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Abstract. This work describes the identification of components in the
Cap-binding complexes in non-germinated and 24-h-imbibed seeds
using mass spectrometry. This approach revealed new components
particularly present in the non-germinated seed. Among these, two
heat shock proteins, HSP101 and HSP70, were detected as well as
several proteins involved in carbohydrate metabolism. Between the
new components of maize Cap-binding complexes, several proteins
contain a motif that identifies them as potential direct interactors with
elF4E or elF(iso)4E.Together with the major abundance of elF(is0)4E
at this developmental stage, our findings indicate clear differences be-
tween the translation initiation complexes that are available for protein
synthesis right upon water imibition and those that are present once
germination has been completed.
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Resumen. En el presente trabajo se describe la identificacion de com-
ponentes de los complejos de uniéon a Cap obtenidos de semillas de
maiz sin germinar y embebidas en agua por 24 h utilizando espectro-
metria de masas. Mediante este procedimiento se encontraron nuevos
componentes en los complejos de unioén a Cap, presentes particular-
mente en las semillas sin germinar. Entre estos, se detectaron dos
proteinas de choque térmico o chaperonas, HSP101 y HSP70, asi
como varias proteinas involucradas en metabolismo de carbohidratos.
Entre los nuevos componentes de complejos de unién a Cap en maiz,
varias proteinas presentan motivos de aminoacidos que los identifi-
can como interactores directos potenciales de las proteinas elF4E y
elF (iso)4E. Estos hallazgos indican que los complejos de inicio de
la traduccion difieren entre el inicio y término de la germinacion de
semillas de maiz, tanto por la abundancia de elF(iso)4E como por su
composicion proteica.

Palabras clave: Germinacion, motivo de union a EiF4E, proteinas de
union a cap, traduccion, zea mays L.

Introduction

Translation of mRNAs in eukaryotes initiates through their
57 end Cap structure (7mGpppN, where N is any nucleotide).
Eukaryotic translation initiation factor (eIF) 4E of 25 kDa
directly binds to the Cap and to a platform protein of 200
kDa, elF4G. elF4G interacts with the multi-subunit complex
elF3 (12 subunits; more than 500 kDa) and brings together the
mRNA and the 43S pre-initiation complex formed by elF3, the
ternary complex (eIF2-Met-tRNAMeL.GTP), the 40S ribosomal
subunit and other initiation factors [1]. eI[F4G also recruits the
RNA helicase elF4A which unwinds secondary structures in
the 5” untranslated region (5’UTR) of the mRNA during the
scanning towards the initiation codon, and the poly(A) bind-
ing protein (PABP) allowing the mRNA circularization for
efficient translation re-initiation. Translation is probably the
most controlled event in protein synthesis and an important
regulatory mechanism takes place during Cap recognition and
the mRNA recruitment steps [2].

The Cap-binding protein eIF4E has a highly conserved
amino acid sequence in all organisms allowing its direct contact
with the Cap structure [3]. eIF4G interacts with eIF4E through
an YXXXXL® motif (where X is any amino acid and ® is a
hydrophobic residue) and improves its union with the Cap,
forming a stable eIF4F-mRNA complex [4, 5]. The interaction
between Cap and the translational machinery is prevented by

the binding of eIF4E to other cellular proteins through the same
motif used for its interaction with e[F4G. By such means cells
could modulate either their global translation levels, or specific
mRNA recruitment [6]. During the last few years it became
evident that through binding to specific proteins and the Cap
of mRNAs, eIF4E participates in the nucleo-cytoplasmic trans-
port, translational repression, and turnover of mRNA.
Multiple eIF4E family members have been identified in a
wide range of organisms that include plants, flies, mammals,
frogs, birds, nematodes, and fish. These members have been
classified into three families: eIF4E-I, eIF4E-II and eIF4E-III
[7]. Some eIF4E family members have altered its Cap-binding
affinities or the interaction with e[F4G and other proteins, pro-
viding clues to their physiological roles. It has been suggested
that each organism has at least one eIF4E that is ubiquitous
and constitutively expressed to carry out general translation,
and that the other family members are involved in specialized
functions [2]. In addition, other proteins that do not belong
to the elF4E family, but are able to bind the Cap and per-
form a particular function during the RNA metabolism have
been described. Such is the case of the nuclear Cap-Binding
Complex (CBC) which participates in protection of the newly
synthesized transcripts and their export to the cytoplasm, the
De-Capping protein S (DcpS) involved in mRNA degradation,
and the Argonaute protein (AGO) in animals which is part of
small RNA regulatory pathways (for review see [2]). Therefore,
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the proteic components of a Cap-binding complex may vary,
depending upon the cellular conditions, growth and develop-
mental requirements.

