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Abstract. The 2, 2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging properties of selected hydrazone
antioxidants was investigated by the application of Quantitative Structure Activity Relationship (QSAR). Density
functional theory (DFT) was employed in the optimization of the molecular structures. Internal and external
validation as well as y-randomization tests were conducted in order to confirm the statistical reliability and
acceptability of the developed models. The leverage approach was employed in the assessment of the applicability
domain of the developed model. While the relative contribution and strength of each descriptor in the model was
obtained by estimating the variation inflation factor, mean effect, and degree of contribution of each descriptor in
the developed model. Model 3 which gave the best validation results was chosen as the best of the five models.
This model dictates that the most important descriptors that influence the free radical scavenging activities of the
hydrazone antioxidants are the Broto-Moreau autocorrelation - lag 2 / weighted by polarizabilities; Count of atom-
type H E-State: H on C sp3 bonded to saturated C; Number of hydrogen bond donors (using CDK H Bond Donor
Count Descriptor algorithm); Structural information content index (neighborhood symmetry of 1-order) and the
3D topological distance based autocorrelation - lag 7 / weighted by I-state descriptors. The Structural information
content index descriptor was observed to be the most influential of all the descriptors.

Keywords: Hydrazones; Antioxidants; QSAR; Model validation; Molecular descriptors; Model development.

Resumen. Se investigaron las propiedades depuradoras del radical libre 2, 2-difenil-1-picrilhidracilo (DPPH) de
hidrazonas antioxidantes mediante la aplicacién de Relaciones Cuantitativas Estructura Actividad (RCEA). Se
empled la teoria de funcionales de la densidad (TFD) en la optimizacion de las estructuras moleculares. Se
realizaron validaciones internas y externas, asi como pruebas de randomizacién-y para confirmar la confiabilidad
estadistica y la aceptabilidad de los modelos desarrollados. Se usé la aproximacion “leverage” para establecer el
dominio de aplicacién del modelo desarrollado. Mientras que la contribucién relativa y la fuerza de cada descriptor
en el modelo se obtuvo mediante estimacion del factor de variacién inflacion, efecto medio y grado de
contribucion de cada descriptor. EI modelo 3, que produjo la mejor validacion de resultados, se escogié como el
mejor de los cinco modelos. Este modelo dicta que los descriptores mas importantes que influyen la actividad
depuradora de radicales libres de hidrazonas antioxidantes son la autocorrelacién Broto-Moreau - lag 2 / pesada
por polarizabilidades; conteo de atomos tipo estado H E: H en C sp® enlazados a C saturados; nimero de donadores
de enlace de hidrdgeno (usando el algoritmo CDK); indice de contenido de informacion estructural (simetria de
cercania de orden 1); y distancia topoldgica 3D basada en autocorrelacion - lag 7 / pesada por descriptores de
estado I. Se observd que el descriptor indice de contenido de informacidn estructural es el de mayor influencia de
todos los descriptores.

Palabras clave: Hidrazonas; antioxidantes; estructura-actividad; validacién de modelo; descriptores moleculares;
desarrollo de modelo.
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Introduction

Free radicals have been recognised as chemical entities in which their atomic or molecular orbitals contain
unpaired electrons [1]. Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS), are products of
normal human cellular metabolism which in low concentrations are beneficial to living systems and harmful at
high concentrations. These species comprise both free radical and non-free radical oxygen containing molecules.
Physiological significant ROS are the superoxide anion radical (057), hydroxyl radical (¢OH), and hydrogen
peroxide (H,0,). A very important RNS that is generated in biological tissues is nitric oxide radical (NO*).
Defence mechanisms by organisms against free radical-induced oxidative stress include: preventative
mechanisms, repair mechanisms, physical defences and antioxidant defences [2]. Antioxidants are chemical
entities that scavenge free radicals by either inhibiting their formation or interrupting their propagation. Excessive
production of ROS in the human system gives rise to a condition known as oxidative stress. This oxidative stress
occurs as a result of increased generation of free radicals in the body. It may also be a consequence of reduced
physiological activity of antioxidant defences against free radicals in the human body [3].

The hydrazones have been recognized to possess various biological activities such as antioxidant [4-9], anti-
microbial, anti-convulsant, analgesic, anti-inflammatory [10] anti-platelet, anti-tubercular, anti-tumoral and
anticancer, antiprotozoal, antiparasitic, cardioprotective, anti-depressant, anti-HIV and trypanocidal activities [11-
12].

A data set of 61 hydrazone derivatives with potent antioxidant activities based on 2, 2-diphenyl-1-picrylhydrazyl
(DPPH) free radical scavenging assay was obtained from literature [4-9]. The DPPH assay is a technique that is
widely employed to test the ability of compounds to act as free radical scavengers, and thus determine their
antioxidant activities [13-15].

