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Abstract. The 2, 2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging properties of selected hydrazone 
antioxidants was investigated by the application of Quantitative Structure Activity Relationship (QSAR). Density 
functional theory (DFT) was employed in the optimization of the molecular structures. Internal and external 
validation as well as y-randomization tests were conducted in order to confirm the statistical reliability and 
acceptability of the developed models. The leverage approach was employed in the assessment of the applicability 
domain of the developed model. While the relative contribution and strength of each descriptor in the model was 
obtained by estimating the variation inflation factor, mean effect, and degree of contribution of each descriptor in 
the developed model. Model 3 which gave the best validation results was chosen as the best of the five models. 
This model dictates that the most important descriptors that influence the free radical scavenging activities of  the 
hydrazone antioxidants are the Broto-Moreau autocorrelation - lag 2 / weighted by polarizabilities; Count of atom-
type H E-State: H on C 𝑠𝑠𝑠𝑠3 bonded to saturated C; Number of hydrogen bond donors (using CDK H Bond Donor 
Count Descriptor algorithm); Structural information content index (neighborhood symmetry of 1-order) and the 
3D topological distance based autocorrelation - lag 7 / weighted by I-state descriptors. The Structural information 
content index descriptor was observed to be the most influential of all the descriptors. 
  
Keywords: Hydrazones; Antioxidants; QSAR; Model validation; Molecular descriptors; Model development. 
 
 
 
Resumen. Se investigaron las propiedades depuradoras del radical libre 2, 2-difenil-1-picrilhidracilo (DPPH) de 
hidrazonas antioxidantes mediante la aplicación de Relaciones Cuantitativas Estructura Actividad (RCEA). Se 
empleó la teoría de funcionales de la densidad (TFD) en la optimización de las estructuras moleculares. Se 
realizaron validaciones internas y externas, así como pruebas de randomización-y para confirmar la confiabilidad 
estadística y la aceptabilidad de los modelos desarrollados. Se usó la aproximación “leverage” para establecer el 
dominio de aplicación del modelo desarrollado. Mientras que la contribución relativa y la fuerza de cada descriptor 
en el modelo se obtuvo mediante estimación del factor de variación inflación, efecto medio y grado de 
contribución de cada descriptor. El modelo 3, que produjo la mejor validación de resultados, se escogió como el 
mejor de los cinco modelos. Este modelo dicta que los descriptores más importantes que influyen la actividad 
depuradora de radicales libres de hidrazonas antioxidantes son la autocorrelación Broto-Moreau - lag 2 / pesada 
por polarizabilidades; conteo de átomos tipo estado H E: H en C sp3 enlazados a C saturados; número de donadores 
de enlace de hidrógeno (usando el algoritmo CDK); índice de contenido de información estructural (simetría de 
cercanía de orden 1); y distancia topológica 3D basada en autocorrelación - lag 7 / pesada por descriptores de 
estado I. Se observó que el descriptor índice de contenido de información estructural es el de mayor influencia de 
todos los descriptores. 
 
Palabras clave: Hidrazonas; antioxidantes; estructura-actividad; validación de modelo; descriptores moleculares; 
desarrollo de modelo. 
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Introduction 
Free radicals have been recognised as chemical entities in which their atomic or molecular orbitals contain 
unpaired electrons [1]. Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS), are products of 
normal human cellular metabolism which in low concentrations are beneficial to living systems and harmful at 
high concentrations.  These species comprise both free radical and non-free radical oxygen containing molecules. 
Physiological significant ROS are the superoxide anion radical (𝑂𝑂2⦁−), hydroxyl radical (⦁𝑂𝑂𝑂𝑂),  and hydrogen 
peroxide (𝐻𝐻2𝑂𝑂2). A very important RNS that is generated in biological tissues is nitric oxide radical (𝑁𝑁𝑁𝑁⦁). 
Defence mechanisms by organisms against free radical-induced oxidative stress include: preventative 
mechanisms, repair mechanisms, physical defences and antioxidant defences [2]. Antioxidants are chemical 
entities that scavenge free radicals by either inhibiting their formation or interrupting their propagation. Excessive 
production of ROS in the human system gives rise to a condition known as oxidative stress. This oxidative stress 
occurs as a result of increased generation of free radicals in the body. It may also be a consequence of reduced 
physiological activity of antioxidant defences against free radicals in the human body [3]. 
 
The hydrazones have been recognized to possess various biological activities such as antioxidant [4-9], anti-
microbial, anti-convulsant, analgesic, anti-inflammatory [10] anti-platelet, anti-tubercular, anti-tumoral and 
anticancer, antiprotozoal, antiparasitic, cardioprotective, anti-depressant, anti-HIV and trypanocidal activities [11-
12]. 
 
A data set of 61 hydrazone derivatives with potent antioxidant activities based on 2, 2-diphenyl-1-picrylhydrazyl 
(DPPH) free radical scavenging assay was obtained from literature [4-9]. The DPPH assay is a technique that is 
widely employed to test the ability of compounds to act as free radical scavengers, and thus determine their 
antioxidant activities [13-15].  
 
The entire data set was subjected to Quantitative Structure Activity Relationship (QSAR) studies via quantum 
modelling. QSAR is based on the assumption that there is an underlying relationship between molecular structure 
and biological activity [16]. This technique has been observed to be reliable and effective for predicting the 
activities and properties of untested chemical structures based on their structural similarity to chemicals with 
known activities and properties [17-18]. The hydrazones and their derivatives have been subjected to QSAR 
studies in recent time. For instance, Sahu et al, in 2012 [19], carried out quantitative structure-activity relationship 
(QSAR) analysis on some synthesized substituted 4- quinolinyl and 9-acridinyl hydrazone derivatives in order to 
find out the structural requirements of their antimalarial activities. Also, a series of novel N'-((5-nitrofuran-2-yl/4-
nitrophenyl) methylene) substituted hydrazides and their derivatives have been synthesized, and tested for in vitro 
antimycobacterial activity, and their QSAR investigated [20]. 
 
