Electrochemical Behavior of Ni(II) Complexes with N$_2$S$_2$ and N$_6$ Ligands as Potential Catalysts in Hydrogen Evolution Reaction

Vanessa Ramirez-Delgado,1 Guadalupe Osorio-Monreal,1 Luis Felipe Hernández-Ayala,2 Yolanda Reyes-Vidal,1,3 Juan Carlos García-Ramos,2† Lena Ruiz-Azuara2 and Luis Ortiz-Frade1*

1Centro de Investigación y Desarrollo Tecnológico en Electroquímica S.C. Parque Tecnológico Querétaro, Sanfandila, Pedro de Escobedo, C.P. 76703. Querétaro, México. lortiz@cideteq.mx
2Laboratorio de Química Inorgánica Medicinal. Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, México, D.F., 04510, México
3Catedra Conacyt -CIDETEQ
†Currently a postdoctoral fellow at Departamento de Fisicoquímica, Instituto de Química, UNAM.

Received October 7th, 2015; Accepted February 17th, 2016.

Abstract. In this work, two Ni(II) complexes with the tetradeinate ligand N$_2$S$_2$ (pdo = 1,8-bis(2-pyridyl)-3,6-dithiooctane,) and the hexadentate ligand N$_6$ (bdahp = 2,9-bis-(2',5'-diazahexanyl)-1,10-phenanthroline) were prepared in order to explore its electrochemical behavior, that indicate their potential use as molecular catalysts for the hydrogen evolution reaction. The Ni(II)-pdo complex presented two consecutive one electron transfer [Ni(II)-(pdo)] + 1 e$^-$ [Ni(I)-(pdo)] and [Ni(I)-(pdo)] + 1 e$^-$ → Ni(0) + pdo. On the other hand the Ni(II)-bdahp complex presented the electrochemical reduction Ni(II)-(bdahp) + 1 e$^-$ Ni(I)-(bdahp) followed by a coupled chemical reaction in an ECI mechanism, where a de-coordination of the diimine moiety of the bdahp ligand was proposed. It was demonstrated that the pdo ligand promotes reduction over Ni(II) at less negative reduction potential in comparison when the ligand bdahp is presented.

Key words: Electrochemistry, Ni(II) complexes; N$_2$S$_2$ ligand; N$_6$ ligand.

Resumen. En este trabajo se prepararon dos complejos de Ni(II) con un ligante tetradeinado N$_2$S$_2$ (pdo = 1,8-bis(2-piridil)-3,6-difuorocianato) y un ligante hexadentado N$_6$ (bdahp = 2,9-bis-(2',5'-diazahexanilo)-1,10-fenantrolina) con el fin de estudiar su comportamiento electroquímico que indique su potencial uso como catalizadores moleculares en la reacción de evolución de hidrógeno. El complejo Ni(II)-pdo presenta dos transferencias mono-eléctronicas consecutivas [Ni(II)-(pdo)] + 1 e$^-$ [Ni(I)-(pdo)] y [Ni(I)-(pdo)] + 1 e$^-$ → Ni(0) + pdo. Por otro lado el complejo Ni(II)-bdahp presentó la reducción electroquímica Ni(II)-(bdahp) + 1 e$^-$ Ni(I)-(bdahp) seguida de una reacción química acoplada en un mecanismo de ECI, donde se propone una des-coordinación de la parte diiminica del ligante bdahp. Se demostró que el ligante pdo promueve la reducción del Ni(II) en potencial de reducción menos negativo en comparación cuando está presente el ligante bdahp.

Palabras clave: Electroquímica; complejos Ni(II); ligante N$_2$S$_2$; ligante N$_6$.