The entire data set was subjected to Quantitative Structure Activity Relationship (QSAR) studies via quantum
modelling. QSAR is based on the assumption that there is an underlying relationship between molecular structure
and biological activity [16]. This technique has been observed to be reliable and effective for predicting the
activities and properties of untested chemical structures based on their structural similarity to chemicals with
known activities and properties [17-18]. The hydrazones and their derivatives have been subjected to QSAR
studies in recent time. For instance, Sahu et al, in 2012 [19], carried out quantitative structure-activity relationship
(QSAR) analysis on some synthesized substituted 4- quinolinyl and 9-acridinyl hydrazone derivatives in order to
find out the structural requirements of their antimalarial activities. Also, a series of novel N'-((5-nitrofuran-2-yl/4-
nitrophenyl) methylene) substituted hydrazides and their derivatives have been synthesized, and tested for in vitro
antimycobacterial activity, and their QSAR investigated [20].

QSAR is hereby employed in the elucidation of the structural requirements for antioxidant activities of selected
hydrazones. Geometry optimization for the entire data set of 61 molecular structures was executed at the density
functional theory (DFT) level using Becke's three-parameter Lee-Yang-Parr hybrid functional (B3LYP). This
was combination with the 6-311G* basis set. Also, quantum chemical and molecular descriptors were calculated
and subjected to data pre-treatment and normalization. The resulting data set was split into training and test sets
by Kennard Stone algorithm (KSA). The training set was employed in the development of Quantitative Structure
Activity Relationship (QSAR) model by Genetic Function Algorithm (GFA). Furthermore, the developed models
were subjected to internal validation, external validation and y-randomization tests in order to determine their
predictability, acceptability and robustness. The Variation Inflation Factor (VIF), Mean Effect (MF) and Degree
of Contribution (DC) of the descriptors in the developed model were computed. Also, the applicability domain of
the model was accessed by the leverage approach.

Experimental

Data Set

The 61 hydrazone data series were obtained from literature [4-9]. The antioxidant activities of the entire data set
was evaluated using 2, 2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay with the 50% inhibition
concentrations (ICsy) converted to uniform units of pwg/ml. The antioxidant activities for the considered
hydrazone derivatives are represented by their ICs, values. The ICs, values were also converted to their
corresponding pICs, values according to equation (1). This is to ensure that the data generated is uniformly
distributed.
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pICso = —log(ICs x 107°) (€Y

Geometry optimization and Descriptors calculation

The ChemDraw software [21] was employed in drawing the chemical structures of the compounds. Optimization
of the molecular geometries was accomplished using Spartan 14 software (Spartan 14v112) [22] at the density
functional theory (DFT) level of theory. The 6-311G* basis set was used in conjunction with the Becke's three-
parameter Lee-Yang-Parr hybrid functional (B3LYP) without symmetry constraints [23]. The choice of this
optimization condition lies on the fact that B3LYP/6-311G* gives excellent geometries and has the ability to
make reliable estimation of the antioxidant properties of a compound [24]. A set of quantum chemical descriptors
were also generated using the same software. These optimized molecular structures were later submitted for the
generation of molecular descriptors using the PaDEL program package (version 2.20) [25].

Data Pre-Treatment and Normalization

Data pre-treatment was accomplished by removing descriptors having constant values and pairs of variables with
correlation coefficient greater than 0.9 using "Data Pre-Treatment GUI 1.2" tool that uses V-WSP algorithm [26,
27]. Also, the entire data set after pre-treatment was normalized by scaling between the interval N(0,1) [28, 29].

Creation of Training and Test Set

The program, "Dataset Division GUI 1.2" [30] was employed in the rational selection of training and test sets
from the data set of 61 chemical structures. This procedure generated the training and test sets by Kennard Stone
algorithm (KSA).

Model Development

The training set compounds were employed in the development of the QSAR model.

The independent variables (quantum chemical and molecular descriptors) and the dependent (response) variables
(pICso) were subjected to multivariate analysis by Genetic Function Approximation (GFA) using the material
studio software. During the model development, 50,000 crossovers, a smoothness value of 1.00 with an initial of
three and a maximum of five terms per equation were considered. The Friedman lack-of-fit (LOF) value was
calculated using equation (2):

LOF = — > 2)
T crdxon2
(1-=42)

Where SSE is the sum of squares of errors. ¢ is the number of (basis functions) terms in the model, other than the
constant term. d is a user-defined smoothing parameter which was set to 1.00. p is the total number of descriptors
contained in all model terms (again ignoring the constant term), while M is the number of samples in the training
set [31].

Internal Validation of the Developed Models

Methods employed in the internal validation of the developed models could be by least squares fitting method,
Bootstrapping method, cross-validation (CV) method or randomization tests. In this research, the methods of
cross-validation (CV) and randomization were employed. CV was carried out by leave- one- out (LOO)
technique. This method involves the elimination of one compound from the data set at random in each cycle and
building the model using the rest of the compounds. The activity of the eliminated compound is then predicted
using the generated model. This process is repeated until all the compounds have been eliminated once.

The internal validation parameters calculated include:

The correlation coefficient, R, that measures how closely the observed data tracks the fitted regression line and
thus helps to quantify any variation in the calculated data with respect to the observed data [32].
The Cross-validated squared correlation coefficient, R,,,2(Q?%) was calculated using equation (3).