QSAR is hereby employed in the elucidation of the structural requirements for antioxidant activities of selected 
hydrazones. Geometry optimization for the entire data set of 61 molecular structures was executed at the density 
functional theory (DFT) level using Becke's three-parameter Lee-Yang-Parr hybrid functional (B3LYP). This 
was combination with the 6-311G* basis set. Also, quantum chemical and molecular descriptors were calculated 
and subjected to data pre-treatment and normalization. The resulting data set was split into training and test sets 
by Kennard Stone algorithm (KSA). The training set was employed in the development of Quantitative Structure 
Activity Relationship (QSAR) model by Genetic Function Algorithm (GFA). Furthermore, the developed models 
were subjected to internal validation, external validation and y-randomization tests in order to determine their 
predictability, acceptability and robustness. The Variation Inflation Factor (VIF), Mean Effect (MF) and Degree 
of Contribution (DC) of the descriptors in the developed model were computed. Also, the applicability domain of 
the model was accessed by the leverage approach.  
 
 
Experimental 
 
Data Set 
The 61 hydrazone data series were obtained from literature [4-9]. The antioxidant activities of the entire data set 
was evaluated using 2, 2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay with the 50% inhibition 
concentrations (𝐼𝐼𝐼𝐼50)  converted to uniform units of 𝜇𝜇𝜇𝜇/𝑚𝑚𝑚𝑚. The antioxidant activities for the considered 
hydrazone derivatives are represented by their  𝐼𝐼𝐼𝐼50 values. The  𝐼𝐼𝐼𝐼50 values were also converted to their 
corresponding 𝑝𝑝𝐼𝐼𝐼𝐼50 values according to equation (1). This is to ensure that the data generated is uniformly 
distributed. 
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𝑝𝑝𝐼𝐼𝐼𝐼50 = − log(𝐼𝐼𝐼𝐼50 × 10−6)                  (1) 
  
 
 
Geometry optimization and Descriptors calculation 
The ChemDraw software [21] was employed in drawing the chemical structures of the compounds. Optimization 
of the molecular geometries was accomplished using Spartan 14 software (Spartan 14v112) [22] at the density 
functional theory (DFT) level of theory. The 6-311G* basis set was used in conjunction with the Becke's three-
parameter Lee-Yang-Parr hybrid functional (B3LYP) without symmetry constraints [23]. The choice of this 
optimization condition lies on the fact that B3LYP/6-311G* gives excellent geometries and has the ability to 
make reliable estimation of the antioxidant properties of a compound [24]. A set of quantum chemical descriptors 
were also generated using the same software. These optimized molecular structures were later submitted for the 
generation of molecular descriptors using the PaDEL program package (version 2.20) [25]. 
 
Data Pre-Treatment and Normalization  
Data pre-treatment was accomplished by removing descriptors having constant values and pairs of variables with 
correlation coefficient greater than 0.9 using "Data Pre-Treatment GUI 1.2" tool that uses V-WSP algorithm [26, 
27]. Also, the entire data set after pre-treatment was normalized by scaling between the interval  𝑁𝑁(0,1) [28, 29]. 
  
Creation of Training and Test Set 
The program, "Dataset Division GUI 1.2" [30] was employed in the rational selection of training and test sets 
from the data set of 61 chemical structures. This procedure generated the training and test sets by Kennard Stone 
algorithm (KSA). 
 
Model Development 
The training set compounds were employed in the development of the QSAR model.  
The independent variables (quantum chemical and molecular descriptors) and the dependent (response) variables 
(𝑝𝑝𝐼𝐼𝐼𝐼50) were subjected to multivariate analysis by Genetic Function Approximation (GFA) using the material 
studio software. During the model development, 50,000 crossovers, a smoothness value of 1.00 with an initial of 
three and a maximum of five terms per equation were considered. The Friedman lack-of-fit (LOF) value was 
calculated using equation (2): 

𝐿𝐿𝐿𝐿𝐿𝐿 =
𝑆𝑆𝑆𝑆𝑆𝑆

�1 − 𝑐𝑐+𝑑𝑑×𝑝𝑝
𝑀𝑀 �2

                    (2) 

 
Where 𝑆𝑆𝑆𝑆𝑆𝑆 is the sum of squares of errors. 𝑐𝑐 is the number of (basis functions) terms in the model, other than the 
constant term. 𝑑𝑑 is a user-defined smoothing parameter which was set to 1.00. 𝑝𝑝 is the total number of descriptors 
contained in all model terms (again ignoring the constant term), while 𝑀𝑀 is the number of samples in the training 
set [31]. 
 
Internal Validation of the Developed Models 
Methods employed in the internal validation of the developed models could be by least squares fitting method, 
Bootstrapping method, cross-validation (CV) method or randomization tests. In this research, the methods of 
cross-validation (CV) and randomization were employed. CV was carried out by leave- one- out (LOO) 
technique. This method involves the elimination of one compound from the data set at random in each cycle and 
building the model using the rest of the compounds. The activity of the eliminated compound is then predicted 
using the generated model. This process is repeated until all the compounds have been eliminated once.  
 
The internal validation parameters calculated include: 
 
The correlation coefficient, R, that measures how closely the observed data tracks the fitted regression line and 
thus helps to quantify any variation in the calculated data with respect to the observed data [32]. 
The Cross-validated squared correlation coefficient, 𝑹𝑹𝒄𝒄𝒄𝒄𝟐𝟐(𝑸𝑸𝟐𝟐) was calculated using equation (3). 

𝑄𝑄2 = 1 −
∑�𝑌𝑌𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑌𝑌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�

2

∑(𝑌𝑌𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑌𝑌�)2                   (3) 
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Where 𝑌𝑌𝑜𝑜𝑜𝑜𝑜𝑜 is the observed activity of the training set compounds,  𝑌𝑌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is the predicted activity of the training 
set compounds, while  𝑌𝑌�  is the mean observed activity of the training set compounds. 
 
A modification of 𝑅𝑅2 called the adjusted 𝑅𝑅2 (𝑹𝑹𝒂𝒂𝟐𝟐) was also calculated using equation (4). 

𝑅𝑅𝑎𝑎2 =
(𝑛𝑛 − 1)𝑅𝑅2 − 𝑝𝑝
𝑛𝑛 − 𝑝𝑝 − 1

                     (4) 

 
Where 𝑝𝑝 is the number of predictor variables used in the model development. 
Furthermore, the variance ratio, F value (the ratio of regression mean square to deviations mean square) was 
calculated using equation (5). This parameter was computed in order to judge the overall significance of the 
regression coefficients. 