In plants, three e[F4E family members have been reported:
elF4E (ortholog of the mammalian eIF4E-1; class elF4E-I)
elF(iso)4E (plant-specific; class elF4E-I), and nCBP (novel
Cap binding protein; class eIlF4E-II). The elF(iso)4E protein
interacts with a particular elF(is0)4G forming the unique plant
elF(iso)4F complex [8]. elF4F and elF(iso)4F complexes show
selectivity in the recognition of mono and di-methylated Cap
structures, as well as in in vitro translation of 5’UTR structured
mRNAs. In most plant species, elF(iso)4E shows about 50%
amino acid identity with eIF4E and the relative abundance of
each protein varies depending on the developmental stage and
the plant tissue. In maize, the elF(iso)4E protein is present at
higher levels than eIF4E in non-germinated seeds [9]. The cor-
responding transcript is efficiently translated upon imbibition
to maintain constant and high levels during the first 24 h of
germination, whereas elF4E levels increase toward germination
completion. In addition, each Class I Zea mays elF4E family
member displays selective translational activity on the pool of
mRNAs stored in the quiescent embryonic axes [10, 11].

Based on the above antecedents, in this work we aimed
to identify the components of Cap-binding complexes at two
particular developmental stages in maize: dry non-germinated
(Oh) and 24-h-imbibed germinated (24h) embryonic axes. Cap-
binding proteins purified through affinity chromatography from
Oh and 24h embryonic axes were separated on polyacrylamide
gels, silver stained and identified by liquid chromatography-
mass spectrometry (LC-MS-MS). This approach revealed a dif-
ferential composition in the Cap-binding complexes from the
two developmental stages, suggesting new roles for proteins as
potential partners of the eI[F4E family members.

Results and Discussion

Cap-binding protein patterns in dry (0h) and 24-h-
imbibed (24h) embryonic axes

Maize Cap-binding complexes were purified from dry “non-ger-
minated” (Oh) and 24-h-imbibed (24h) “germinated” embryonic
axes through m’GTP-affinity chromatography. Equal amounts
of total protein extracts were used for the m’GTP-purification
(Fig. 1A). After recovery of the m’GTP-bound fractions, equal
volumes of each eluted fraction (F1-F4) were separated on 10%
or 15% denaturing polyacrylamide gels for protein resolution of
200-45 kDa (Fig. 1B, upper gel) and 45-15 kDa (Fig. 1B, lower
gel), respectively. The silver stained protein patterns indicated
several differences between Oh- and 24h- Cap-binding com-
plexes. First, several proteins were preferentially detected in the
m’GTP-eluted fractions from Oh and were absent or decreased
in the 24h embryonic axes (Fig 1A, dotted bands). Second, al-
though the Cap-binding proteins in these complexes previously
identified as eIF4E and elF(iso)4E by western blot [9] were
observed in both, Oh- and 24h- embryonic axes, their distribu-
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Fig. 1. Protein separation on denaturing polyacrylamide gels (SDS-
PAGE) of maize Cap-binding complexes. (A) Total proteins were
obtained from dry non-germinated (Oh) and 24-h-imbibed germinated
(24h) embryonic axes, quantified and resolved on 15% SDS-PAGE.
The amounts of the heat shock proteins HSP101 and HSP70 as well
as of the translation elongation factor (eEF) 1A, used as control to
correct for protein loading, were analyzed by western blot with speci-
fic antibodies. (B) Equal amount of total protein extracts from Oh and
24h were incubated with m’GTP-Sepharose and the m’GTP-bound
proteins were eluted in 5 fractions (200 ul each) with 100 um m’GTP.
Equal volume of the first four fractions (F1-F4) was separated using
10% (B, upper panel) or 15% (B, lower panel) SDS-PAGE and stained
with silver. Arrows correspond to proteins known as components of
the maize Cap-binding complexes. Dots indicate unidentified bands
that differ between Oh and 24h complexes.