_ Z(Yobs - Ypred)z (3)

2 — 1 _
¢ S (Yops — )2
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Where Y, is the observed activity of the training set compounds, Y. is the predicted activity of the training
set compounds, while ¥ is the mean observed activity of the training set compounds.

A modification of R? called the adjusted R? (R,%) was also calculated using equation (4).
(n—1R?-p

RZ2=— - - 4

=TT 0

Where p is the number of predictor variables used in the model development.
Furthermore, the variance ratio, F value (the ratio of regression mean square to deviations mean square) was
calculated using equation (5). This parameter was computed in order to judge the overall significance of the
regression coefficients.

Z(Ycal_?)z
F=—-t— (5)

- 2
z:(yobs_ycal)
N-P-1

The Standard Error of the estimate (s) was calculated using equation (6).
_ ’ RSS
S = n_pl (6)

Where RSS is the sum of squares of the differences (residuals) between the experimental and estimated responses
(Z(Yobs - Y,,rm)2 ) when predictions are made for objects in the training set. p’ is the number of model variables
plus one, and n is the number of objects used to calculate the model [33].

The Y-randomization test which checks the robustness of the developed QSAR model was also conducted. In this
test, validation was performed by permuting the Activity (pICs,) with respect to the descriptor matrix which was
unaltered [34].

According to Roy and Paul [35], the deviation in the values of the squared mean correlation coefficient of the
randomized model (R,-2) from the squared correlation coefficient of the non-random model (R?) is reflected in
the value of R3 as given in equation (7).

RZ = R? x /(R? — R2) (7

Furthermore, Todeschini in 2010 [36], suggested a correction for R} as defined in equation (8).

°R2 =R X +R2—R,” (8)
The Y-randomization results were generated using the program "MLR Y-Randomization Test 1.2" [37].

External Validation

In order to access the internal stability and predictive ability of the models, external model validation was
executed. The developed models were subjected to external validation through the computation of the following
external validation parameters:

The predictive R? (R?pred) which is the predicted correlation coefficient calculated from the predicted activity of
all the test set compounds. The R?pred was calculated using equation 9.

2
Z(Ypred(Test)_Y(Test)) (9)

2 —
Rpred_l_ 2

Z(Y(Test) _?(Train ing))

Where Y(rraining) is the mean activity value of the training set. While Y,,oqrest) and Yy are the predicted and
observed activity values, respectively, of the test set compounds. According to Supratik and Kunal [38], the
R%,.eq may not truly reflect the predictive ability of the developed model since it depends on the

Y (Yerest) — Y(Tmining))z value. For this reason, a modified R? called 2, is thus introduced as defined in equation
(10) [39].
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T2, =12 (1 —Jrz— roz) (10)

Where r,2 and r2 represent squared correlation coefficients of linear relations between the predicted and observed
values of the compounds with intercept set to zero and intercept not set to zero respectively. The r2,, parameter
determine how closely the predicted activity data fits the corresponding observed activity range [40]. If the
predicted values are considered in the y-axis and the observed values in the x-axis, we generate r,;lz as defined in
equation (11).

r?=r2x (1 - /rz —ro’z) (11)

Also, a plot of predicted values of test set compounds against the observed values with intercept set to zero has
slope equal to k. Interchange of the axes gives slope equal to k' [41]. These parameters were calculated using
equations (12) and (13) respectively.

XYy
k =
Yy (12)
, XY
K= 2y (13)

Where y; and y; are the Predicted and experimental activities respectively.

The program: External Validation Metric Calculator "DTC-MLR Plus Validation GUI 1.2" [27, 42-44] was
employed in the computation of the external validation parameters.

Applicability Domain

The applicability domain for the developed QSAR model was accessed by utilizing the leverage approach [45-
48]. For the calculation of the leverage value for all compounds in the dataset, the hat matrix (H) as defined in
equation (14) was employed

H=XXTX)"1xT (14)

Where X is the Two-dimensional n x k descriptor matrix of the training set compounds comprising of n
compounds and k descriptors employed to develop the model while, X7 is the transpose of X. Meanwhile, the
leverage value of the ith compound (h;) which is the ith diagonal element of H was computed as presented in
equation (15):

hi = xi(XTX)_lxiT (l = 1, ,m) (15)

The leverage threshold, warning leverage or cut-off leverage value, h*, is the limit of normal values for X outliers
as defined by equation (16) [49]:

3(k+1
pe 30D

- (16)

The standard residuals were calculated using equation (17):

Standard Residual = S0l 17
andard Residual = RMSE 17)

Where RMSE is the root mean square error.

Estimation of the Variation Inflation Factor (VIF)
The variation inflation factors (VIF) was calculated using equation (18). This factor indicates the multi-
collinearity, among the descriptors in the developed model.
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VIF =

1.2 (18)

Where r is the correlation coefficient of multiple regressions of one descriptor with the other descriptors in the
QSAR model.

