3, B5 y B7 la densidad del estrato 

superior (DENE1) fue significativa en una relación cuadrá-

tica, con la más alta devianza explicada para B1 (36,56%) 

(Tabla 4). Cabe mencionar que los modelos para los tres 

tipos de bosque presentan por colinearidad un FIV <2, 

excepto para los estratos de altura en P. hartwegii (4,1) y 

bosque mixto (2,68).

Discusión

El análisis biplot indica que las relaciones entre las varia-

bles espectrales y atributos de estructura son difíciles de 

discernir por la similar magnitud, sentido y proximidad 

entre vectores. Esto se debe a la alta colinearidad existente 

en los datos, un fenómeno observado previamente en 

datos multiespectrales (Xu et al., 2003) e hiperespectrales 

(Landgrebe, 1997). No obstante, el arreglo de los sitios de 

muestreo por tipo de bosque revela la influencia de las 

variables espectrales y de estructura, cuya importancia 

puede ser analizada con MLG con un tratamiento ade-

cuado de la colinearidad. En el caso de MLG, se observó 

que los estratos determinantes de la reflectancia difieren 

de acuerdo con el tipo de bosque. P. hartwegii: altura (E1, 

(E3)), DAP ((E1), E3), diámetro de copa (E3), densidad (E1, 

E3, (E2)). Bosque mixto: altura (E1, E3, (E2)), DAP (E1, E3), 

diámetro de copa (E1, E2), densidad (E1, E2). A. religiosa: 

DAP ((E1), (E3)), densidad (E1). Esto indica que las diferen-

cias estructurales de cada tipo de bosque inciden de 

manera diferencial sobre la radiación, generando cambios 

en la reflectancia.

Los MLG sugieren una mayor eficacia en bosque de P. 

hartwegii y mixto para explicar la reflectancia a partir de 

la complejidad estructural. El trabajo pionero de Colwell 

(1974), demostró que la utilidad de datos espectrales en 

relación con la vegetación depende del ángulo cenit de 

inclinación solar y que a 40° la reflectancia deja de ser 

sensitiva a cambios en la cobertura de bosque mayor a 

70%. Dado que la escena Landsat del área de estudio, se 

sitúa a 44° y que el bosque de A. religiosa en el PNCP es el 

de mayor cobertura arbórea (entre 70% y 95% para 67% 

de los sitios de muestreo), suponemos que la conjugación 

de la densidad del bosque y el ángulo cenit impiden expli-

car la reflectancia a partir de la complejidad en A. reli-

giosa.

Otro factor que posiblemente impide explicar la 

reflectancia del bosque en A. religiosa es su propia estruc-

tura. Al respecto Donoghue y Watt (2006) detectaron que 

la predicción de la altura a partir de datos espectrales es 

precisa hasta una talla de 10 m, distancia a partir de la 

cual el poder de predicción decrece. Por lo tanto, en bos-

que de A. religiosa las limitaciones de los sensores no per-

miten asociar la reflectancia con la altura del arbolado, 

hecho que se extiende al diámetro de copa y de forma 

marginal al DAP.

Un factor no incluido en los modelos pero muy impor-

tante en la respuesta espectral es la influencia del suelo. 

Colwell (1974), observó que con bajos porcentajes de 

cobertura el sustrato puede tener una gran influencia en la 

reflectancia total. Sus observaciones mostraron que sitios 

con cobertura semejante de hierbas, pero con suelos claros 

tiene una reflectancia diferente a sitios con suelo obscuro. 
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Tabla 3. Modelos estadísticamente significativos para el bosque mixto.