𝐹𝐹 =
∑(𝑌𝑌𝑐𝑐𝑐𝑐𝑐𝑐−𝑌𝑌�)2

𝑝𝑝

∑�𝑌𝑌𝑜𝑜𝑜𝑜𝑜𝑜−𝑌𝑌𝑐𝑐𝑐𝑐𝑐𝑐�
2

𝑁𝑁−𝑃𝑃−1

                      (5) 

 
The Standard Error of the estimate (s) was calculated using equation (6).  

𝑠𝑠 = � 𝑅𝑅𝑅𝑅𝑅𝑅
𝑛𝑛−𝑝𝑝′

                                          (6) 

 
Where 𝑅𝑅𝑅𝑅𝑅𝑅 is the sum of squares of the differences (residuals) between the experimental and estimated responses 
�∑�𝑌𝑌𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑌𝑌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�

2  � when predictions are made for objects in the training set. 𝑝𝑝′ is the number of model variables 
plus one, and n is the number of objects used to calculate the model [33]. 
 
The Y-randomization test which checks the robustness of the developed QSAR model was also conducted. In this 
test, validation was performed by permuting the Activity (𝑝𝑝𝐼𝐼𝐼𝐼50) with respect to the descriptor matrix which was 
unaltered [34].  
 
According to Roy and Paul [35], the deviation in the values of the squared mean correlation coefficient of the 
randomized model (𝑅𝑅𝑟𝑟2) from the squared correlation coefficient of the non-random model (𝑅𝑅2) is reflected in 
the value of  𝑅𝑅𝑝𝑝2 as given in equation (7).  
 𝑅𝑅𝑝𝑝2 = 𝑅𝑅2 × �(𝑅𝑅2 − 𝑅𝑅𝑟𝑟2)                            (7) 
 
Furthermore, Todeschini in 2010 [36], suggested a correction for 𝑅𝑅𝑝𝑝2 

 
as defined in equation (8).  

c𝑅𝑅𝑝𝑝2 = 𝑅𝑅 × �𝑅𝑅2 − 𝑅𝑅𝑟𝑟2                     (8) 
 
The Y-randomization results were generated using the program "MLR Y-Randomization Test 1.2" [37]. 
 
External Validation 
In order to access the internal stability and predictive ability of the models, external model validation was 
executed. The developed models were subjected to external validation through the computation of the following 
external validation parameters: 
 
The predictive R2 (R2pred) which is the predicted correlation coefficient calculated from the predicted activity of 
all the test set compounds. The R2pred was calculated using equation 9. 
 

𝑅𝑅2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 1 − ∑�𝑌𝑌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)−𝑌𝑌(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)�
2

∑�𝑌𝑌(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)−𝑌𝑌�(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)�
2              (9) 

 
Where  𝑌𝑌�(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) is the mean activity value of the training set. While 𝑌𝑌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) and 𝑌𝑌(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) are the predicted and 
observed activity values, respectively, of the test set compounds.  According to Supratik and Kunal [38], the 
𝑅𝑅2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 may not truly reflect the predictive ability of the developed model since it depends on the 
∑�𝑌𝑌(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) − 𝑌𝑌�(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)�

2
 value. For this reason, a modified 𝑅𝑅2 called 𝑟𝑟2𝑚𝑚 is thus introduced as defined in equation 

(10) [39]. 
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𝑟𝑟2𝑚𝑚 = 𝑟𝑟2 �1 −�𝑟𝑟2 − 𝑟𝑟02�                      (10) 
 
Where 𝑟𝑟02 and  𝑟𝑟2 represent squared correlation coefficients of linear relations between the predicted and observed 
values of the compounds with intercept set to zero and intercept not set to zero respectively. The  𝑟𝑟2𝑚𝑚 parameter 
determine how closely the predicted activity data fits the corresponding observed activity range [40]. If the 
predicted values are considered in the y-axis and the observed values in the x-axis, we generate 𝑟𝑟𝑚𝑚′

2 as defined in 
equation (11). 
 

𝑟𝑟𝑚𝑚′
2 = 𝑟𝑟2 × �1 −�𝑟𝑟2 − 𝑟𝑟0′

2�               (11) 

Also, a plot of predicted values of test set compounds against the observed values with intercept set to zero has 
slope equal to 𝑘𝑘. Interchange of the axes gives slope equal to 𝑘𝑘′  [41].  These parameters were calculated using 
equations (12) and (13) respectively.   
 

𝑘𝑘 =
∑𝑦𝑦𝑖𝑖𝑦𝑦�𝑖𝑖
∑ 𝑦𝑦�𝑖𝑖2

                          (12) 

 

𝑘𝑘′ =
∑𝑦𝑦𝑖𝑖𝑦𝑦�𝑖𝑖
∑𝑦𝑦𝑖𝑖2

                          (13) 

Where 𝑦𝑦𝑖𝑖  and 𝑦𝑦�𝑖𝑖 are the Predicted and experimental activities respectively.     
      
The program: External Validation Metric Calculator "DTC-MLR Plus Validation GUI 1.2" [27, 42-44] was 
employed in the computation of the external validation parameters. 
 
 
Applicability Domain 
The applicability domain for the developed QSAR model was accessed by utilizing the leverage approach [45-
48]. For the calculation of the leverage value for all compounds in the dataset, the hat matrix (H) as defined in 
equation (14) was employed 
 
𝐻𝐻 = 𝑋𝑋(𝑋𝑋𝑇𝑇𝑋𝑋)−1𝑋𝑋𝑇𝑇                                       (14) 
 
Where 𝑋𝑋 is the Two-dimensional 𝑛𝑛 × 𝑘𝑘 descriptor matrix of the training set compounds comprising of n 
compounds and k descriptors employed to develop the model while, 𝑋𝑋𝑇𝑇 is the transpose of 𝑋𝑋. Meanwhile, the 
leverage value of the 𝑖𝑖th compound (ℎ𝑖𝑖) which is the ith diagonal element of H was computed as presented in 
equation (15): 
 
ℎ𝑖𝑖 = 𝑥𝑥𝑖𝑖(𝑋𝑋𝑇𝑇𝑋𝑋)−1𝑥𝑥𝑖𝑖𝑇𝑇       (𝑖𝑖 = 1, … ,𝑚𝑚)                                (15) 
 
The leverage threshold, warning leverage or cut-off leverage value, h*, is the limit of normal values for 𝑋𝑋 outliers 
as defined by equation (16) [49]: 
 

ℎ∗ =
3(𝑘𝑘 + 1)

𝑛𝑛
                             (16) 

 
The standard residuals were calculated using equation (17):  
 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

                           (17) 
 
Where 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 is the root mean square error. 
 