Estimation of the Mean Effect and Degree of Contribution of the Descriptors

The relative significance and contribution of a descriptor in comparison to other descriptors in the developed
model is described by the magnitude and sign of its mean effect (MF). In this research, the MF for each descriptor
was calculated using equation (19).

B; Zi:'f d;j

MF, = L2210
LY Yt dy

(19)

Where MF; is the mean effect for the considered descriptor j, f; is the coefficient of the descriptor j, d;; is the
value of the target descriptors for each molecule, while m is the number of descriptors in the model.

Also, the degree of contribution (DC) defined as the standardized regression coefficient was calculated for each
descriptor in the developed model. Computation of the DC value for each descriptor is very useful as those with
high values are considered very crucial in influencing the predictivity of the developed model.

RESULTS AND DISCUSSION

The entire data set and their activities is presented in table 1. After minimization of the various compounds in the
data set a total of 32 quantum chemical descriptors were generated. These were combined to the 1875 molecular
descriptors which comprise constitutional, topological, Geometrical, RDF and 3D-Morse descriptors to give a
total of 1907 descriptors.

Table 1. Hydrazone antioxidants data set and their activities

Cﬁlr:p Compounds ICs, pICso

Observed | Predicted | Residual
MO001*  (E)-N'-(2-hydroxybenzylidene)benzohydrazide 21.400 4.670 4.607 0.063
MO002  (E)-N'-(4-hydroxybenzylidene)benzohydrazide 20.900 4.680 4,767 -0.087
MO003  (E)-N'-(4-hydroxy-3-methoxybenzylidene)benzohydrazide 2.870 5.542 5.053 0.489
MO004  (E)-N'benzylidene-2-hydroxybenzohydrazide 15.170 4.819 4.834 -0.015
MO005  (E)-2-hydroxy-N'-(2-hydroxybenzylidene)benzohydrazide 10.190 4,992 5.060 -0.069
MO006  (E)-2-hydroxy-N'-(4-hydroxybenzylidene)benzohydrazide 12.150 4.915 5.152 -0.237
MO007  (E)-2-hydroxy-N'-(4-methoxybenzylidene)benzohydrazide 23.660 4.626 5.021 -0.395
MO008  (E)-2-hydroxy-N'-(4-hydroxy-3-methoxybenzylidene)benzohydrazide 0.960 6.018 5.365 0.652
MO009  (E -N'-(3-ethoxy-4-hydroxybenzylidene)-2-hydroxybenzohydrazide 0.710 6.149 6.164 -0.016
M010  (E-N'-(3-ethoxy-4-hydroxy-5-nitrobenzylidene)-2-hydroxybenzohydrazide 0.680 6.167 6.123 0.045
MO011  (E)-N'benzylidene-4-hydroxybenzohydrazide 14.680 4.833 4.751 0.083
MO012  (E)-4-hydroxy-N'-(2-hydroxybenzylidene)benzohydrazide 13.030 4.885 4.930 -0.045
MO013  (E)-4-hydroxy-N'-(4-hydroxybenzylidene)benzohydrazide 14.270 4.846 5.081 -0.236
MO014  (E)-4-hydroxy-N'-(4-methoxybenzylidene)benzohydrazide 16.620 4,779 4,949 -0.170
MO015  (E)-4-hydroxy-N'-(4-hydroxy-3-methoxybenzylidene)benzohydrazide 1.070 5.971 5.354 0.616
MO016  (E)-N'-(3-ethoxy-4-hydroxybenzylidene)-4-hydroxybenzohydrazide 0.810 6.092 6.154 -0.063
MO017  (E)-N'-(3-ethoxy-4-hydroxy-5-nitrobenzylidene)-4-hydroxybenzohydrazide 0.710 6.149 6.115 0.034
MO18 ﬁ,6—dimeth9xy—4—((E)—((Z)—phthaIazin—1(2H)—yIidenehydrazono)methyl)phenol 10.100 4996 5171 0176

ydrochloride
MO19 (Z)-((E)-(3:4,5-trimethoxybenzylidene)hydrazono)-l,2-dihydrophthalazine 15.070 4822 4549 0.273
hydrochloride

MO20 2-methoxy-4-((E)-((Z)-phthalazin-1(2H)-ylidenehydrazono)methyl)phenol 6.582 5182 5 386 -0.204

hydrochloride
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4-((E)-((2)-phthalazin-1(2H)-ylidenehydrazono)methyl)benzene-1,2-diol