Introduction

The economic dependence of fossil combustibles has motivated scientists around the world to develop alternative energy sources. The use of solar radiation for water splitting to produce H$_2$ and O$_2$, also called artificial photosynthesis, and the electrochemical reduction of hydrogen evolution are considered potential strategies for energy storage [1]. Inert electrodes with noble metals, particularly bulk and nanostructured Pt, have been widely used to achieve this goal. Nevertheless coordination compounds present advantages, such as the use of non-expensive metals and the accurate control of chemical reactivity. Typically Co(II)-diligoxime complexes in non-aqueous solvents with HA proton donors have been used for hydrogen evolution catalysis [2-6]. The low stability of these systems has motivated to explore alternative compounds such as Co(II)-polypyridine complexes and highly competitive Ni(II) complexes [6-10]. DuBois designed the Ni(II) complex [Ni(P$_{Ph^6}$N$_{Ph^6}$)$_2$(BF$_4$)$_2$ (P$_{Ph^6}$N$_{Ph^6}$ = 1,3,6-triphelyl-1-aza-3,6-diphosphacycloheptane) with a ligand containing phosphorus donor atoms and a pendant protonable amine as proton relays for the electrochemical reduction of [(DMF)H] OTf, pK$_a$=6.1 in MeCN [11]. Other examples of Ni(II) complexes, [Ni(7P$_{Ph^6}$N$_{6H^4}$)$_2$(BF$_4$)$_2$ (7P$_{Ph^6}$N$_{6H^4}$ = 1-para-X-phenyl-3,6-triphencyl-1-aza-3,6-diphos- phacycloheptane, X= OMe, Me, Br, Cl or CF$_3$, with similarities to the ligand P$_{Ph^6}$N$_{Ph^6}$ were also reported [12-16]. The basicity of the amine in the ligand, and the catalytic activity was modified by the presence of electron donating and electron withdrawing substituents X on the aromatic ring attached to the nitrogen atom. In a biomimetic approach to the Ni-Fe Hydrogenases, ligands with N/S donor atoms, specifically substituted and non-substituted pyridine-2-thiolate and pyrimidine-2-thiolate were also used to prepare Ni(II) complexes, with a decent electro-catalysis and photo-driven hydrogen evolution activities [15-20]. From all these studies it was figured out that in the proposed mechanism, the first step is a one electron uptake over Ni(II), followed by the formation of hydride species Ni(II)-H. From this work, it was established that for a good catalyst, flexible ligands are desirable because of the preferential geometries of the proposed Nickel oxidation states in the catalytic cycle. Another important
factor is the reduction potential of the couple Ni(II)/Ni(I). A more negative value increases the hydride donor abilities of the Nickel-hydrides, making the process more efficient [12].

A good candidate for a potential hydrogen evolution catalyst is the Ni(II) complex with the ligand 1,8-bis(2-pyridyl)-3,6-dithioctane (pdto), due to the presence of N/S donor atoms and the already demonstrated high flexibility toward the preferential geometry of a metal center, see scheme 1 [21-40]. On the other hand, the negative reduction potential of Ni(II) coordinated to a diiminic moiety and the flexibility of protonable open chain amines, make that the Ni(II) complex with the ligand 2,9-bis-(2',5'-diazahexanyl)-1,10-phenanthroline (bdahp), see scheme 1, can be considered as a possible catalyst for hydrogen evolution reaction. Therefore, in this work we prepared two Ni (II) complexes with flexible ligands N$_2$S$_2$ (pdto) and (bdahp) = 1,8-bis(2-pyridyl)-3,6-dithioctane, bdahp = 2,9-bis-(2',5'-diazahexanyl)-1,10-phenanthroline in order to explore its electrochemical behavior that provides information necessary to propose their potential use as catalysts for hydrogen evolution reaction.

Results and discussion

Characterization of [Ni(pdto)(CH$_3$CN)$_2$](BF$_4$)$_2$

The reaction between the Nickel salt [Ni(H$_2$O)$_6$](BF$_4$)$_2$ and the ligand 1,8-bis(2-pyridyl)-3,6-dithioctane yield a blue powder with empirical formula C$_{26}$H$_{26}$N$_2$S$_2$BF$_4$Ni. The IR spectrum displays typical adsorption bands for pdto. The stretching vibrations from pyridine rings ν(C=C) + ν(C=N) are recorded at 1608 and 1565 cm$^{-1}$. The asymmetric stretching ν$_{as}$(CH) and symmetric stretching ν$_{s}$(CH) are observed at 2855, 2835 and 2819 cm$^{-1}$. Methylene scissoring bands (δ$_1$(CH$_2$) occur at 1436 and 1482 cm$^{-1}$. Sharp absorption bands at 3103 and 3016 cm$^{-1}$ attributable to aromatic stretching ν (≡C-H) are also observed. The absorptions bands corresponding to the out of plane δ(≡C-H) bending is registered at 770 cm$^{-1}$. Characteristic signals for coordinated CH$_3$CN, ν(C≡N) and ν(C≡N) are recorded at 2950, 2920, 2257 and 2287 cm$^{-1}$. A broad signal around 1080 cm$^{-1}$ characteristic for BF$_4^-$ anion was observed. With this information it is not possible to propose a geometry for the Ni(II) complex. Thus NIR diffuse reflectance spectra was acquired, see fig. 1. Three absorption bands at 10535, 16813 and 26650 cm$^{-1}$ can be observed, which correspond to the electronic transitions $\nu_1 = 3A_{2g} (F) \rightarrow 3T_{1g} (F)$; $\nu_2 = 3A_{2g} (F) \rightarrow 3T_{2g} (F)$; $\nu_2' = 3A_{2g} (F) \rightarrow 3T_{1g} (P)$ for typical octahedral Ni (II) complexes. These are in agreement with calculated effective magnetic moment (μ_{eff}) 2.97 MB (2 unpaired electrons) [41-43]. Additionally a Charge Transfer (CT) absorption band at 30337 and a spin-forbidden electronic transition $\nu_3 = 3A_{2g} \rightarrow E_g$ at 9655 cm$^{-1}$ were also recorded [44]. A 10 Dq value of 10535 cm$^{-1}$ is assigned, according to the literature [45]. The above discussion allows us to propose unequivocally the molecular formula [Ni(pdto)(CH$_3$CN)$_2$](BF$_4$)$_2$.