Estimation of the Variation Inflation Factor (VIF) 
The variation inflation factors (VIF) was calculated using equation (18). This factor indicates the multi-
collinearity, among the descriptors in the developed model. 
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𝑉𝑉𝑉𝑉𝑉𝑉 =
1

1 − 𝑟𝑟2
             (18) 

 
Where 𝑟𝑟 is the correlation coefficient of multiple regressions of one descriptor with the other descriptors in the 
QSAR model.  
 
Estimation of the Mean Effect and Degree of Contribution of the Descriptors 
The relative significance and contribution of a descriptor in comparison to other descriptors in the developed 
model is described by the magnitude and sign of its mean effect (MF).  In this research, the MF for each descriptor 
was calculated using equation (19). 
 

𝑀𝑀𝑀𝑀𝑗𝑗 =
𝛽𝛽𝑗𝑗 ∑ 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖=𝑛𝑛

𝑖𝑖=1

∑ 𝛽𝛽𝑗𝑗 ∑ 𝑑𝑑𝑖𝑖𝑖𝑖𝑛𝑛
1

𝑚𝑚
𝑗𝑗

                (19) 

 
Where 𝑀𝑀𝑀𝑀𝑗𝑗 is the mean effect for the considered descriptor 𝑗𝑗,  𝛽𝛽𝑗𝑗 is the coefficient of the descriptor 𝑗𝑗,  𝑑𝑑𝑖𝑖𝑖𝑖 is the 
value of the target descriptors for each molecule, while 𝑚𝑚 is the number of descriptors in the model. 
 
Also, the degree of contribution (DC) defined as the standardized regression coefficient was calculated for each 
descriptor in the developed model. Computation of the DC value for each descriptor is very useful as those with 
high values are considered very crucial in influencing the predictivity of the developed model.  
  
RESULTS AND DISCUSSION 
The entire data set and their activities is presented in table 1.  After minimization of the various compounds in the 
data set a total of 32 quantum chemical descriptors were generated. These were combined to the 1875 molecular 
descriptors which comprise constitutional, topological, Geometrical, RDF and 3D-Morse descriptors to give a 
total of 1907 descriptors. 
 
Table 1. Hydrazone antioxidants data set and their activities 

Comp 
No 

Compounds 𝑰𝑰𝑰𝑰𝟓𝟓𝟓𝟓 𝒑𝒑𝒑𝒑𝒑𝒑𝟓𝟓𝟓𝟓 

   Observed Predicted Residual 
M001* (E)-Nˈ-(2-hydroxybenzylidene)benzohydrazide 21.400 4.670 4.607 0.063 
M002 (E)-Nˈ-(4-hydroxybenzylidene)benzohydrazide 20.900 4.680 4.767 -0.087 
M003 (E)-Nˈ-(4-hydroxy-3-methoxybenzylidene)benzohydrazide 2.870 5.542 5.053 0.489 
M004 (E)-Nˈbenzylidene-2-hydroxybenzohydrazide 15.170 4.819 4.834 -0.015 
M005 (E)-2-hydroxy-Nˈ-(2-hydroxybenzylidene)benzohydrazide 10.190 4.992 5.060 -0.069 
M006 (E)-2-hydroxy-Nˈ-(4-hydroxybenzylidene)benzohydrazide 12.150 4.915 5.152 -0.237 
M007 (E)-2-hydroxy-Nˈ-(4-methoxybenzylidene)benzohydrazide 23.660 4.626 5.021 -0.395 
M008 (E)-2-hydroxy-Nˈ-(4-hydroxy-3-methoxybenzylidene)benzohydrazide 0.960 6.018 5.365 0.652 
M009 (E -Nˈ-(3-ethoxy-4-hydroxybenzylidene)-2-hydroxybenzohydrazide 0.710 6.149 6.164 -0.016 
M010 (E-Nˈ-(3-ethoxy-4-hydroxy-5-nitrobenzylidene)-2-hydroxybenzohydrazide 0.680 6.167 6.123 0.045 
M011 (E)-Nˈbenzylidene-4-hydroxybenzohydrazide 14.680 4.833 4.751 0.083 
M012 (E)-4-hydroxy-Nˈ-(2-hydroxybenzylidene)benzohydrazide 13.030 4.885 4.930 -0.045 
M013 (E)-4-hydroxy-Nˈ-(4-hydroxybenzylidene)benzohydrazide 14.270 4.846 5.081 -0.236 
M014 (E)-4-hydroxy-Nˈ-(4-methoxybenzylidene)benzohydrazide 16.620 4.779 4.949 -0.170 
M015 (E)-4-hydroxy-Nˈ-(4-hydroxy-3-methoxybenzylidene)benzohydrazide 1.070 5.971 5.354 0.616 
M016 (E)-Nˈ-(3-ethoxy-4-hydroxybenzylidene)-4-hydroxybenzohydrazide 0.810 6.092 6.154 -0.063 
M017 (E)-Nˈ-(3-ethoxy-4-hydroxy-5-nitrobenzylidene)-4-hydroxybenzohydrazide 0.710 6.149 6.115 0.034 

M018 2,6-dimethoxy-4-((E)-((Z)-phthalazin-1(2H)-ylidenehydrazono)methyl)phenol 
hydrochloride 10.100 4.996 5.171 -0.176 

M019 (Z)-((E)-(3,4,5-trimethoxybenzylidene)hydrazono)-1,2-dihydrophthalazine 
hydrochloride 15.070 4.822 4.549 0.273 

M020 2-methoxy-4-((E)-((Z)-phthalazin-1(2H)-ylidenehydrazono)methyl)phenol 
hydrochloride 6.582 5.182 5.386 -0.204 
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M021 4-((E)-((Z)-phthalazin-1(2H)-ylidenehydrazono)methyl)benzene-1,2-diol 
hydrochloride 2.122 5.673 5.638 0.035 