tion in each eluted fraction was different, being eI[F4E more
tightly bound to the m’GTP-Sepharose than elF(iso)4E (Fig.
1B, fraction F4 from lower gel). On the other hand, elF(iso)4E
and its corresponding partner elF(is0)4G were mostly present
in fractions F1 and F2. Third, a doublet was present at the
position of elF(is0)4G, whereas by western blot usually only
one band is detected for this protein (see Fig. 3). These results
indicated that the composition and most importantly the affinity
of the complexes bound to Cap vary between non-germinated
and germinated maize seeds.

Protein identification in Cap-binding complexes from Oh
and 24h embryonic axes

Several of the differential and conserved protein bands in the
above purified Cap-binding complexes were selected for iden-
tification by mass spectrometry (Fig. 2; FT01-FT09). Proteins
identified with the criteria of peptides with greater than 95%
probability, and at least 2 identified peptides, are shown in
Table 1. The complete information about the identified peptides
is shwon in Tables 2 (Oh) and 3 (24h). The analysis aimed to
identify members of the translation initiation machinery and
any associated proteins that may have potential translational
regulatory roles during maize germination. It is important to
notice, that there were silver-stained bands in the gel shown in
Figure 2 not selected for identification by mass spectrometry
in this study. These may include proteins present at both ger-
mination stages, or preferentially found at 24h. From the pres-
ent analysis, elF4E, elF(iso)4E, and elF(is0)4G proteins were
identified in bands corresponding to their expected molecular
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Fig. 2. Protein selection for Mass spectrometry identification. The
second fraction (F2) from Oh- and 24h- Cap-binding complexes elu-
tion was separated on 10% SDS-PAGE and stained with silver. The
indicated bands (FT01-FT09) were cut from the gel and processed
for mass spectrometry. This selection included only proteins between
200 and 25 kDa.
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Fig. 3. Protein identification in maize Cap-binding complexes by im-
munoblotting. Non-germinated (Oh) and germinated (24h) embryonic
axes were used for the complexes purification. Equal volume of the
first four fractions (F1-F4) of m’GTP-eluate, as well as the m’GTP-Se-
pharose unbound fraction (UB) and washes (W1, W2) were separated
on 10% SDS-PAGE, transferred to PVDF membrane and detected
with the corresponding antibody.

weight. Noticeably, eIF4E was detected with only one peptide
in the Oh- and with three peptides in the 24h-sample, whereas
elF4G was not identified in any of the processed bands. This
is in agreement with previous findings in our lab, showing that
the elF(iso)4F is the most abundant Cap-binding complex in
the dry maize seed [9].

The upper band of the doublet found at 88 kDa, in both Oh-
and 24h-embryonic axes, rendered the identification of the 80
kDa subunit of the nuclear Cap-binding complex CBC. Other
translation factors, such as elF3c, eI[F4A, and eEF1A were also
identified in bands that correspond to their reported molecular
weight. According to the literature, these proteins are usually
found in Cap-binding complexes from other organisms [12,
13]. The role of elF3c and elF4A is at the level of translation
initiation, whereas eEF1A is the elongation factor that carries
incoming aminoacylated tRNA to the A site of the ribosome.
Since elF4E and elF4G proteins remain bound to the mRNA
to allow efficient re-initiation of translation on a circularized
mRNA, both initiation and elongation factors may be found
within the Cap-binding complexes.