M021 . 2.122 5.673 5.638 0.035
hydrochloride
MO022  N'-(4-hydroxy-3,5-dimethoxybenzylidene)isonicotinohydrazide 5.122 5.291 5.316 -0.026
MO023  N'-(3,4-dihydroxy-5-methoxybenzylidene)isonicotinohydrazide 5.286 5.277 5.692 -0.415
MO024  (E)-N'-(4-hydroxy-3-methoxybenzylidene)isonicotinohydrazide 23.330 4.632 5.339 -0.707
MO025*  N'-(3,4-dihydroxybenzylidene)isonicotinohydrazide 1.569 5.804 5.510 0.294
M026  N'-(2,4-dihydroxy-5-methoxybenzylidene)isonicotino hydrazide 4.395 5.357 5.554 -0.197
MO027  (E)-benzyl 2-(4-hydroxy-3,5-dimethoxybenzylidene)hydrazinecarboxylate 19.990 4.699 4.857 -0.158
MO028  (E)-benzyl 2-(3,4-dihydroxy-5-methoxybenzylidene)hydrazinecarboxylate 6.737 5.172 5.255 -0.084
MO029  E)-benzyl 2-(4-hydroxy-3-methoxybenzylidene)hydrazinecarboxylate 11.920 4,924 4,912 0.011
MO030  (E)-benzyl 2-(3,4-dihydroxybenzylidene)hydrazinecarboxylate 2.090 5.680 5.188 0.492
MO031*  (E)-benzyl 2-(3,4-dihydroxy-5-methoxybenzylidene)hydrazinecarboxylate 4.270 5.370 5.086 0.284
M032 (E)-benzyl 2—(4-hydroxy—3,—5—d|methoxybenzyl|dene)-l-methylhydrazme 45 360 4343 4618 0.275
carboxylate hydrochloride
MO33 (E)-benzyl 2-(4-hydroxy-3-methoxybenzy||dene)-1-methylhydrazme 9.191 5037 4869 0.168
carboxylate hydrochloride
MO034  (E)-2-(2-(3,4,5-trimethoxybenzylidene)hydrazinyl)benzo[d]thiazole 14.800 4.830 4.708 0.122
MO35 ((inEgI-S-((Z-(benzo[d]th|azol-2-y|)hydrazono)methyl)-3-methoxybenzene-1,2- 2144 5 669 5 590 0.077
MO36 E\Eg{ﬁég((;;::;ennozlo[d]th|azol-2-yl)-2-methylhydrazono)methyl)-z- 8.336 5079 4857 0.222
M037 (()E]L—3—((4—hydroxy—3,5—d|methoxybenzyl|dene)am|no)-2—th|oxoth|azol|d|n—4- 3686 5433 5991 0.143
MO038  (E)-3-((4-hydroxy-3-methoxybenzylidene)amino)-2-thioxo thiazolidin-4-one 3.642 5.439 5.499 -0.060
MO039  (E)-3-((2-hydroxybenzylidene)amino)-2-thioxothiazolidin-4-one 3.305 5.481 5.227 0.254
MO040*  (E)-2,4-dimethyl-N"-(3,4,5-trihydroxybenzylidene)benzohydrazide 7.688 5.114 5.500 -0.386
MO041*  (E)-2,4-dimethyl-N"-(2,4,6-trihydroxybenzylidene)benzohydrazide 8.799 5.056 5.320 -0.264
MO042*  (E)-N'-(2,5-dihydroxybenzylidene)-2,4-dimethylbenzohydrazide 8.472 5.072 5.109 -0.037
MO043*  (E)-N'-(3,4-dihydroxybenzylidene)-2,4-dimethylbenzohydrazide 8.001 5.097 5.165 -0.068
M044  (E)-N'-(2,4-dihydroxybenzylidene)-2,4-dimethylbenzohydrazide 9.695 5.013 5.097 -0.083
MO045*  (E)-N'-(2,3-dihydroxybenzylidene)-2,4-dimethylbenzohydrazide 8.558 5.068 5.041 0.027
MO046*  (E)-N'-(3,5-dihydroxybenzylidene)-2,4-dimethylbenzohydrazide 8.529 5.069 5.210 -0.141
MO047  (E)-N'-(4-hydroxy-3-methoxybenzylidene)-2,4-dimethylbenzohydrazide 10.230 4,99 4.843 0.147
MO048  (E)-N'-(4-hydroxybenzylidene)-2,4-dimethylbenzohydrazide 10.730 4,969 4.83 0.139
MO049  (E)-N'-(3-hydroxy-4-methoxybenzylidene)-2,4-dimethylbenzohydrazide 17.930 4.746 4.827 -0.081
MO050*  (E)-N'-(3-bromo-4-hydroxybenzylidene)-2,4-dimethylbenzohydrazide 11.870 4.925 4.942 -0.017
MO51. ([E)—N —(3—hydroxy-2—!odo—4—methoxybenzyl|dene)—2,4- 29 150 4655 4715 -0.06
dimethylbenzohydrazide
MO052*  (E)-N'-(4-bromo-3-fluorobenzylidene)-2,4-dimethylbenzohydrazide 45.400 4.343 4515 -0.172
MO053*  (E)-methyl 4-((2-(2,4-dimethylbenzoyl)hydrazono)methyl)benzoate 58.970 4.229 4.284 -0.054
MO54 ga-zn;?gyl 2-((2-(2,4-dimethylbenzoyl)hydrazono)methyl)-3,5-dimethoxy 66.670 4176 4123 0.053
MO055*  (E)-4-(((diphenylmethylene)hydrazono)methyl)benzene-1,2,3-triol 26.000 4.585 4.505 0.08
MO056  (E)-4-(((diphenylmethylene)hydrazono)methyl)benzene-1,2-diol 98.210 4.008 4,132 -0.124
MO057  (E)-2-(((diphenylmethylene)hydrazono)methyl)benzene-1,4-diol 65.770 4,182 4.147 0.035
MO058  (E)-2-(((diphenylmethylene)hydrazono)methyl)benzene-1,3,5-triol 19.450 4,711 4.488 0.223
MO059  (E)-2-(1-((diphenylmethylene)hydrazono)ethyl)benzene-1,4-diol 101.100 3.995 4.257 -0.262
MO060  (E)-3-(((diphenylmethylene)hydrazono)methyl)benzene-1,2-diol 122.500 3.912 4.144 -0.232
MO061  (E)-5-(((diphenylmethylene)hydrazono)methyl)benzene-1,2,4-triol 21.720 4.663 4.498 0.165
*Test Set