M022 Nˈ-(4-hydroxy-3,5-dimethoxybenzylidene)isonicotinohydrazide 5.122 5.291 5.316 -0.026 
M023 Nˈ-(3,4-dihydroxy-5-methoxybenzylidene)isonicotinohydrazide 5.286 5.277 5.692 -0.415 
M024 (E)-Nˈ-(4-hydroxy-3-methoxybenzylidene)isonicotinohydrazide 23.330 4.632 5.339 -0.707 

M025* Nˈ-(3,4-dihydroxybenzylidene)isonicotinohydrazide 1.569 5.804 5.510 0.294 
M026 Nˈ-(2,4-dihydroxy-5-methoxybenzylidene)isonicotino hydrazide 4.395 5.357 5.554 -0.197 
M027 (E)-benzyl 2-(4-hydroxy-3,5-dimethoxybenzylidene)hydrazinecarboxylate 19.990 4.699 4.857 -0.158 
M028 (E)-benzyl 2-(3,4-dihydroxy-5-methoxybenzylidene)hydrazinecarboxylate 6.737 5.172 5.255 -0.084 
M029 E)-benzyl 2-(4-hydroxy-3-methoxybenzylidene)hydrazinecarboxylate 11.920 4.924 4.912 0.011 
M030 (E)-benzyl 2-(3,4-dihydroxybenzylidene)hydrazinecarboxylate 2.090 5.680 5.188 0.492 

M031* (E)-benzyl 2-(3,4-dihydroxy-5-methoxybenzylidene)hydrazinecarboxylate 4.270 5.370 5.086 0.284 

M032 (E)-benzyl 2-(4-hydroxy-3,-5-dimethoxybenzylidene)-1-methylhydrazine 
carboxylate hydrochloride 45.360 4.343 4.618 -0.275 

M033 (E)-benzyl 2-(4-hydroxy-3-methoxybenzylidene)-1-methylhydrazine 
carboxylate hydrochloride 9.191 5.037 4.869 0.168 

M034 (E)-2-(2-(3,4,5-trimethoxybenzylidene)hydrazinyl)benzo[d]thiazole 14.800 4.830 4.708 0.122 

M035 (E)-5-((2-(benzo[d]thiazol-2-yl)hydrazono)methyl)-3-methoxybenzene-1,2-
diol 2.144 5.669 5.592 0.077 

M036 (E)-4-((2-(benzo[d]thiazol-2-yl)-2-methylhydrazono)methyl)-2-
methoxyphenol 8.336 5.079 4.857 0.222 

M037 (E)-3-((4-hydroxy-3,5-dimethoxybenzylidene)amino)-2-thioxothiazolidin-4-
one 3.686 5.433 5.291 0.143 

M038 (E)-3-((4-hydroxy-3-methoxybenzylidene)amino)-2-thioxo thiazolidin-4-one 3.642 5.439 5.499 -0.060 
M039 (E)-3-((2-hydroxybenzylidene)amino)-2-thioxothiazolidin-4-one 3.305 5.481 5.227 0.254 

M040* (E)-2,4-dimethyl-Nˈ-(3,4,5-trihydroxybenzylidene)benzohydrazide 7.688 5.114 5.500 -0.386 
M041* (E)-2,4-dimethyl-Nˈ-(2,4,6-trihydroxybenzylidene)benzohydrazide 8.799 5.056 5.320 -0.264 
M042* (E)-Nˈ-(2,5-dihydroxybenzylidene)-2,4-dimethylbenzohydrazide 8.472 5.072 5.109 -0.037 
M043* (E)-Nˈ-(3,4-dihydroxybenzylidene)-2,4-dimethylbenzohydrazide 8.001 5.097 5.165 -0.068 
M044 (E)-Nˈ-(2,4-dihydroxybenzylidene)-2,4-dimethylbenzohydrazide 9.695 5.013 5.097 -0.083 

M045* (E)-Nˈ-(2,3-dihydroxybenzylidene)-2,4-dimethylbenzohydrazide 8.558 5.068 5.041 0.027 
M046* (E)-Nˈ-(3,5-dihydroxybenzylidene)-2,4-dimethylbenzohydrazide 8.529 5.069 5.210 -0.141 
M047 (E)-Nˈ-(4-hydroxy-3-methoxybenzylidene)-2,4-dimethylbenzohydrazide 10.230 4.99 4.843 0.147 
M048 (E)-Nˈ-(4-hydroxybenzylidene)-2,4-dimethylbenzohydrazide 10.730 4.969 4.83 0.139 
M049 (E)-Nˈ-(3-hydroxy-4-methoxybenzylidene)-2,4-dimethylbenzohydrazide 17.930 4.746 4.827 -0.081 

M050* (E)-Nˈ-(3-bromo-4-hydroxybenzylidene)-2,4-dimethylbenzohydrazide 11.870 4.925 4.942 -0.017 

M051 (E)-Nˈ-(3-hydroxy-2-iodo-4-methoxybenzylidene)-2,4-
dimethylbenzohydrazide 22.150 4.655 4.715 -0.06 

M052* (E)-Nˈ-(4-bromo-3-fluorobenzylidene)-2,4-dimethylbenzohydrazide 45.400 4.343 4.515 -0.172 
M053* (E)-methyl 4-((2-(2,4-dimethylbenzoyl)hydrazono)methyl)benzoate 58.970 4.229 4.284 -0.054 

M054 (E)-methyl 2-((2-(2,4-dimethylbenzoyl)hydrazono)methyl)-3,5-dimethoxy 
benzoate 66.670 4.176 4.123 0.053 

M055* (E)-4-(((diphenylmethylene)hydrazono)methyl)benzene-1,2,3-triol 26.000 4.585 4.505 0.08 
M056 (E)-4-(((diphenylmethylene)hydrazono)methyl)benzene-1,2-diol 98.210 4.008 4.132 -0.124 
M057 (E)-2-(((diphenylmethylene)hydrazono)methyl)benzene-1,4-diol 65.770 4.182 4.147 0.035 
M058 (E)-2-(((diphenylmethylene)hydrazono)methyl)benzene-1,3,5-triol 19.450 4.711 4.488 0.223 
M059 (E)-2-(1-((diphenylmethylene)hydrazono)ethyl)benzene-1,4-diol 101.100 3.995 4.257 -0.262 
M060 (E)-3-(((diphenylmethylene)hydrazono)methyl)benzene-1,2-diol 122.500 3.912 4.144 -0.232 
M061 (E)-5-(((diphenylmethylene)hydrazono)methyl)benzene-1,2,4-triol 21.720 4.663 4.498 0.165 

*Test Set 
 
 
Upon data processing, 1165 descriptors were produced. This overcomes the tendency of the developed model 
failing in its predictivity. Also, the normalized data was obtained after processing. Data Normalization reduces 
the tendency of any descriptor dominating the model because of larger or smaller pre-scaled value. The results of 
data division generated 48 molecular compounds (comprising about 80% of total compounds) in the training set 
and 13 compounds (comprising about 20% of total compounds) in the test set.  
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A total of five models were developed from the training set as presented in table 2. This table indicates that the 
minimum number of descriptors per model is four, while the maximum value is five.  
 
