
 

 

Journal of Applied Research and Technology 354 

  
 
 

Acceleration of association‐rule based  markov decision processes 
 
Ma. de G. García‐Hernández*1, J. Ruiz‐Pinales2, A. Reyes‐Ballesteros3, E. Onaindía4,  
J. Gabriel Aviña‐Cervantes5, S. Ledesma6 
   
1,2,5,6  Universidad de Guanajuato, Comunidad de Palo Blanco s/n, 
  C.P. 36885, Salamanca, Guanajuato, México {garciag,pinales,avina,selo}@salamanca.ugto.mx 
3 Instituto de Investigaciones Eléctricas, Reforma 113, C.P. 62490, Temixco, 
Morelos, México, areyes@iie.org.mx 
4  Universidad Politécnica de Valencia, DSIC, Camino de Vera s/n, 46022,  
Valencia, España, onaindia@dsic.upv.es 
 
 
 
ABSTRACT 
In this paper, we present a new approach for the estimation of Markov decision processes based on efficient association rule 
mining  techniques  such  as Apriori.  For  the  fastest  solution of  the  resulting  association‐rule based Markov decision process, 
several accelerating procedures such as asynchronous updates and prioritization using a static ordering have been applied. A 
new  criterion  for  state  reordering  in  decreasing  order  of maximum  reward  is  also  compared with  a modified  topological 
reordering  algorithm.  Experimental  results  obtained  on  a  finite  state  and  action‐space  stochastic  shortest  path  problem 
demonstrate the feasibility of the new approach. 
 
Keywords: Markov decision processes, association rules, acceleration procedures. 
 
RESUMEN 
En este documento se presenta un nuevo enfoque para  la estimación de procesos de decisión de Markov basado en técnicas 
eficientes de minería de reglas de asociación tal como Apriori. Para la más rápida solución del resultante proceso de decisión de 
Markov  basado  en  reglas  de  asociación,  han  sido  aplicados  varios  procedimientos  de  aceleración  tales  como  actualización 
asíncrona  y priorización usando  reordenamiento  estático. Un nuevo  criterio para  el  reordenamiento de  estados  es  también 
comparado  con  un  algoritmo  modificado  de  reordenamiento  topológico.  Los  resultados  experimentales  obtenidos  en  un 
problema  estocástico  de  ruta más  corta,  con  un  número  finito  de  acciones  y  estados,  demuestran  la  viabilidad  del  nuevo 
enfoque. 
 
Palabras clave: Procesos de decisión de Markov,reglas de asociación, procesos de aceleración. 
 
 
1. Introduction 
 
In  planning  under  uncertainty,  the  planner’s 
objective  is  to  find  a  policy  that  optimizes  some 
expected utility. Most approaches for finding such 
policies  are based on decision‐theoretic planning 
[1,  2,  3].  Despite  their  general  applicability  and 
mathematical  soundness,  the  task  of  generating 
optimal  policies  for  large  problems  is 
computationally  challenging.  For  instance,  in  a 
real‐world  process  control  problem  many 
variables  change  dynamically  because  of  the 
operation of devices (valves, equipment switches, 

etc.)  or  the  occurrence  of  exogenous 
(uncontrollable) events. If the control system does 
not  consider  the  possibility  of  fault,  then  it  will 
surely not make intelligent actions in the event of 
a  fault occurrence. This problem  is  very  complex 
and uncertainty plays an important role during the 
search for solutions.  
 