Pedro E. Lazaro-Mixteco and Tzvetanka D. Dinkova

Recently, the protein degradation and synthesis machiner-
ies have been reported as complexes sharing several of their
components [14]. In agreement, we found the 6A subunit of
the 26S proteasome in the Cap-binding complex from Oh-em-
bryonic axes. This protein is a component of the small subunit
(19S) of the proteasome. According to the literature, several
proteins from the elF3 multisubunit complex may interact with
proteins of the proteasome and are specifically targeted for
degradation [14].

Interestingly, two heat shock proteins, HSP101 and HSP70,
were identified as part of the Cap-binding complexes in the dry,
but not in the 24-h-imbibed embryonic axes. These proteins
were detected at similar levels in the total protein extracts from
both samples (Fig. 1A), suggesting that a possible change of
their interaction with components of the Cap-binding complex,
instead of degradation, is taking place during maize germina-
tion. The chaperone HSP70 has been previously identified in
Cap-binding complexes in Drosophila melanogaster [12]. This
chaperone is usually associated with the polypeptide chains
nascent from the ribosomal large subunit to assure correct fold-
ing early in protein synthesis. Its presence in the Cap-binding
complex from Oh-embryonic axes may be indirect through the
association with the nascent polypeptide chain or even more
likely due to its requirement in assisting the folding of transla-
tion initiation factors. However, a closer look on the amino acid
sequence of maize HSP70 revealed the YXXXXL® conserved
motif of elF4E interacting proteins (Table 4). This suggests
that maize HSP70 may directly bind to eIF4E and regulate its
function in mRNA recruitment. Supporting this, proteins from
the HSP70 family have been shown to regulate translation
and stability of mRNAs with AU-rich element (ARE) in their
3’UTRs [15]. However, the specific binding of HSP70 to any
of the known Cap-binding translation factors must be further
confirmed.

The other heat shock protein, HSP101, has been reported
as a chaperone involved in disaggregation of large protein com-
plexes and its expression is greatly induced under heat shock.
Maize HSP101 is accumulated in the dry seed and is required to
achieve thermotolerance in young germinating seedlings [16].
During the first 24 h after seed imbibition, its protein level
remains unchanged, but after 72h of seed imbibition HSP101
is almost undetectable under normal temperature growth condi-
tions (25-32 °C). Wheat HSP101 has been reported as trans-
lational regulator for specific mRNAs harboring particular se-
quences in their UTRs [17]. In maize, a null mutant for this
chaperone displays accelerated root growth during germination
under normal temperature conditions, but under heat shock, the
successful seedling establishment is impaired [16]. Therefore,
the presence of HSP101 in the Oh Cap-binding complexes may
account for either protein disaggregation of translation factors
needed to guarantee translation initiation of growth regulators
as soon as the seed is imbibed, or for translation regulation of
particular mRNAs during early germination.

Surprisingly, several proteins belonging to carbohydrate
metabolic pathways were also detected in the 0 h-, but not in
the 24 h- Cap-binding complexes. These included the 3-phos-
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Table 1. Proteins identified by mass spectrometry as components of Cap-binding complexes in maize non-germinated (0 h) or germinated (24

h) seeds.
Band ID Protein ID NCBI Acc # MW MW Number of peptides? % Protein Coverage
Oh 24h

FT1 Heat shock protein HSP101 GI4584957 101 100 10 — 13
Component of the nuclear Cap- GI108708115 99 100 4 4 4
binding complex (CBC), CBP80
Component of the eukaryotic GI113535264 104 100 3 — 3
translation initiation factor 3
complex, elF3c

FT2  Eukaryotic translation initiation GI113564790 88 90 7 7 7
factor gamma isozyme,
elF(is0)4G
Lipoxygenase 1 GI12620877 96 90 3 2 4

FT3 Heat shock protein Hsp70 GI123593 71 70 22 — 32
Leafbladeless 1 GI111559385 68 70 4 —
Endoplasmic reticulum member GI1575128 73 70 3 —
of HSP70 family, cBiPe2

FT4  ATP-dependent RNA helicase, GI2341061 47 45 27 16 49
elF4A
Eukaryotic elongation factor GI2282584 49 45 16 6 35
eEF1A
Homolog of the subunit 6 of GI3024431 39 45 6 2 13
proteasome 26S