 
Table 2. Developed models for hydrazone derivatives by genetic function algorithm 

S/No Equation 
1      - 0.595 * ATS2p + 0.840 * nHCsats  + 0.773 * nHBDon  + 1.115 * SIC1 + 4.371 

 
2     - 0.795 * ATS3i  + 0.498 * ATSC7v  + 0.973 *  nHCsats  + 0.762 * nHBDon   + 1.074 * SIC1  + 4.281 

 
3    - 0.765 * ATS2p  + 0.816 * nHCsats   + 0.950 * nHBDon  + 1.289 * SIC1  - 0.582 * TDB7s   + 4.571 

 
4    - 0.851 * ATS3i  - 0.667 * AATS7m   + 0.882 * nHCsats  + 0.889 * nHBDon   + 1.220 * SIC1   + 4.517 

 
5    - 1.082 *  ATS3i  + 0.920 * nHCsats   + 0.925 * nHBDon    + 1.128 * SIC1    + 0.464 * RDF80v   + 4.351 

 
 
The predicted activities of the training set compounds by the five developed models were also generated as 
presented in table S1 of the supplementary material. The predicted activities of were found to correlate appreciably 
with experimental activities as reflected in the results of internal validation presented in table 3.  
 
 
Table 3. Summary of internal validation results for hydrazone antioxidant derivatives 

Validation Parameters Model 1 Model 2 Model 3 Model 4 Model 5 
Friedman LOF 0.127 0.128 0.129 0.129 0.130 
R-squared 0.775 0.807 0.806 0.806 0.805 
Adjusted R-squared 0.754 0.784 0.783 0.783 0.781 
Cross validated R-squared 0.737 0.767 0.765 0.741 0.758 
Significant Regression Yes Yes Yes Yes Yes 
Significance-of-regression F-value 37.100 35.120 34.930 34.910 34.587 
Critical SOR F-value (95%) 2.644 2.464 2.464 2.464 2.465 
Replicate points 0.000 0.000 0.000 0.000 0.000 
Computed experimental error 0.000 0.000 0.000 0.000 0.000 
Lack-of-fit points 43.000 42.000 42.000 42.000 42.000 
Min expt. error for non-significant LOF (95%) 0.244 0.228 0.229 0.229 0.2296 
Standard Error of Estimate  0.286 0.269 0.269 0.269 0.2702 

The criteria for model acceptability is: 𝑅𝑅2 ≥ 0.6  
 
From table 3, we observe that all the five models satisfied the conditions for internal validation.   Model 2 has the 
highest 𝑹𝑹𝟐𝟐, 𝑹𝑹𝒂𝒂𝟐𝟐 and 𝑸𝑸𝟐𝟐 values of 0.80699, 0.78401 and 0.76700 respectively. It also has the lowest Standard 
Error value of 0.26856. While model 1 ha the lowest  𝑹𝑹𝟐𝟐, 𝑹𝑹𝒂𝒂𝟐𝟐 and 𝑸𝑸𝟐𝟐 values of 0.77532, 0.75442 and 0.73686 
respectively. Model 1 also has the highest Standard Error value of 0.28637. Recall that 𝑅𝑅𝑎𝑎2 overcomes the draw 
backs associated with the value of 𝑹𝑹𝟐𝟐. The value of 𝑅𝑅𝑎𝑎2 increases only if the addition of new descriptors to the 
developed QSAR model improves the model more than what would be expected by chance (Rudra and Kunal, 
2012) [39].  
 
The developed models were further employed in the prediction of the test set activities whose results are presented 
in table S2 of the supplementary material.  
 
The Y-Randomization test results for the five developed models are given in table 4. These results were all within 
the acceptable values which stipulate that: 𝑹𝑹 ≥ 𝟎𝟎.𝟖𝟖,  𝑹𝑹𝟐𝟐 ≥ 𝟎𝟎.𝟔𝟔 ,   𝑸𝑸𝟐𝟐 > 𝟎𝟎.𝟓𝟓, c𝑹𝑹𝒑𝒑𝟐𝟐 ≥ 𝟎𝟎.𝟓𝟓. This is an indication of 
the strong reliability and robustness of the developed models. Thus, they are not the mere outcome of chance. 
From the recorded values, model 2 has the highest  c𝑹𝑹𝒑𝒑𝟐𝟐 value of 0.76992 and closely followed by model 3 with a 
value of 0.76488 while model 1 has the lowest value of  0.73042. Models 2 and 3 are hereby recognized as the 
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most robust of the five models. Thus, based on the results of internal validation, model 2 is recognized as the best 
of the five models. 
 
Table 4. Results of y-randomization for hydrazone antioxidant derivatives  

Parameters Model 1 Model 2 Model 3 Model 4 Model 5 
𝑹𝑹 0.881 0.898 0.898 0.898 0.897 
𝑹𝑹𝟐𝟐 0.775 0.807 0.806 0.806 0.805 
𝑸𝑸𝟐𝟐 0.737 0.767 0.765 0.741 0.758 

Random Model Parameters      
Average       𝒓𝒓 0.295 0.269 0.284 0.312 0.335 
Average       𝒓𝒓𝟐𝟐 0.096 0.078 0.088 0.104 0.129 
Average      𝑸𝑸𝟐𝟐 -0.140 -0.210 -0.184 -0.191 -0.170 

𝒄𝒄𝒄𝒄𝒑𝒑𝟐𝟐 0.730 0.770 0.765 0.756 0.746 
*Model acceptability criteria:  𝑹𝑹 ≥ 𝟎𝟎.𝟖𝟖 ,   𝑹𝑹𝟐𝟐 ≥ 𝟎𝟎.𝟔𝟔 ,   𝑸𝑸𝟐𝟐 > 𝟎𝟎.𝟓𝟓 , c𝑹𝑹𝒑𝒑𝟐𝟐 ≥ 𝟎𝟎.𝟓𝟓 
 
The test set compounds and their predicted activities were employed in the external validation of the developed 
models. External validation determines the predictive capacity of the developed models. It judges the ability of 
the developed models to predict the test set activity values. The results of the external validation are summarized 
in table 5. This result shows that the five models met all the requirements for acceptability with model 3 having 
the best results in terms of the external validation parameters. This model has the highest  𝑹𝑹𝟐𝟐𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑, 𝒓𝒓𝟐𝟐 and  𝒓𝒓𝟐𝟐𝒎𝒎 
values of 0.79617, 0.79192 and 0.75880 respectively. Also, it has the lowest rmsep value of 0.18713.  
 