Since the addition of new capabilities to a planner, 
heuristic search has shown limitations for the case 
of  non  integer  data  as  well  as  in  the  use  of 
additive  graphs  in  the  solution  of  real  world 
problems  [4];  thus  they  are  frequently  solved by 
using Bayesian  representations and  inference  [5], 
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or  Markov  decision  processes  (MDPs)  [2].  The 
latter have  successfully  solved decision problems 
in process control, decision analysis and economy. 
However,  the  computational  complexity of  those 
processes  is  a  significant  one  for  the  case  of 
continuous  or  high  dimensionality  domains, 
making an  intractable solution time for very  large 
problems  [6].  The  different  approaches  can  be 
broadly  classified  as:  state  abstraction  and 
aggregation  techniques  [7,  8,  9],  feature 
extraction  methods  [10],  value  function 
approximations  [11], heuristic  and  greedy  search 
[12,  13],  simulation‐based  techniques  [14]  and 
envelope‐based methods  [15].  State  aggregation 
and  abstraction  techniques  reduce  the  search 
space by grouping similar states [8]. For  instance, 
the  search  space  can  be  partitioned  based  on  a 
reward  function.  Feature  extraction  based 
methods  combine  dynamic  programming  with 
compact  representations  that  involve  an 
arbitrarily  complex  feature  extraction  stage  [10]. 
In  value  function  approximations,  the  dynamic 
programming cost‐to‐go function can be fitted by 
a  linear  combination  of  pre‐selected  basis 
functions  [11].  In  heuristic  and  greedy  search,  a 
state  is  labeled  as  solved  when  the  heuristic 
values,  and  the  greedy  policy  defined  by  them, 
have  converged  over  that  state  [12].  Simulation 
based  techniques  use  an  adaptive  sampling 
algorithm for approximating the optimal value for 
a  finite  horizon  MDP  [14].  In  envelope  based 
methods, world dynamics can be represented by a 
compact  set of  rules  related with an envelope of 
states  [15].  For  instance,  rules  can  be  logical 
sentences,  whose  STRIP  scheme  contains  the 
action  name,  precondition  and  a  set  of 
probabilistic effects [16]. 

 
In this paper, we explore a different approach for 
the  solution  of  problems  involving  large  state 
spaces  by  means  of MDPs.  First,  we  propose  a 
method  for  the  estimation  of  MDPs  based  on 
efficient association rule mining techniques. Then, 
we  study  the  application  of  state‐of‐the‐art 

acceleration  techniques  to  the  resulting 
association‐rule‐based  MDP  and  provide  an 
improved static ordering technique. 
 

This paper  is organized as follows. We begin with 
a  brief  introduction  to  MDPs,  followed  by  a 
description  of  a  classical  algorithm  for  solving 
MDPs  (value  iteration)  and  its  improvements. 
Next, a brief survey of association rules mining  is 
introduced,  followed by a description of  the new 
approach to the estimation and solution of MDPs 
and,  finally,  results  and  conclusions  are 
presented.In  
 

2. Markov decision processes 
 
Markov  decision  processes  or  MDPs  provide  a 
mathematical  framework  for modeling sequential 
decision  problems  in  uncertain  dynamic 
environments [17, 18]. 
 
Formally,  a  MDP  is  a  four‐tuple  ( )RTAS ,,, , 

where   S  is a finite set of states { }nss ,,1 K ,  A is 

a  finite  set  of  actions 
{ }naa ,,1 K , [ ]1,0: →×× SAST  is  the  state 

transition  function,  which  takes  an  action,  the 
current  state  and  the  next  state  and  gives  the 
probability  of  this  transition.  The  transition‐
probability to achieve the state  s′ ,  if one applies 
the action  a in the state  s , is given by  ( )ssaT ′,, . 

ASR ×: is  the  reward  function  and    ( )asR ,   is 
the reward obtained if one operates the action  a  
in  the  state  s . A policy  is often defined  to be  a 
function  AS →:π ,  which  yields  an  action  for 
each  state.  The  problem  is  to  find  a  policy  π to 
maximize  the  expected  total  reward  [18].  The 
value  function of a policy    π  and an  initial  state 
s is given by: 
 
 

( )( ) ⎥
⎦

⎤
⎢
⎣

⎡
== ∑

t
tt

t ssssREsU 0,)( πγπ           (1) 
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where    [ ]1,0∈γ     is a discount  factor, which may 
be  used  for  decreasing  exponentially  future 
rewards.  For  the  case  of  discounted  rewards 
( ( )10 << γ )  the  utility  of  an  infinite  state 
sequence  is always  finite. So,  the discount  factor 
expresses that future rewards have less value than 
current  rewards  [19].  For  the  case  of  additive 
rewards  ( ( )1=γ )  and  infinite  horizon,  the 
expected  total  reward  may  be  infinite  and  the 
agent must be guaranteed to end up in a terminal 
state. 
 