On the other hand, to explore the geometry of this Ni(II) complex in solution, conductimetric and spectroscopic measurements were performed. A 1 mM solution of the complex in acetonitrile presented a molar conductance (Λ_m) value of 320 Ω$^{-1}$ cm2 mol$^{-1}$, characteristic for a 2:1 electrolyte. The UV-visible spectrum of the compound in acetonitrile shows the electronic transitions $\nu_1 = 3A_{2g} (F) \rightarrow 3T_{1g} (F)$, $\nu_2 = 3A_{2g} (F) \rightarrow 3T_{2g} (F)$, and $\nu_3 = 3A_{2g} \rightarrow E_g$ at 565 nm (17699 cm$^{-1}$), 880 nm (11360 cm$^{-1}$) and 936 nm (1070 cm$^{-1}$) respectively, see fig. 2. These results indicate that the complex present an octahedral geometry with the same donor atoms around the Ni(II) center in acetonitrile solution and in solid state. The slight changes in maximum absorption bands are related to solvation effects.

Characterization of [Ni(bdahp)](PF$_6$)$_2$

A purple powder was obtained with empirical formula NiC$_{20}$H$_{26}$N$_6$P$_2$F$_{12}$. The presence of the polypyridine 1,10-phenanthroline moiety and aliphatic amines of the bdahp ligand are confirmed by IR spectroscopy. The stretching absorption bands ν (C=C) + ν (C≡N) occur at 1591, 1500, 1462 and 1435 cm$^{-1}$. The aromatic stretching ν (≡C-H) signals are detected at
3087 cm\(^{-1}\). The absorptions bands corresponding to the out of plane C-H bending are registered at 743, 723, and 686 cm\(^{-1}\). The (N-H) stretching bands are observed at 3344 and 3323 cm\(^{-1}\). The absorption bands for the stretching ν (-C-H) associated to CH\(_3\) and CH\(_2\) groups are detected at 2997, 2970, 2945 and 2925 cm\(^{-1}\). Moreover the counter ion (PF\(_6\)) was recorded around 825 cm\(^{-1}\). The electronic spectra of this complex in acetonitrile solution is presented in fig. 3. In the same way that in the Ni(II)-pdto complex the effective magnetic moment (\(\mu_{\text{eff}}\)) 3.04 BM and the electronic transitions in acetonitrile solution \(\nu_1\) = \(3\)A\(_{g}\) (F) \(\rightarrow\) \(3\)T\(_{1g}\) (F), \(\nu_2\) = \(3\)A\(_{2g}\) (F) \(\rightarrow\) \(3\)T\(_{2g}\) (F) and \(3\)A\(_{2g}\) \(\rightarrow\) \(1\)E\(_g\) at 551 nm (18148 cm\(^{-1}\)), 980 nm (10204 cm\(^{-1}\)) and 1017 nm (9832 cm\(^{-1}\)) demonstrate a octahedral geometry for the Ni(II) complex. The presence of a shoulder (*) around 830 nm, is attributed to electronic transitions for RHN-Ni(II) fragment which has a lower electronic transitions for RHN-Ni(II) fragment which has a lower crystal field splitting according to spectrochemical series [42]. The solution behavior was complemented with conductimetric measurements. The calculated molar conductance value \(\Lambda_m = 300 \, \Omega^{-1} \, \text{cm}^2 \, \text{mol}^{-1}\) for a 1 mM solution of the complex (2:1 electrolyte) indicates the complete dissociation of the compound that generate the cationic complex and two counterions PF\(_6\)\(^{-}\). This information allows the proposal of molecular formula [Ni(bdahp)](PF\(_6\))\(_2\).