Table 5. External validation results for hydrazone antioxidant derivatives 

Validation Parameters Model 1 Model 2 Model 3 Model 4 Model 5 
𝒓𝒓𝟐𝟐 0.742 0.759 0.792 0.737 0.711 
𝒓𝒓𝟎𝟎𝟐𝟐 0.742 0.753 0.790 0.735 0.695 
𝒓𝒓𝟐𝟐𝒎𝒎 0.735 0.699 0.759 0.702 0.621 

Reverse 𝒓𝒓𝟐𝟐𝒎𝒎 0.530 0.463 0.647 0.558 0.578 
Average 𝒓𝒓𝟐𝟐𝒎𝒎 0.632 0.581 0.703 0.630 0.599 

Delta  𝒓𝒓𝟐𝟐𝒎𝒎 0.205 0.236 0.112 0.144 0.043 
𝒓𝒓𝟐𝟐 − 𝒓𝒓𝟎𝟎𝟐𝟐 𝒓𝒓𝟐𝟐⁄  1E-04 0.008 0.002 0.003 0.023 
𝒓𝒓𝟐𝟐 − 𝒓𝒓𝟎𝟎′

𝟐𝟐 𝒓𝒓𝟐𝟐⁄  0.110 0.200 0.042 0.080 0.049 
𝒌𝒌 0.977 0.988 0.994 0.980 0.978 
𝒌𝒌′ 1.022 1.011 1.005 1.019 1.021 

�𝒓𝒓𝟎𝟎𝟐𝟐 − 𝒓𝒓𝟎𝟎′
𝟐𝟐� 0.082 0.146 0.032 0.057 0.019 

rmsep 0.236 0.209 0.187 0.231 0.250 
𝑹𝑹𝟐𝟐𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 0.676 0.745 0.796 0.690 0.638 

The acceptable threshold values for the given parameters are as follows: 
𝑹𝑹𝟐𝟐𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 > 0.5 ,  𝒓𝒓𝟐𝟐 > 0.6,    𝒓𝒓𝟐𝟐𝒎𝒎 ≥ 𝟎𝟎.𝟓𝟓 , Delta  𝒓𝒓𝟐𝟐𝒎𝒎 < 0.2,  �𝒓𝒓𝟎𝟎𝟐𝟐 − 𝒓𝒓𝟎𝟎′

𝟐𝟐� < 0.3 ,     (𝒓𝒓𝟐𝟐 − 𝒓𝒓𝟎𝟎𝟐𝟐) 𝒓𝒓𝟐𝟐⁄ < 0.1   𝒂𝒂𝒂𝒂𝒂𝒂   
𝟎𝟎.𝟖𝟖𝟖𝟖 ≤ 𝒌𝒌 ≤ 𝟏𝟏.𝟏𝟏𝟏𝟏,𝒐𝒐𝒐𝒐 (𝒓𝒓𝟐𝟐 − 𝒓𝒓𝟎𝟎′

𝟐𝟐) 𝒓𝒓𝟐𝟐⁄ < 0.1 𝒂𝒂𝒂𝒂𝒂𝒂 𝟎𝟎.𝟖𝟖𝟖𝟖 ≤ 𝒌𝒌′ ≤ 𝟏𝟏.𝟏𝟏𝟏𝟏 (Golbraikh and Tropsha, 2002) 
 
Thus, the plots of predicted activities against experimental activities for the training set (Fig. 1) and test set (Fig. 
2) are generated using the results of model 3. These plots indicate very good agreement between the experimental 
and predicted values with impressive squad correlation coefficient (𝑹𝑹𝟐𝟐) values of 0.8062 and 0.79190 for the 
training and test sets respectively. 
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Fig. 1. Plot of experimental activities against predicted values for training set of hydrazone antioxidants. 
 
 

 
Fig. 2. Plot of experimental activities against predicted values for test set of hydrazone antioxidants.  
 
From the various validation tests conducted, we observe that all the five models generated in this research met the 
necessary requirements for acceptability with model 3 recording the best result. This model together with the 
relevant validation parameters are summarized below:  
 
𝑝𝑝𝐼𝐼𝐼𝐼50 = - 0.76454 * ATS2p  + 0.81595 * nHCsats   + 0.94990 * nHBDon  + 1.28861 * SIC1  - 0.58172 * 
TDB7s   + 4.57149 
 𝑹𝑹 = 0.89786 ,     𝑹𝑹𝟐𝟐 = 0.80615 ,       𝑸𝑸𝟐𝟐(𝑹𝑹𝟐𝟐𝑪𝑪𝑪𝑪) = 0.76487      𝑹𝑹𝟐𝟐𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 = 0.79617   and   c𝑹𝑹𝒑𝒑𝟐𝟐 = 0.76488 ,    
𝒔𝒔 = 0.26914,  rmsep = 0.18713,  𝒏𝒏𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 48,    𝒏𝒏𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 13. 
 
The results of applicability domain for the best developed model are given in tables S3 and S4 of the 
supplementary material for the training and test sets respectively. The computed value for leverage threshold, h* 
is 0.375. The William’s plot for estimation of the applicability domain for this model is presented in Fig. 3. In the 
Williams plot, the applicability domain was established inside a squared area within ±2.5 bound for residuals and 
a leverage threshold 𝒉𝒉∗. Prediction for compounds with high leverage values (𝒉𝒉 > 𝒉𝒉∗) were considered unreliable 
since they are extrapolations from the structural domain of the model [50, 51]. From Fig. 3 we observe that, no 
response outliers were detected for the training and test set compounds as all the compounds lie within the 
applicability domain of the developed model. We also observed that four structural outliers were detected for the 
test set compounds, while none was detected for training set. Based on the observed results of the applicability 
domain, the chemical space where this model makes predictions with a given reliability is defined. 
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Fig. 3. Williams plot, the plot of standard residuals against leverages for the hydrazone antioxidant data set. 
  