FT5 3-Phosphoglycerate kinase GI28172915 32 40 17 — 61
Actin GI1498388 37 40 16 — 38
Alcohol dehydrogenase 1 GI113359 41 40 6 — 16

FT6  Fructose biphosphate aldolase GI113621 39 36 23 — 55

FT7  Glyceraldehyde 3-phosphate GI1184772 37 32 11 — 48
dehydrogenase
Malate dehydrogenase GI118202485 36 32 3 — 11

FT8 Eukaryotic translation initiation GI3342823 28 28 8 3 33
factor-4E isozyme, elF(iso)4E

FT9 Eukaryotic translation initiation GI3342821 26 26 — 3 14

factor-4E, elF4E

¢ Only peptides with greater than 95% probability were considered. The shaded portion indicates proteins that were detected by mass

spectrometry in the Oh but not the 24h Cap-binding complexes.

phoglycerate kinase, fructose biphosphate aldolase, glyceralde-
hyde-3-phosphate dehydrogenase, malate dehydrogenase and
alcohol dehydrogenasel. According to the number of identi-
fied peptides for each of these proteins (Table 1), they appear
as abundant in the Cap-binding complexes. One possibility
might be that their synthesis is stopped during the desiccation
process and hence they may co-purify as nascent polypeptides
within translation complexes. On the other hand, they may
form part of aggregates together with translation factors. Al-
though translational functions for these proteins have not been
described yet, in a recent work reporting the yeast translasome
several metabolic enzymes co-purified with the eIF3 transla-
tion complex [18]. In addition, the glyceraldehyde 3-phosphate
dehydrogenase has been associated to nuclear RNA export [19]

suggesting that metabolic enzymes may have additional func-
tions within protein synthesis. The presence of actin as part of
the Cap-binding complexes is not unexpected, since translation
complexes are bound to the cytosqueleton of the cell and this
protein has been found as critical for normal protein synthesis
in mammalian cells [20].

Maize Lipoxygenase 1 (LOX1) and the trans-acting siRNA
(tasiRNA) biogenesis-related protein Leafbladeless 1 (LBL1)
are not abundant proteins in the maize seed and were as well
detected in the Cap-binding complexes of dry seeds (Table 1;
FT02 and FT03). A member from the Lipoxygenase family,
the Arabidopsis thaliana LOX2, was previously reported as
elF(iso)4E binding protein that contains a putative conserved
YXXXXL® motif [21], whereas LBL1 has been found as meri-
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Table 4. Alignment of elF4E Binding Motifs present in eIF4E
Binding Proteins reported for Plants (At = Arabidopsis thaliana, Zm
= Zea mays)“®. Underlined amino acids correspond to the consensus
sequence.

Protein amino acid sequence Reference
AtelF(is0)4GI YTREQLL [27]
AtelF(is0)4GII FSREEIL [27]
ZmelF(is0)4G YTRDQLL this work
AtLOX2 YRKEELE [21]
AtBTF3 STLKRIG [28]
ZmLOX1 YRDDELR (1) this work
YATRTLF (2)

ZmLBL1 YMDLELE this work
ZmHSP70 YSCVGLW this work
Consensus YXXXXLO

stem specific protein involved in small RNA mediated gene
silencing and abaxial/adaxial leaf fate definition [22]. There-
fore, we searched the sequence of maize LOX1 and LBLI1 for
the YXXXXL® motif to find whether these are also potential
elF4E or elF(iso)4E binding proteins. The analysis showed
that both proteins presented the conserved motif (Table 4).
Since elF(iso)4G also uses this amino acid sequence to bind
elF(iso)4E and integrate a functional translation initiation com-
plex on the mRNA, the presence of potential elF(iso)4E bind-
ing proteins in the Oh Cap-binding complexes indicates that
elF(iso)4E may be a part of ribonucleoprotein particles not
involved in translation initiation at this developmental stage.