Electrochemical behavior of [Ni(pdto)(CH\(_3\)CN)\(_2\)](BF\(_4\))\(_2\) in acetonitrile solution

A typical cyclic voltammogram of the complex [Ni(pdto)(CH\(_3\)CN)\(_2\)](BF\(_4\))\(_2\) in acetonitrile solution in the presence of 0.1 M TBABF\(_4\) is shown in fig. 4. When the potential scan was started from open circuit potential to negative direction two reduction processes \(I_a\) and \(I_c\) and two oxidation processes \(I_a\) and \(I_a\) were recorded. The corresponding potential peaks for these signals are \(E_{\text{pc}}(I) = -1.004\) V, \(E_{\text{pc}}(II) = -1.630\), \(E_{\text{pa}}(I) = -0.889\) V and \(E_{\text{pa}}(II) = -0.237\) V vs Fc-Fc\(^+\). When the scan rate was increased, see fig. 5, the signals \(I_c\), \(I_a\) and \(I_a\) presented an increment on their corresponding current values. The opposite was registered for signal \(I_a\). It should be highlighted that an increase of current for signals \(I_c\) and \(I_a\) when the time scale of the experiment was diminished, indicates a dependence between them. To prove this idea cyclic voltammetry experiments using a lower cathodic switching potential value (\(E_{\lambda}\)) were carried out. Fig. 6 shows a series of voltammograms at variable scan rate with a \(E_{\lambda}\) value at -1.25 V vs Fc-Fc\(^+\), where only the redox processes \(I_a\) and \(I_a\) were observed. The anodic peak potential \(E_{\text{pa}}(I)\) present a shift from -0.889 (long \(E_{\lambda}\)) to -0.924 (short \(E_{\lambda}\)) V vs Fc-Fc\(^+\), meanwhile no change was observed in the cathodic peak potential \(E_{\text{pc}}(I)\). The ratio \(i_{\text{pa}}(I_a)/i_{\text{pc}}(I_a)\) presents a value close to the unity in the whole range of scan rates. Therefore we propose the electron transfer Ni(II)-(pdto) + 1 e\(^-\) Ni(I)-(pdto) for process I, with a half wave potential (\(E_{1/2}\)) value of -0.964 V vs Fc-Fc\(^+\) and a difference between potential peaks (\(\Delta E_{\text{p}}\))
close to 0.080 V. Considering the assignation for process I and
cyclic voltamograms, it was possible to attribute signal II to
the electrochemical reaction Ni(I)-(pdto) + 1 e⁻ → Ni(0) + pdto,
and process III to the anodic dissolution of Ni(0) deposited in
the forward scan. This fact explain the change in the anodic
peak potential values for process I when the switching was
modified, in terms of different energetic requirements for the
oxidation of the Ni(I)-(pdto) species over glassy carbon (short
Eₐ) and over a Ni(0) deposit (long Eₐ). One step chronoamper-
ometry experiment stepped from open circuit potential (E_{pc})
to potential value Eₐ = -1.247 V vs Fe-Fc⁺ with a perturbation
time τ = 1 s, allows to calculate a diffusion coefficient of 1.443
× 10⁻⁵ cm² s⁻¹ according to Cottrell’s law [46, 47].