Modelo Landsat TM Estrato t P   AIC Devianza% FIV

21 B1
ALTE1 2,141 0,0414 * -247,41 14,53 <1,5

ALTE3 -2,094 0,0458 *

22 B2

ALTE1 2,486 0,01997 * -216,02 37,89 <2,68

ALTE3 -3,225 0,0035 **

ALTE1^2 -3,426 0,00212 **

ALTE3^2 2,847 0,00868 **

23 B3 ALTE3 -1,954 0,0608 . -202,96 10,26  -

24 B5 ALTE2 -1,798 0,083 . -123,23 8,66  -

25 B7 ALTE3 -2,253 0,0323 * -163,02 13,11  -

26 B1
DAPE1 4,469 0,000127 *** -258,12 40,10 <1,06

DAPE1^2 -3,466 0,001784 **

27 B2
DAPE1 4,903 3,95E-05 *** -220,53 38,93 <1,02

DAPE1^2 -3,416 0,00203 **

28 B3
DAPE1 4,398 0,000154 *** -211,13 35,82 <1,22

DAPE3 -2,465 0,020333 *

29 B4
DAPE1 2,975 0,006104 ** -102,03 27,96 <1,15

DAPE1^2 -3,796 0,000757 ***

30 B5

DAPE1 3,325 0,00264 ** -126,52 28,15 <1,24

DAPE3 -2,275 0,03141 *

DAPE1^2 -2,144 0,0416 *

31 B7
DAPE1 3,206 0,00345 ** -166,93 28,48 <1,26

DAPE3 -2,854 0,00819 **

32 B1

COPE1 3,843 0,000703 *** -257,6 42,97 <1,21

COPE2 -2,231 0,034516 *

COPE1^2 -4,04 0,000421 ***

33 B2

COPE1 3,817 0,000752 *** -220,17 42,17 <11,22

COPE2 -2,294 0,030125 *

COPE1^2 -4,364 0,00018 ***

34 B3

COPE1 3,21 0,00352 ** -208,98 35,5 <1,23

COPE2 -2,229 0,0347 *

COPE1^2 -3,532 0,00156 **

35 B4
COPE1 2,305 0,0291 * -100,67 24,66 <1,07

COPE1^2 -3,126 0,0042 **

36 B7

COPE1 2,158 0,04031 * -163,95 26,12 <1,3

COPE2 -2,177 0,03878 *

COPE1^2 -2,981 0,00617 **

37 B1 DENE2 -2,475 0,0196 * -249,18 13,87  -

38 B2
DENE1 -2,912 0,00712 ** -214,77 26,10 <1

DENE2 -2,873 0,00782 **

39 B3
DENE1 -2,697 0,01192 * -207,47 27,58 <1,01

DENE2 -3,088 0,00462 **

40 B7 DENE2 -2,286 0,03 * -162,57 11,804  -

Código de significancia:  ***(0,001),  ** (0,01),  * (0,05),  . (0,1)
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En este estudio, se consideró el efecto del suelo poco rele-

vante en bosque mixto (cobertura arbórea entre el 70% y 

90% en 50% de la muestra) y A. religiosa (70% y 95% 

cobertura para 67% de los sitios), y potencialmente acen-

tuado en P. hartwegii (solo 23% de los sitios de muestreo 

tiene una cobertura arbórea entre 70% y 80%). No obs-

tante, dado que el bosque de P. hartwegii en el PNCP se 

asienta únicamente en andosol ócrico (Inifap-Conabio, 

1995), el suelo no puede ser considerado un factor de con-

fusión. A partir de esta consideración se juzgan confiables 

las estimaciones obtenidas.

Con base en la mayor proporción de devianza expli-

cada por los MLG, no se encontró que alguna porción del 

espectro electromagnético (porción visible, infrarrojo cer-

cano o infrarrojo medio) fuera claramente más útil para 

explicar la reflectancia a partir de la complejidad del dosel, 

no obstante la B1, permitió construir modelos con mayor 

proporción de devianza explicada. Bosque de P. hartwegii: 

ALT-B1 (75,55%), DAP-B1 (57,24%), COP-B7 (47,22%), DEN-

B7 (58,76%). Bosque mixto: ALT-B2 (37,89%), DAP-B1 

(40,1%), COP-B1 (42,97%) y DEN-B3 (27,58%). Bosque de 

A. religiosa: DAP-B4 (23,05%), DEN-B1 (36,56%).

Conclusión

La reflectancia de datos Landsat TM en el PNCP es depen-

diente del tipo de bosque, de la variabilidad estructural 

del dosel y de ciertas limitaciones relacionadas con los 

sensores que dejan de ser sensitivos de acuerdo con el 

ángulo cenit de inclinación solar e intervalos específicos 

de cobertura y altura. Los métodos empíricos estadísticos 

explorados para el área de estudio permitieron identificar 

los estratos del dosel relevantes en la formación de la señal 

espectral y reconocer al bosque de P. hartwegii y mixto 

como los tipos de vegetación con potencial para construir 

mapas de variabilidad estructural y derivar otras aplica-

ciones que requieran información detallada de la estruc-

tura del bosque. Para tal fin la banda 1 de Landsat TM 

mostró ser la más útil. De acuerdo con lo esperado, la 

variabilidad estructural de cada tipo de bosque tiene un 

efecto diferenciado en la reflectancia de las 6 bandas 

espectrales Landsat TM. Como el presente trabajo indica, 

los estratos más importantes en la formación de la señal 

son el estrato superior (E1) y el inferior (E3). Es posible que 

otro tipo de codificación explique mejor la formación de 

la señal, por lo que se deben realizar pruebas al respecto.

Tabla 4. Modelos estadísticamente significativos para el bosque de A. religiosa.

Modelo Landsat TM Estrato t P   AIC Devianza % FIV

41 B4 DAPE1 -2,476 0,0198 * -145,27 23,05 <1,35

DAPE3 2,08 0,0472 *

42 B1 DENE1 -3,285 0,00283 ** -268,79 36,56 <1,59

DENE1^2 3,005 0,00568 **

43 B2 DENE1 -2,964 0,00627 ** -247,07 31,23 <1,6

DENE1^2 2,621 0,01424 *

44 B3 DENE1 -3,234 0,00322 ** -245,99 35,06 <1,75

DENE1^2 2,42 0,02253 *

45 B5 DENE1 -2,882 0,00766 ** -170,4 34,04 <1,56

DENE1^2 2,873 0,00783 **

46 B7 DENE1 -2,863 0,00801 ** -201,65 29,82 <1,67

DENE1^2 2,445 0,02128 *

Código de significancia:  ***(0,001),  ** (0,01),  * (0,05)
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En el caso del bosque de A. religiosa, por las limita-

ciones de los sensores, la opción viable es implementar la 

estrategia multisensor, incorporando en estudios de 

estructura datos de Lidar y radar. Se espera que la integra-

ción de estas tecnologías más recientes con información 

multiespectral permita la estimación, mapeo y monitoreo 

de atributos de ecosistemas no viables de estudiar usando 

únicamente datos espectrales.

El presente trabajo constituye un primer acerca-

miento al entendimiento de la influencia de la complejidad 

estructural de atributos de inventario e interés dasonó-

mico en la formación de la señal en imágenes de satélite 

usando métodos empíricos y provee información relevante 

para modelar de forma inversa los estratos inferiores del 

dosel, una tarea que pese a su importancia en silvicultura 

y ecología, ha sido relegada por las dificultades metodoló-

gicas que implica. Indudablemente más esfuerzos como 

este contribuirán al desarrollo de lineamientos para el 

mapeo detallado de la variabilidad de doseles de vegeta-

ción y a proveer información relevante para el manejo del 

bosque y la toma de decisiones a escala de paisaje.
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