The optimal value function is given by [18] 
 

( ) )(max* sUsU π

π
=                                                (2) 

 
It  is well  known  that  the  optimal  value  function 

( )sUt
*  in stage  t is given by the Bellman equation 

[2, 18]: 
 

( ) ( ) ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧ ′′+= ∑

′
+

s
tat sUsasTasRsU *

1
* ,,,max γ   (3) 

 
Value  iteration,  policy  iteration  and  linear 
programming  are  three  of  the most  well  known 
techniques  for  finding  the optimal  value  function  

( )sU * and  the  optimal  policy  *π for  infinite 
horizon problems [20]. 
 
3. Value iteration 
 
Policy  iteration  and  linear  programming  are 
computationally  expensive  techniques  when 
dealing  with  problems  with  large  state  spaces. 
Mainly because  they both  require  the solution  (in 
each  iteration) of a  linear system of the same size 
as  the  state  space.  In  contrast,  value  iteration 
avoids this problem by using a recursive approach 
from dynamic programming [20]. 
 

 

Starting  from  an  initial  value  function,  value 
iteration  applies  successive  updates  to  the  value 
function for each   Ss∈  by using: 
 

( ) ( ) ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧ ′′+= ∑

′sa
sUsasTasRsU ,,,maxˆ γ          (4) 

 

Let  { }K,1,0=nUn be  the  sequence  of  value 

functions obtained by value iteration. Then, it can 
be  shown  that  every  value  function  satisfies 

*
0

* UUUU n
n −≤− γ  Thus, by using the Banach 

fixed point theorem,  it can be  inferred that value 
iteration converges  to  the optimal value  function  

*U . The power of value iteration (for the solution 
of large‐scale MDP problems) comes from the fact 
that  the value  functions obtained can be used as 
bounds for the optimal value function [21]. 

 
The  computational  complexity  of  one  update  of 

value iteration is  ( )ASO 2
. However, the number 

of  required  iterations  can  be  very  large. 
Fortunately,  it  has  been  shown  in  [22]  that  an 
upper  bound  for  the  number  of  iterations 
required by value  iteration to reach an  e ‐optimal 
solution is given by 

 

γ
γε

−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+⎟
⎠
⎞

⎜
⎝
⎛+

≤
1

1
1

1log1logB
nit                  (5) 

 
where  10 << γ ,  B  is the number of bits used to 
encode rewards and state transition probabilities, 
and  e is the threshold of the Bellman error [18]: 

 
 

( ) ( ) ( ) ( ) ( )sUsUsasTasRsB t
Ss

tAat −
⎭
⎬
⎫

⎩
⎨
⎧ ′′+= ∑

∈′∈
,,,max γ        (6) 
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The  convergence  of  value  iteration may  be  quite 
slow  for  g close  to  one.  For  this  reason,  several 
improvements  to  value  iteration  have  been 
proposed  [18].  For  instance,  common  techniques 
may  improve  the  convergence  rate,  reduce  the 
time  taken  per  iteration  and/or  use  better 
stopping criteria. 
 

One  of  the  easiest  ways  to  improve  the 
convergence rate  is  to update the value  functions 
as  soon as  they become available  (also known as 
asynchronous updates). For  instance, Gauss‐Seidel 
value iteration uses the following update equation 
[18]: 

 
It  is well known  that policy  iteration converges  in 
less  iterations  than  value  iteration  does,  but 
requires  solving  a  system  of  linear  equations  for 
each iteration. Value iteration is slower than policy 
iteration but it does not require the solution of any 
linear system of equations. A combined approach 
(modified  policy  iteration)  can  exploit  the 
advantages  of  both.  In  this way, modified  policy 
iteration uses a partial policy evaluation step based 
on value iteration [18]. 
 