HSP101 and LOX1 presence in the Cap-binding
complexes from dry and 24-h-imbibed maize seeds

To test whether some of the newly identified proteins in Cap-
binding complexes are indeed specifically eluted from the
m’GTP-chromatography, western blot with available antibod-
ies was performed with extended washes before the specific
elution with the m’GTP ligand (Fig. 3). While the LOX1 pro-
tein was mostly detected in the first washes (W 1) of the column,
a small quantity was specifically retained and eluted with the
ligand in the last fractions (F2-F4) from dry (Oh) embryonic
axes. This protein was not detected in the 24-h-imbibed axes
neither in total protein extracts nor in the Cap-bound fractions,
indicating that it is probably particularly expressed during seed
maturation. A significant amount of HSP101 was also specifi-
cally retained in the column, but eluted in the first three frac-
tions upon the ligand addition (F1-F3), when non-germinated
embryonic axes were used. Interestingly, the protein was also
detected in the 24-h-imbibed embryonic axes elution fractions,
although to a lesser levels. This could correlate to previous
data in wheat, where HSP101 was reported to bind to eIF4G
and elF3, but not to elF4E proteins [23]. On the other hand,
the elution pattern of LOX1 was similar to that observed for
elF(iso)4E, indicating a possible direct binding between these
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two proteins. These results support the notion that elF(iso)4E,
which is the major Cap-binding translation initiation factor in
the dry non-germinated maize seed, forms different multipro-
teic complexes to regulate selective mRNA translation upon
the germination onset.

Conclusions

The analysis of Cap-binding complexes at two different germi-
nation stages in the maize seeds indicated differential composi-
tion that may correlate with the translational requirements and
regulatory mechanisms operating to achieve the appropriate
protein synthesis patterns at each developmental stage. New
components of the Cap-binding complexes in non-germinated
seeds include the chaperones HSP101 and HSP70 as well as the
lipoxygenase LOX1 and leafbladeless LBL1. HSP70, LOX1
and LBL1 are candidates to interact with members of the eI[F4E
family through an YXXXXL® motif.

Experimental
Material and Methods

Plant material

Maize (Zea mays L) seeds of a Mexican land race Tuxpefio,
var. Chalquefio, were used for all experiments. Seeds were
germinated by water imbibition on moisturized cotton, in the
dark, at 25 °C. Embryonic axes were manually excised from
either dry (Oh) or 24-h-imbibed (24h) seeds.

Cap-binding complexes purification

Cap-binding complexes were purified by m’GTP-Sepharose
affinity chromatography as previously reported [9], with some
modifications. Briefly, 2.5 g of axes were macerated in liquid
nitrogen and suspended in 25 mL Buffer “A” consisting of:
20 mM HEPES, pH 7.6; 100 mM KCI; 0.2 mM EDTA; 10 %
glycerol; 1 % Triton X-100; 0.5 mM DTT; and Complete™,
EDTA free protease inhibitors (Complete™, Roche Molecular
Diagnostics, Pleasanton, CA, USA). The extract was clarified
by 30 min centrifugation at 15,000 rpm and 4 °C in a Sorvall
J-20 rotor. The supernatant was filtered through eight layers of
cheesecloth and the protein amount was quantified. Approxi-
mately, 20 mg of total protein was incubated with 0.5 mL of
m’GTP-Sepharose (GE Healthcare Bio-Sciences AB, Uppsala,
Sweden) for one h at 4 °C. The slurry was poured onto a 10
mL Column (Bio-Rad Laboratories, Inc. Hercules, CA) and the
resin was washed with 5 mL of Buffer “A”, followed by 5 mL
of Buffer “A” including 0.1 mM GTP. The bound proteins were
eluted with 1 mL of Buffer “A” containing 100 uM m7GTP
(Sigma-Aldrich Co., Saint Louis MO, USA) in 5 fractions of
200 pL each. To assess more-specific binding, washes with
Buffer “A” were extended to 10 mL (20 bed volumes) divided
in 5 mL each.
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Electrophoresis and protein staining

Proteins from the purified Cap-binding complexes were re-
solved on either 10% or 15% (w/v) denaturing polyacrylamide
(SDS-PAGE) gels. The silver staining procedure used was
compatible with mass spectrometry analysis [24].