Electrochemical Behavior of [Ni(bdahp)]_2(PF₆)_2 in acetonitrile solution

The cyclic voltammogram of compound [Ni(bdahp)]_2(PF₆)_2
obtained with a glassy carbon electrode at scan rate v=100
mV s⁻¹ in acetonitrile solution is shown in fig. 7. In the
complete scan (started from open circuit potential to negative di-
rection) the voltammogram displays two oxidation signal
Iₐ and IIₐ with their corresponding reduction signal Iₐ and
IIₐ. For process I a half-wave potential (E_{1/2}) value of 1.013
V/Fe-Fc⁺ and a ΔEp value of 0.060 V value was obtained. On
the other hand for process II their corresponding ΔEp and E_{1/2}
values were 0.060 V and -1.382 V/Fe-Fc⁺ respectively. In or-
der explain the nature of both electron transfers, the electro-
chemical study of the complex [Ni(1,10-phen)]_2(BF₄)_2 in
the same experimental conditions was carried out. One oxidation
process with a half wave potential E_{1/2} = 1.419 V vs Fe-Fc⁺
associated to [Ni^II]^2+ [Ni^III]^2+ + 1e⁻ was observed [48,49]. A second process associated to the reduction
[Ni^II]^2+ + 1e⁻ [Ni^II]^2+ with a half wave potential E_{1/2} = -1.629 V vs Fe-Fc⁺ was also detected. Taking
into account similar oxidizalbe and reducible groups between
[Ni(bdahp)]⁺ and it was possible to establish the electrode-
chemical reactions; [Ni^II](bdahp)]^2+ [Ni^III](bdahp)]^3+ + 1e⁻ for process
I and [Ni^II](bdahp)]^2+ + 1e⁻ [Ni^II](bdahp)]⁺ for process II. This is
in agreement with the fact that imine ligands such as 1,10-phen
and bipyridine offer a more attractive environment for Ni(I)
and other metal complexes in low oxidation state by allowing
electron delocalization over the ligand π system [49-55]. When
the scan rate was increased the corresponding cyclic vol-
tammograms showed a better definition of the oxidation signal II with
an increment in its current value. The ratio i_a/I_a/i_c/I_c presented small values at low scan rate, characteristic of a coupled
chemical reaction in an ECi mechanism, see fig. 8. In litera-
ture it has been stated that the electrochemical reduction for the
cationic complexes [Ni^II](L) [Ni^III](L)₂ [49,56,57]. Based

Fig. 6. Cyclic voltammogram for 1x10⁻³ M of [Ni(pdto)(CH₃CN)₂]
(BF₄)₂ in the presence of 0.1 M TBABF₄ in MeCN, obtained with a
glassy carbon disk as working electrode. Scan rate from 100 to
1000 mVs⁻¹. Cathodic switching potential value (Eₐ) at -1.25 V vs Fe-Fc⁺.
on this fact we can propose a de-coordination of the diiminic moiety of the bdahp ligand with the electrogenerated Ni(I) forming the species $[\text{Ni}(\kappa^2\text{N}-\text{bdahp})]^+$, detectable in the time scale of the cyclic voltammetry employed. According to the literature the rate constant (k_r) for the EC$_1$ mechanism was calculated [58,59]. The obtained values were 0.160 ± 0.007 and 0.170 ± 0.001 for compounds $[\text{Ni}(1,10\text{-phen})]$ and $[\text{Ni}(\text{bdahp})]$ respectively. The low value for the 1,10-phen complex in comparison with the bdahp complex is related to high chelate effect.

From one step chronoamperometry experiments, with a potential step from open circuit potential to -1.90 vs Fe-Cu, a diffusion coefficient of 7.97×10$^{-5}$ cm2s$^{-1}$ was calculated according to Cottrell law. Similar experiments were performed for the complex $[\text{Ni}(1,10\text{-phen})]^+$ stepping the potential to -1.80 vs Fe-Cu$^+$ $($Do=3.48874×10$^{-5}$ cm2s$^{-1}$).

Comparison of the electrochemical behavior of Ni(II) complexes

Fig. 9 presents a graphical comparison of the electrochemical reductions of the compounds studied in this work. From this figure it can be established that the Ni(II) complex with the ligand N_6 $[\text{Ni}(\text{bdahp})]$ $^{2+}$ which contains a diiminic moiety and flexible aliphatic amines the redox potential is shifted to more negative values in comparison with the $[\text{Ni}(\text{ptdo})(\text{CH}_2\text{CN})]^2+$ complex. The change in denticity of a bidentate ligand (1,10-phenanthroline) to a hexadentate ligand N_6 bdahp= 2,9-bis-(2,5'-diazahexanyl)-1,10-phenanthroline causes that the reduction of Ni(II) requires more energy, despite the fact that the tris-chelate $[\text{Ni}(1,10\text{-phen})]$ $^{2+}$ complex should present a more negative reduction potential, according to the additivity contribution of three ligands with high π acceptor character [60]. Hence this shift in reduction potential could be attributable to the chelate effect. An important change in the diffusion coefficient could be observed, as a consequence of the molecular size of the cationic complexes considering the solvation sphere of each compound. Table 1 shows a summary of the electrochemical reduction processes of the compounds studied in this work, and other Ni(II) complexes used for electrochemical hydrogen evolution taken from literature.