Upon data processing, 1165 descriptors were produced. This overcomes the tendency of the developed model
failing in its predictivity. Also, the normalized data was obtained after processing. Data Normalization reduces
the tendency of any descriptor dominating the model because of larger or smaller pre-scaled value. The results of
data division generated 48 molecular compounds (comprising about 80% of total compounds) in the training set
and 13 compounds (comprising about 20% of total compounds) in the test set.
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A total of five models were developed from the training set as presented in table 2. This table indicates that the
minimum number of descriptors per model is four, while the maximum value is five.

Table 2. Developed models for hydrazone derivatives by genetic function algorithm

S/No Equation

1 - 0.595 * ATS2p + 0.840 * nHCsats + 0.773 * nHBDon + 1.115 * SIC1 + 4.371

2 -0.795 * ATS3i +0.498 * ATSC7v +0.973 * nHCsats +0.762 * nHBDon + 1.074 * SIC1 + 4.281
3 -0.765 * ATS2p +0.816 * nHCsats + 0.950 * nHBDon + 1.289 * SIC1 -0.582 * TDB7s +4.571

4 -0.851 * ATS3i - 0.667 * AATS7Tm + 0.882 * nHCsats + 0.889 * nHBDon + 1.220 * SIC1 + 4.517
5 -1.082* ATS3i +0.920 * nHCsats +0.925* nHBDon +1.128*SIC1 +0.464 * RDF80v + 4.351

The predicted activities of the training set compounds by the five developed models were also generated as
presented in table S1 of the supplementary material. The predicted activities of were found to correlate appreciably
with experimental activities as reflected in the results of internal validation presented in table 3.

Table 3. Summary of internal validation results for hydrazone antioxidant derivatives

Validation Parameters Model 1 Model 2 Model 3 Model 4 Model 5
Friedman LOF 0.127 0.128 0.129 0.129 0.130
R-squared 0.775 0.807 0.806 0.806 0.805
Adjusted R-squared 0.754 0.784 0.783 0.783 0.781
Cross validated R-squared 0.737 0.767 0.765 0.741 0.758
Significant Regression Yes Yes Yes Yes Yes
Significance-of-regression F-value 37.100 35.120 34.930 34.910 34.587
Critical SOR F-value (95%) 2.644 2.464 2.464 2.464 2.465
Replicate points 0.000 0.000 0.000 0.000 0.000
Computed experimental error 0.000 0.000 0.000 0.000 0.000
Lack-of-fit points 43.000 42.000 42.000 42.000 42.000
Min expt. error for non-significant LOF (95%) 0.244 0.228 0.229 0.229 0.2296
Standard Error of Estimate 0.286 0.269 0.269 0.269 0.2702

The criteria for model acceptability is: R? > 0.6

From table 3, we observe that all the five models satisfied the conditions for internal validation. Model 2 has the
highest R2, R, and Q2 values of 0.80699, 0.78401 and 0.76700 respectively. It also has the lowest Standard
Error value of 0.26856. While model 1 ha the lowest RZ%, R,* and Q2 values of 0.77532, 0.75442 and 0.73686
respectively. Model 1 also has the highest Standard Error value of 0.28637. Recall that R, overcomes the draw
backs associated with the value of R?. The value of R,* increases only if the addition of new descriptors to the
developed QSAR model improves the model more than what would be expected by chance (Rudra and Kunal,
2012) [39].

The developed models were further employed in the prediction of the test set activities whose results are presented
in table S2 of the supplementary material.

The Y-Randomization test results for the five developed models are given in table 4. These results were all within
the acceptable values which stipulate that: R > 0.8, R> > 0.6, Q* > 0.5, °R5 > 0.5. This is an indication of
the strong reliability and robustness of the developed models. Thus, they are not the mere outcome of chance.
From the recorded values, model 2 has the highest °R§ value of 0.76992 and closely followed by model 3 with a
value of 0.76488 while model 1 has the lowest value of 0.73042. Models 2 and 3 are hereby recognized as the
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most robust of the five models. Thus, based on the results of internal validation, model 2 is recognized as the best
of the five models.