Mass spectrometry

The in-gel digest and mass spectrometry experiments were
performed by the Proteomics platform of the Eastern Quebec
Genomics Center, Quebec, Canada. Tryptic digestion was per-
formed on a MassPrep liquid handling robot (Waters, Milford,
USA) according to the manufacturer’s specifications and to
the protocol of [24] with the modifications suggested by [25].
Briefly, proteins were reduced with 10 mM DTT and alkylated
with 55 mM iodoacetamide. Trypsin digestion was performed
using 105 mM of modified porcine trypsin (Sequencing grade,
Promega, Madison, WI, USA) at 58°C for 1h. Digestion prod-
ucts were extracted using 1% formic acid, 2% acetonitrile fol-
lowed by 1% formic acid, 50% acetonitrile. The recovered
extracts were pooled, vacuum centrifuge dried and then resus-
pended into 8 pL of 0.1% formic acid and 4 pL were analyzed
by mass spectrometry.

Peptide samples were separated by online reversed-phase
(RP) nanoscale Capillary liquid chromatography (nanoLC)
and analyzed by electrospray mass spectrometry (ES MS/MS).
The experiments were performed with a Thermo Surveyor MS
pump connected to a LTQ linear ion trap mass spectrometer
(ThermoFisher, San Jose, CA, USA) equipped with a nanoelec-
trospray ion source (ThermoFisher). Peptide separation took
place on a PicoFrit column BioBasic C18, 10 cm x 0.075 mm
internal diameter (New Objective, Woburn, MA, USA), with a
linear gradient from 2-50% solvent B (acetonitrile, 0.1% formic
acid) in 30 min, at 200 mL/min (obtained by flow-splitting).
Mass spectra were acquired using a data dependent acquisition
mode using Xcalibur software version 2.0. Each full scan mass
spectrum (400 to 2000 m/z) was followed by collision-induced
dissociation of the seven most intense ions. The dynamic exclu-
sion (30 sec exclusion duration) function was enabled, and the
relative collisional fragmentation energy was set to 35%.

Protein Identification

All MS/MS samples were analyzed using Mascot (Matrix Sci-
ence, London, UK; version 2.2.0). Mascot was set up to search
thencbi Zea mays 20071004 database (10,023 entries) assum-
ing the digestion enzyme non-specific. Mascot was searched
with a fragment ion mass tolerance of 0.50 Da and a parent ion
tolerance of 2.0 Da. Iodoacetamide derivative of cysteine was
specified as a fixed modification and oxidation of methionine
was specified as a variable modification. Scaffold (version 3.0,
Proteome Software Inc., Portland, OR) was used to validate
MS/MS based peptide and protein identifications. Peptide iden-
tifications were accepted if they could be established at greater
than 95.0% probability as specified by the Peptide Prophet

algorithm [26] and contained at least 2 identified peptides.
Proteins that contained similar peptides and could not be dif-
ferentiated based on MS/MS analysis alone were grouped to
satisfy the principles of parsimony.

Immunoblotting

For immunodetection, proteins were blotted onto a polyvinyli-
dene fluoride (PVDF) membrane (Millipore Corp., Billerica,
MA, USA), which was blocked with 5% (w/v) milk and incu-
bated with the primary antibody for 2 h at room temperature.
After several washes in Phosphate Saline Buffer (PBS), the
membrane was incubated for 1 h with the appropriate secondary
antibody at a 1:5000 dilution. Detection was performed with
Immobilon Western Chemiluminescent HRP Substrate (Mil-
lipore Corp.). Primary antisera dilutions were as follows: an-
tibodies against wheat elF(iso)4E and elF(is0)4G were kindly
donated by Karen S. Browning, University of Texas, Austin,
USA and were used at 1:5000 dilution; antibody against maize
Hspl01 was kindly donated by Jorge Nieto-Sotelo, Instituto
de Biotecnologia, UNAM, Cuernavaca, Mexico and used at
1:1000 dilution; antibody against bean LOX2 was kindly do-
nated by Helena Porta, Instituto de Biotecnologia, UNAM,
Cuernavaca, Mexico and used at 1:100 dilution.
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