The complex $[\text{Ni}(\text{bdahp})]$ $^{2+}$ presented a more negative reduction potential (-1.83 vs Fe-Fc$^+$) than those reported for Ni(II) complexes with ligands containing phosphorus donor atoms on its structure $[\text{Ni}(\text{pPh}_2\text{NPh})]^2+$ $([\text{pPh}_2\text{NPh}=1,3,6\text{-triethyl-1-aza-3,6-dipophacycloheptane}]$ and $[\text{Ni}(\text{pPh}_2\text{NC6H4X})]^2+$ $([\text{pPh}_2\text{NC6H4X}=1\text{-para-X-phenyl-3,6-dipophacycloheptane}], \text{X}=\text{OMe, Me, Br, Cl or CF}_3$) from -1.13 to 1.05 vs Fc-Fc$^+$. Considering that a negative redox potential value increases the hydride donor ability, making the hydrogen evolution reaction more efficient, a good catalytic activity for the complex $[\text{Ni}(\text{bdahp})]^2+$ is expected. On the other hand the reduction potential (-0.96 vs Fe-Fc$^+$) of the cationic complex $[\text{Ni}(\text{ptdo})(\text{MeCN})]^2+$ suggests a low hydride donor ability in comparison with the reported values for the biinspired Ni(II) complexes with N/S ligands $[\text{Ni}(\text{X-pyS})_2]$, $[\text{Ni}(\text{pySH})_2]$ $^{2+}$, $[\text{Ni}(\text{4,4′-Y-pymS})]_2$ and $[\text{Ni}(\text{4,4′-Z-2,2′-bpy}(\text{pyS})_2]_2$ (pyS = pyridine-2-thiolate, X= 5-H, 5-Cl, 5-CF$_3$, 6-CH$_3$, (pymS = pyrimidine-2-thiolate Y= H, CH$_3$, Z $=$ H, CH$_3$, OCH$_3$ and bpy = bipyridine) (from -1.73 to 2.01 vs Fe-Fc$^+$). However the Ni(II) -pdto system presented a necessary reversible electron transfer reaction Ni(II) + 1 e$^-$ Ni(I) in a catalytic cycle, which is not observed in the Ni(II) complexes with substituted and non-substituted pyridine-2-thiolate, pyrimidine-2-thiolate and 4,4′-bipyridines, see table 1.

Conclusions

Using typical characterization techniques octahedral Ni(II) complexes with the tetradentate ligand N_2S_2 (pdto=1,8-bis
Table 1. Electrochemical reduction processes for Ni(II) complexes studied in this work with their corresponding half wave redox potential (E_{1/2}). Data of other Ni(II) used for hydrogen evolution reaction taken from literature is also presented.

<table>
<thead>
<tr>
<th>Electrochemical processes</th>
<th>E_{1/2}(V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Ni(II)-(pdo)] + e^- [Ni(I)-(pdo)]</td>
<td>-0.96</td>
</tr>
<tr>
<td>[Ni(I)-(pdo)] + 1 e^- → Ni(0) + pdo</td>
<td>-1.63^a</td>
</tr>
<tr>
<td>[Ni^II(1,10-phen)]^{2+} + e^- [Ni^II(1,10-phen)]^+</td>
<td>-1.63</td>
</tr>
<tr>
<td>[Ni^II(bdahp)]^{2+} + e^- [Ni^II(bdahp)]^+</td>
<td>-1.83</td>
</tr>
<tr>
<td>[Ni^II(pdto)_2^{2+}]^{2+} + 2e^- [Ni^II(pdto)_2^{2+}]</td>
<td>-1.13</td>
</tr>
<tr>
<td>[Ni^II(7P^2_{6}N_2COHOMe)2]^{2+} + 2e^- [Ni^II(7P^2{6}N_2COHOMe)_2]</td>
<td>-1.14</td>
</tr>
<tr>
<td>[Ni^II(7P^2_{6}N_2COHOMe)3]^{2+} + 2e^- [Ni^II(7P^2{6}N_2COHOMe)_3]</td>
<td>-1.13</td>
</tr>
<tr>
<td>[Ni^II(7P^2_{6}N_2COHOMe)2]^{2+} + 2e^- [Ni^II(7P^2{6}N_2COHOMe)_2]</td>
<td>-1.12</td>
</tr>
<tr>
<td>[Ni^II(7P^2_{6}N_2COHOMe)3]^{2+} + 2e^- [Ni^II(7P^2{6}N_2COHOMe)_3]</td>
<td>-1.08</td>
</tr>
<tr>
<td>[Ni^II(7P^2_{6}N_2COHOMe)2]^{2+} + 2e^- [Ni^II(7P^2{6}N_2COHOMe)_2]</td>
<td>-1.08</td>
</tr>
<tr>
<td>[Ni^II(7P^2_{6}N_2COHOMe)3]^{2+} + 2e^- [Ni^II(7P^2{6}N_2COHOMe)_3]</td>
<td>-1.05</td>
</tr>
<tr>
<td>[Ni^II(6-Ch_{3}-Pyridine-2-thiolato)_3]^{+} + ne → P</td>
<td>-1.72^a</td>
</tr>
<tr>
<td>[Ni^II(Pyridine-2-thiolato)_3]^{2+} + ne → P</td>
<td>-1.78^a</td>
</tr>
<tr>
<td>[Ni^II(2,2'-bpy)(pyridine-2-thiolato)]^{2+} + ne → P</td>
<td>-1.93^a</td>
</tr>
<tr>
<td>[Ni^II(4,4'-dimethyl-2,2'-bpy)(pyridine-2-thiolato)]^{2+} + ne → P</td>
<td>-2.02^a</td>
</tr>
<tr>
<td>[Ni^II(2,2'-dimethoxy-bpy)(pyridine-2-thiolato)]^{2+} + ne → P</td>
<td>-2.06</td>
</tr>
</tbody>
</table>