Other ways of  improving  the convergence  rate as 
well  as  iteration  time  are  prioritization  and 
partitioning  [23].  This  approach  is  based  on  the 
observation  that,  in  each  iteration,  the  value 
function usually changes only for a reduced set of 
states. Thus, by restricting the computation to only 
those  states,  a  reduction  of  iteration  time  is 
expected. It has been outlined that for acyclic  

problems  the ordering of  the states such  that  the 
transition matrix becomes triangular may result  in 
a  significant  reduction  in  time.  Last,  there  exists 
another method that uses heuristics for prioritizing 
backups that do not require a priority queue [24]. 

 
Also,  another method  to  reduce  the  time  taken 
per  iteration  is  to  identify  and  eliminate 
suboptimal  actions  [18].  For  instance,  bounds  of 
the  optimal  value  function  can  be  used  to 
eliminate  suboptimal  actions.  The  advantage  of 
this approach is that the action set is progressively 
reduced with the consequent reduction in time. 

 
Last,  the  number  of  iterations  can  be  slightly 
reduced by using improved stopping criteria based 
on  tighter bounds of  the Bellman  error  [18].  For 
instance,  a  stopping  criterion  would  be  to  stop 
value iteration when the span of the Bellman error 
falls below a certain threshold. 

 
4. Association rules 
 
Association rules [25] represent an important tool 
in data mining applications. An association rule  is 
a rule of the form  YX ⇒ , where  X  and Y  are 
disjoint  sets  of  items  (itemsets).  This  implicates 
that  if we  find all  items  in  X ,  it  is  likely  that we 
also find all the items in  Y . 

 
A typical application of mining association rules  is 
to  discover  associations  between  articles  in 
market   basket   analysis [26].  These  associations  
 
 
 
 
 
 
 
 
 
 

( ) ( ) ( ) ( ) ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧ ′′+′′+= ∑ ∑

<′ ≥′

−

ss ss

tt

a

t sUsasTsUsasTasRsU 1,,,,,max γγ         (7) 
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can offer useful information to retail managers for 
article  collection  decisions  [27],  personalized 
article  recommendations  [28],  and 
implementation of promotional activities [29]. 

 
Association rules are usually selected from the set 
of  all  possible  rules  using measures  of  statistical 
significance  and  interestingness.  Support  is  a 
measure  of  significance, which  is  defined  as  the 
percentage of  instances that contain all the  items 
in a rule [25] and it is given by 
 

( ) ( )
m

YX
YXYX

∪
=∪=⇒ suppsupp        (8) 

 

where  YX ∪   represents  the  number  of 

instances  that  contain  all  the  items  in  X  or  Y , 
and  m   is  the  number  of  instances  in  a  specific 
database.  Consequently,  a  minimum  support 
threshold is used to select the most frequent (and 
hopefully the most important) item‐sets [26]. 
 
Confidence  is a measure of  interestingness and  it 
represents the maximum percentage of  instances 
covered by a rule [25, 26]: 
 

( ) ( )
( ) ( )XYP
X

YXYX =
∪

=⇒
supp

suppconf     (9) 

 
Apriori  is one of  the most well known algorithms 
for mining frequent association rules in a database 
[25]. It exploits the property that any subset of a  
large  item set  is also  large. Apriori (see Algorithm 
2) starts by counting item occurrences in order to 
find  the  most  frequent  itemsets  1L .  The 

subsequent  passes,  say  pass  k ,  consist  of  two 
phases.  In  the  first  phase,  the  frequent  itemsets  