Table 4. Results of y-randomization for hydrazone antioxidant derivatives

Parameters Model 1 Model 2 Model 3 Model 4 Model 5
R 0.881 0.898 0.898 0.898 0.897
R? 0.775 0.807 0.806 0.806 0.805
Q? 0.737 0.767 0.765 0.741 0.758

Random Model Parameters
Average r 0.295 0.269 0.284 0.312 0.335
Average  r? 0.096 0.078 0.088 0.104 0.129
Average Q2 -0.140 -0.210 -0.184 -0.191 -0.170
cR,Z, 0.730 0.770 0.765 0.756 0.746

*Model acceptability criteria: R > 0.8, R*>0.6, Q*>>0.5,°R3>0.5

The test set compounds and their predicted activities were employed in the external validation of the developed
models. External validation determines the predictive capacity of the developed models. It judges the ability of
the developed models to predict the test set activity values. The results of the external validation are summarized
in table 5. This result shows that the five models met all the requirements for acceptability with model 3 having
the best results in terms of the external validation parameters. This model has the highest R?,,.q4, 7> and 12,
values of 0.79617, 0.79192 and 0.75880 respectively. Also, it has the lowest rmsep value of 0.18713.

Table 5. External validation results for hydrazone antioxidant derivatives

Validation Parameters Model 1 Model 2 Model 3 Model 4 Model 5
12 0.742 0.759 0.792 0.737 0.711
% 0.742 0.753 0.790 0.735 0.695
%, 0.735 0.699 0.759 0.702 0.621
Reverse r?%,, 0.530 0.463 0.647 0.558 0.578
Average 12, 0.632 0.581 0.703 0.630 0.599
Delta 72, 0.205 0.236 0.112 0.144 0.043
12 —1y%/1? 1E-04 0.008 0.002 0.003 0.023
r? — r[,z/r2 0.110 0.200 0.042 0.080 0.049
k 0.977 0.988 0.994 0.980 0.978
'd 1.022 1.011 1.005 1.019 1.021
|1'02 — r[)2| 0.082 0.146 0.032 0.057 0.019
rmsep 0.236 0.209 0.187 0.231 0.250
Rzpred 0.676 0.745 0.796 0.690 0.638

The acceptable threshold values for the given parameters are as follows:

R%peq > 05, 12> 06, 12, >0.5,Delta 12, <02, |[re? —1,°| <03, @2-1,?)/r?<0.1 and
0.85 <k <1.15,0r (r2 —r)%)/r2 < 0.1 and 0.85 < k' < 1.15 (Golbraikh and Tropsha, 2002)

Thus, the plots of predicted activities against experimental activities for the training set (Fig. 1) and test set (Fig.
2) are generated using the results of model 3. These plots indicate very good agreement between the experimental

and predicted values with impressive squad correlation coefficient (R?) values of 0.8062 and 0.79190 for the
training and test sets respectively.
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Fig. 1. Plot of experimental activities against predicted values for training set of hydrazone antioxidants.
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Fig. 2. Plot of experimental activities against predicted values for test set of hydrazone antioxidants.

From the various validation tests conducted, we observe that all the five models generated in this research met the
necessary requirements for acceptability with model 3 recording the best result. This model together with the
relevant validation parameters are summarized below:

pICso = - 0.76454 * ATS2p +0.81595 * nHCsats + 0.94990 * nHBDon + 1.28861 * SIC1 - 0.58172 *
TDB7s +4.57149

R=089786, R*=0.80615,  Q*(R%c) =076487 RZ,..q=079617 and °RZ = 0.76488
s = 0.26914, rmsep = 0.18713, Nypsr = 48, Nppgin = 13.

The results of applicability domain for the best developed model are given in tables S3 and S4 of the
supplementary material for the training and test sets respectively. The computed value for leverage threshold, h*
is 0.375. The William’s plot for estimation of the applicability domain for this model is presented in Fig. 3. In the
Williams plot, the applicability domain was established inside a squared area within 2.5 bound for residuals and
a leverage threshold h*. Prediction for compounds with high leverage values (h > h*) were considered unreliable
since they are extrapolations from the structural domain of the model [50, 51]. From Fig. 3 we observe that, no
response outliers were detected for the training and test set compounds as all the compounds lie within the
applicability domain of the developed model. We also observed that four structural outliers were detected for the
test set compounds, while none was detected for training set. Based on the observed results of the applicability
domain, the chemical space where this model makes predictions with a given reliability is defined.
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Fig. 3. Williams plot, the plot of standard residuals against leverages for the hydrazone antioxidant data set.

The results for the computation of the mean effect (MF) variation inflation factor (VIF) and degree of contribution
(DC) of the descriptors are presented in table 6.