Reported vs Fc-Fc^+, scan rate 100 mVs^-1 in 0.1 M TBABF_4 in MeCN.
^a Irreversible process, cathodic peak value. Reported in DMF.

(2-pyridyl)-3,6-dithioctane, and the hexadentate ligand N_6 (bdahp = 2,9-bis(2',5'-diazahexanyl)-1,10-phenanthroline) are proposed. The cationic complexes [Ni(pdto)(CH_3CN)_2]^{2+} and [Ni(bdahp)]^{2+} presented an electron transfer from Ni(II) to Ni(I), with half wave redox potential controlled by donor atoms. It was demonstrated that the coordination of a N_2S_2 ligand with Ni(II) makes the reduction potential shift to less negative values in comparison to Ni(II) complexes with a N_6 ligand bdahp. The electrochemical behavior, through an analysis of the reduction potential values of [Ni(pdto)(CH_3CN)_2]^{2+} and [Ni(bdahp)]^{2+} suggest that both complexes can be considered as potential catalysts for hydrogen evolution reaction in a future work.

Experimental section

Chemicals

All chemicals and solvents in this work were used as received from Aldrich Chemical Co., Acros Organics and J.T. Baker.

Synthesis of the ligand 1,8-Bis(2-pyridyl)-3,6-dithioctane (pdo)

The ligand 1,8-bis(2-pyridyl)-3,6-dithioctane (pdo) was prepared using the method described by Goodwin and Lions. [21] Yield 70%, elemental analysis calculated for C_{32}H_{32}N_2S_2: calculated %C 63.1, %H 6.6, %N 9.2, %S 21.1; found: %C 63.1, %H 6.2, %N 9.7, S 20.5.

Synthesis of the ligand 2,9-Bis-(2',5'-diazahexanyl)-1,10-phenanthroline (bdahp)

12.71 mmol of 2,9-diformyl-1,10-phenanthroline was dissolved in 200 IM of a (1:1) mixture CHCl_3-MeOH. Separately 38.15 mmol of N-methyl-ethylenediamine was added to 50 mL of the CHCl_3-MeOH mixture, to be added to the first solution. The reaction mixture was heated and stirred under reflux for 2 hours. When the reaction mixture was cooled at room temperature, 50.84 mmol of the reducing agent NaBH_4 was added. The new reaction mixture was stirred again for 2 hours and a green solution was obtained. Extractions with CHCl_3 were done and the organic phase was collected to be concentrated and re-dissolved in 5 mL of concentrated hydrochloric acid with the addition of EtOH. A pale yellow product was obtained filtered and dried. Anal. Calc. for C_{20}H_{32}N_6Cl_4 (M.W. = 498.32 g mol^-1) %C, 47.79; %H, 6.52; %N, 17.23. Found: %C, 48.0; %H, 6.47; %N, 16.86. ^1H-NMR (300 MHz, D_2O) δ 7.53 (d, J = 8.35, 1H), 6.88 (d, J = 8.36 Hz, 1H), 6.84 (s, 1H), 3.83 (s, 2H), 2.64 (dd, J_1 = 8.15, J_2 = 6.05 Hz, 2H), 5.31 (dd, J_1 = 8.31, J_2 = 6.46 Hz, 2H), 1.7 (s, 3H). ^13C-NMR (300 MHz, D_2O) δ = 151, 143, 139, 129, 127, 123, 52, 44, 43, 33.