The results for the computation of the mean effect (MF) variation inflation factor (VIF) and degree of contribution 
(DC) of the descriptors are presented in table 6.  
 
Table 6. Specifications of coefficient, standard error, mean effect, variation inflation factor and degree of 
contribution of the descriptors 

S/N0 Descriptor Coefficient Standard Error P-Value DC MF VIF 
1 ATS2p -0.765 0.174 7.49E-05 -4.390 -0.450 1.342 
2 nHCsats 0.816 0.154 3.83E-06 5.313 0.478 1.194 
3 nHBDon 0.950 0.192 1.31E-05 4.936 0.556 1.475 
4 SIC1 1.289 0.176 5.12E-09 7.318 0.754 1.410 
5 TDB7s -0.582 0.225 0.01332 -2.585 -0.340 1.651 

 
 
ATS2p (Broto-Moreau autocorrelation - lag 2 / weighted by polarizabilities). This is a 2D Autocorrelation 
Descriptor that measures the distribution of atomic polarizability on the topology of the molecule. From table 6, 
the ATS2p descriptor is negatively correlated with the antioxidant activities of the hydrazone derivatives with a 
coefficient value of -0.76454. In terms of its degree of contribution to the developed model, it has a value of -
4.39033 which actually supports its negative correlation. In terms of its degree of contribution to the developed 
model, it has the lowest value of -4.39033 which actually supports its negative correlation. 
 
nHCsats (Count of atom-type H E-State: H on C 𝑠𝑠𝑠𝑠3 bonded to saturated C).  This is a 2D Electrotopological 
State Atom Type Descriptor. These descriptors are results of the electronic environment of the atom in question 
due to its intrinsic electronic properties in combination with the influence of other surrounding atoms. The 
nHCsats descriptor indicates the number of 𝑠𝑠𝑠𝑠3 carbons bonded to other saturated carbon atoms in the molecule. 
This descriptor is observed to be positively correlated with the antioxidant activities of the coumarins, with a value 
of + 0.81595. This implies increase in this property among the coumarins, increases their antioxidant activities. 
The DC and MF values are 5.31345 and 0.47766 respectively. 
 
nHBDon (Number of hydrogen bond donors (using CDK H Bond Donor Count Descriptor algorithm). This is a 
2D PaDEL H Bond Donor Count Descriptor that signifies the number of hydrogen bond donors in the molecule. 
From the designed model, this descriptor is positively correlated with the free radical scavenging activity of the 
hydrazones with the highest positive coefficient value of 0.94990. Thus, increase in the number of hydrogen bond 
donors among the hydrazone antioxidants strongly results to an increase in their ability to scavenge free radicals. 
The results of DC and MF are also encouraging with values of 4.93590 and 0.55608 respectively.   
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SIC1: Structural information content index (neighbourhood symmetry of 1-order). This descriptor signifies the 
total number of atoms of a given order that are present in a molecule. It is positively correlated with the antioxidant 
activities of the hidrazone with the highest values of coefficient (1.28861), MF (0.75437) and DC (7.31789) (table 
6). Thus, there is good correlation in the results of the MF, DC and descriptor coefficient values for the descriptor 
SIC1. In comparison to the other descriptors, this descriptor recoded the highest value for these parameters. This 
is an indication of the strong influence of this descriptor in determining the antioxidant properties of the 
hydrazones. These results indicate the dominance of this descriptor as the most crucial descriptor that influence 
the free radical scavenging activity of the Hydrazone antioxidants. Therefore, in the design of potent antioxidants 
based on the hydrazine moiety, with improved activities, emphasis must be paid on this descriptor. 
 
TDB7s (3D topological distance-based autocorrelation - lag 7 / weighted by I-state). This is a topological distance-
based descriptor that also encodes information about the 3-dimenional spatial separation between atoms. The 
TDB7s descriptor is negatively correlated with the free radical activity of the hydrazones with a coefficient value 
of -0.58172.  This is in agreement with the DC and MF values of -2.58458 and -0.34054 respectively. These 
results are the lowest in comparison with the values for the other descriptors in the developed model.  
 
From table 6, we also observe that the highest computed VIF value is 1.65056 which corresponds to the descriptor 
TDB7s, while the lowest value is 1.19367 and this corresponds to the descriptor nHCsats. Thus, the computed 
VIF values were all greater than 1.00 and less than 5.00. This is an indication that the developed model met the 
requirements for acceptability since these results are within the acceptable range. Recall that when 𝑽𝑽𝑽𝑽𝑽𝑽 is equal 
is equal to 1, there is no inter-correlation among the descriptors. If the value lies within the range 1 − 5,  the model 
is acceptable. While a 𝑽𝑽𝑽𝑽𝑽𝑽 value larger than 10 suggests that the model is unstable [52]. 
 
Conclusion 
This research explored the quantitative free radical scavenging activities of the hydrazone antioxidants by the 
application of quantitative structure activity relationship studies. Five models were developed, with model 3 
chosen as the best of the five models based on its excellent validation parameters. This model indicates that Broto-
Moreau autocorrelation - lag 2 / weighted by polarizabilities; Count of atom-type H E-State: H on C 𝑠𝑠𝑠𝑠3 bonded 
to saturated C;  Number of hydrogen bond donors (using CDK H Bond Donor Count Descriptor algorithm); 
Structural information content index (neighbourhood symmetry of 1-order) and the 3D topological distance based 
autocorrelation - lag 7 / weighted by I-state descriptors are the main descriptors that influence the antioxidant 
activities of the hidrazone derivatives. Thus, the ability of a descriptor in a model to influence the activity of a 
compound is determined by its sign, magnitude, degree of contribution and mean effect values.  
 
Also, the results of this research demonstrate the development of a highly predictive model that can efficiently be 
employed in the design of new set of hydrazone antioxidants with potent free radical scavenging activities. 
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