Table 6. Specifications of coefficient, standard error, mean effect, variation inflation factor and degree of
contribution of the descriptors

S/INO  Descriptor  Coefficient  Standard Error P-Value DC MF VIF
1 ATS2p -0.765 0.174 7.49E-05 -4.390 -0.450 1.342
2 nHCsats 0.816 0.154 3.83E-06 5.313 0.478 1.194
3 nHBDon 0.950 0.192 1.31E-05 4.936 0.556 1.475
4 SIC1 1.289 0.176 5.12E-09 7.318 0.754 1.410
5 TDBT7s -0.582 0.225 0.01332 -2.585 -0.340 1.651

ATS2p (Broto-Moreau autocorrelation - lag 2 / weighted by polarizabilities). This is a 2D Autocorrelation
Descriptor that measures the distribution of atomic polarizability on the topology of the molecule. From table 6,
the ATS2p descriptor is negatively correlated with the antioxidant activities of the hydrazone derivatives with a
coefficient value of -0.76454. In terms of its degree of contribution to the developed model, it has a value of -
4.39033 which actually supports its negative correlation. In terms of its degree of contribution to the developed
model, it has the lowest value of -4.39033 which actually supports its negative correlation.

nHCsats (Count of atom-type H E-State: H on C sp3 bonded to saturated C). This is a 2D Electrotopological
State Atom Type Descriptor. These descriptors are results of the electronic environment of the atom in question
due to its intrinsic electronic properties in combination with the influence of other surrounding atoms. The
nHCsats descriptor indicates the number of sp® carbons bonded to other saturated carbon atoms in the molecule.
This descriptor is observed to be positively correlated with the antioxidant activities of the coumarins, with a value
of + 0.81595. This implies increase in this property among the coumarins, increases their antioxidant activities.
The DC and MF values are 5.31345 and 0.47766 respectively.

nHBDon (Number of hydrogen bond donors (using CDK H Bond Donor Count Descriptor algorithm). This is a
2D PaDEL H Bond Donor Count Descriptor that signifies the number of hydrogen bond donors in the molecule.
From the designed model, this descriptor is positively correlated with the free radical scavenging activity of the
hydrazones with the highest positive coefficient value of 0.94990. Thus, increase in the number of hydrogen bond
donors among the hydrazone antioxidants strongly results to an increase in their ability to scavenge free radicals.
The results of DC and MF are also encouraging with values of 4.93590 and 0.55608 respectively.
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SIC1: Structural information content index (neighbourhood symmetry of 1-order). This descriptor signifies the
total number of atoms of a given order that are present in a molecule. It is positively correlated with the antioxidant
activities of the hidrazone with the highest values of coefficient (1.28861), MF (0.75437) and DC (7.31789) (table
6). Thus, there is good correlation in the results of the MF, DC and descriptor coefficient values for the descriptor
SIC1. In comparison to the other descriptors, this descriptor recoded the highest value for these parameters. This
is an indication of the strong influence of this descriptor in determining the antioxidant properties of the
hydrazones. These results indicate the dominance of this descriptor as the most crucial descriptor that influence
the free radical scavenging activity of the Hydrazone antioxidants. Therefore, in the design of potent antioxidants
based on the hydrazine moiety, with improved activities, emphasis must be paid on this descriptor.

TDB7s (3D topological distance-based autocorrelation - lag 7 / weighted by I-state). This is a topological distance-
based descriptor that also encodes information about the 3-dimenional spatial separation between atoms. The
TDB7s descriptor is negatively correlated with the free radical activity of the hydrazones with a coefficient value
of -0.58172. This is in agreement with the DC and MF values of -2.58458 and -0.34054 respectively. These
results are the lowest in comparison with the values for the other descriptors in the developed model.

From table 6, we also observe that the highest computed VIF value is 1.65056 which corresponds to the descriptor
TDBT7s, while the lowest value is 1.19367 and this corresponds to the descriptor nHCsats. Thus, the computed
VIF values were all greater than 1.00 and less than 5.00. This is an indication that the developed model met the
requirements for acceptability since these results are within the acceptable range. Recall that when VIF is equal
is equal to 1, there is no inter-correlation among the descriptors. If the value lies within the range 1 — 5, the model
is acceptable. While a VIF value larger than 10 suggests that the model is unstable [52].

Conclusion

This research explored the quantitative free radical scavenging activities of the hydrazone antioxidants by the
application of quantitative structure activity relationship studies. Five models were developed, with model 3
chosen as the best of the five models based on its excellent validation parameters. This model indicates that Broto-
Moreau autocorrelation - lag 2 / weighted by polarizabilities; Count of atom-type H E-State: H on C sp® bonded
to saturated C; Number of hydrogen bond donors (using CDK H Bond Donor Count Descriptor algorithm);
Structural information content index (neighbourhood symmetry of 1-order) and the 3D topological distance based
autocorrelation - lag 7 / weighted by |-state descriptors are the main descriptors that influence the antioxidant
activities of the hidrazone derivatives. Thus, the ability of a descriptor in a model to influence the activity of a
compound is determined by its sign, magnitude, degree of contribution and mean effect values.

Also, the results of this research demonstrate the development of a highly predictive model that can efficiently be
employed in the design of new set of hydrazone antioxidants with potent free radical scavenging activities.
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