Synthesis of the complexes

[Ni(pdto)(CH_3CN)_2](BF_4)_2. The synthesis was carried out by dissolving 2 mmol of the metallic salt Ni(BF_4)_2 in 25 mL of acetonitrile. Then it was added dropwise the metallic salt solution 2 mmol of pdo dissolved in 5 mL of acetonitrile. A color change from green to blue was observed. The reaction
mixture was heated and stirred for 2 hours. Solvent was removed by slow evaporation until a blue powder was observed. The product was filtered and washed with ethyl ether. Elemental analysis for C_{20}H_{36}N_{6}S_{6}B_{3}F_{9}Ni (P. M. = 618.87 g mol⁻¹)
Calc.: %C 38.81, %H 4.23, %N 9.05, %S 10.36; Found: %C 38.81, %H 4.23, %N 9.05, %S 10.36. Am (McCN): 320 Ω⁻¹ cm⁻² mol⁻¹ μeff: 2.907 MB (2 unpaired electrons).

0.5Ni(1,10-phenanthroline)_{3}(BF_{4})_{2}. This synthesis was carried out by mixing 1 mmol of Ni(BF₄)₂ with 1 mL of CH₃OH, then the ligand was previously dissolved in CH₃OH. A color solution change from green to pale pink was observed. The reaction mixture was stirred at room temperature for 1 hour. The solvent was removed and a pale pink precipitate was obtained to be filtered and washed with ether.

[Ni(bdahp)](PF₆)₂. 10 mL of aqueous solution containing 1 mmol of [H₄(bdahp)]Cl were added to 15 mL containing 1 mmol of NiCl₂ in aqueous solution. The pH of the solution was adjusted with NaOH. The reaction mixture was stirred for 2 hours. After this time a saturated solution of TBABF₄ was added. A pale purple precipitate was obtained. The product was filtered and washed with ethyl ether. Anal. Calc. for NiC_{20}H_{36}N_{6}O_{2}F_{12} (M.W. = 701.01 g mol⁻¹) %C, 34.26; %H, 4.03; %N, 12.06. Found: %C, 33.97; %H, 3.99; %N, 12.06. Δ (MeOH) = 222.6 cm⁻³ ohm⁻¹ mol⁻¹. μeff = 3.04 BM

Physical measurements

Elemental analysis of the compounds was performed with a Fisons Instruments Analyzer model EA 1108, using a sulfuramide standard for the equipment calibration. Magnetic susceptibility measurements were obtained with a Magnetic Balance Johnson Mathey MSB-1. Solid state UV-vis-NIR spectra were acquired with a Cary-5E Varian spectrophotometer 40000-4000 cm⁻¹. IR, spectra were obtained with a Thermo-Nicolet AVATAR 320 FT-IR 400-4000 cm⁻¹, in transmittance mode on KBr disk. Solution electronic spectra were recorded with Thermo-Scientific Evolution Array spectrophotometer (200-1100 nm), using a quartz cell (l=1cm). Conductivity measurements were obtained with Corning Pinacle 524 conductivity cell (constant= 1 cm⁻¹). A VARIAN Unity Inova spectrometer was used to record NMR spectra, 1H (300 MHz) and 13C (75.5 MHz) and 13C (75.5 MHz). TMS was used as a reference; CDCl₃-D₄-COD was used as solvent

Electrochemical experiments

Electrochemical experiments were performed with a potentio-stat/galvanostat Biologic SP-50 using 1x10⁻³ M of each Ni(II) compound in acetonitrile solution + 0.1M 0.1 M TBABF₄. A three cell array was used; working electrode, glassy carbon (Φ= 3 mm), counter electrode a platinum wire and as pseudo-reference a silver wire. Before each experiment the solutions were bubbled with N₂, and the working electrode was cleaned by polishing its surface with α Alumina (0.3 μm), to be washed with water and sonicated. The potentials are reported vs the couple Fe/Fe⁺ according to the IUPAC convention [61]. Cyclic voltammetry was performed from open circuit potential to negative direction with variable scan rate from 100 to 1000 mVs⁻¹. IR compensation was applied using the current interrupt method. Single pulse chronamperometry experiments were obtained stepping the potential from open circuit potential to a potential value where the electrochemical process was limited by diffusion, established from CV experiments. A time width (r) of 1s was used.

Acknowledgement

The authors thank CONACyT (130500), UNAM-PAPIIT (217613) and UNAM-PAIP (3590-19) for financial support; VRD, and JCGR thank CONACyT and RED FARMED/ CONACyT for the scholarships.

References

49. Lappin A. Graham; McAuley Alexander The redox chemistry of Nickel, 281-295.