1−kL found  in  the  previous  pass  are  used  to 

generate  the  candidate  itemsets  kC ,  using  the 

Apriori candidate generation procedure. Next, the 
database is scanned and the support of candidates 

in  kC  is counted.  The set of candidate itemsets is 

subjected  to a pruning process  to ensure  that all 
the  subsets  of  the  candidate  sets  are  already 
known  to  be  frequent  itemsets.  The  intuition 
behind the candidate‐generation procedure is that 
if an  itemset  X  has minimum  support,  so do all 
subsets  of  X .  The  pruning  step  eliminates  the 
extensions  of  ( )1−k   ‐itemsets  which  are  not 
found to be frequent. The Apriori algorithm moves 
downward  in  the  lattice  starting  from  level  1  till 
level  k ,  where  no  candidate  set  remains  after 
pruning. 

 
Some  of  the  advantages  of  Apriori  are  easy 
implementation  and  easy  parallelization. 
Improved versions such as AprioriHybrid [30] have 
shown  to  scale  linearly  with  the  number  of 
instances. 

 
5. Our approach 

 
Reinforcement  learning  is  a  variant  of  optimal 
control;  however,  optimal  control  involves  only 
planning whereas reinforcement  learning  involves 
both  learning  (model  learning)  and  planning. 
Reinforcement  learning methods  can  be  broadly 
classified  as:  direct  (model‐free)  and  indirect 
(model‐based)  methods  [31].  In  contrast  with 
model‐free methods  which  compute  an  optimal 
policy directly from experience data, model‐based 
methods  first  estimate  the  underlying MDP  and 
then  use  standard  techniques,  such  as  value 
iteration  [3],  to  compute  an  optimal  policy.  An 
advantage  of model‐based methods  is  that  they 
are very data efficient. 

 
A  usual  method  for  the  estimation  of  MDP 
parameters  (transition probabilities  and  rewards) 
is  based  on  maximum‐likelihood.  The  maximum 
likelihood estimator  is the value of the parameter 
which  maximizes  the  likelihood  of  the  data. Let  
( )asn ,  be  the  number  of  times  the  agent  has 



 

Acceleration of association‐rule based  markov decision processes, Ma. de G. García‐Hernández et al., 354‐375 

Journal of Applied Research and Technology 359

Algorithm 1. Apriori

Function ( )minsup,Apriori D  
{ }itemsets1large1 −⋅=L ; 

for ( )++∅≠= − kLk k ;;2 1  do 

 ( )1apriorigen −= kk LC ; // new candidates 

 for all nstransactio  Dt∈  do 
  ( )tCC kt ,subset= ; // candidates contained in t  
  for all candidates tCc∈  do  
   c.count++; 
  end 
 end 
 { }minsupc.count ≥∈= kk CcL  
end 
return Uk kL  
 
function ( )1apriorigen −kL  
insert into kC  

select 1121 q.item,p.item,,p.item,p.item −− kkK  
from q,p 11 −− kk LL  
where 112211 q.itemp.item,q.itemp.item,,q.itemp.item −−−− <== kkkkK ; 
for all itemsets  kCc∈  do 

 for all ( ) subsets1 −−k  s  of c  do 
  if 1−∉ kLs  then 
   delete c  from kC ; 
 end 
end 
return kC  
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taken action  a   in  state  s .  Let  ( )sasn ′,,  be  the 

number of times it arrives in state  s′  after having 
taken action  a   in state  s . Let    ( )∑ asR ,  be the 

cumulative  amount  of  rewards  it  receives when 
taking  action  a   in  state  s .  The  maximum 
likelihood  estimators  of  the  transition 
probabilities and rewards are given by [32]: 

 

( ) ( )
( )asn

sasnsasT
,
,,,,ˆ ′

=′                                     (10) 

 
and 

( ) ( )
( )asn

asR
asR

,
,

,ˆ ∑=                              (11) 

 
respectively. 

 
In  our  approach,  we  start  by  computing,  from 
experience  data  gathered  by  an  agent,  a  set  of 
association  rules of  the  form  { } { }sas ′⇒,  where 

s   is  a  current  state  and  s′   is  the  resulting  state 
after applying action  a . Next, we use the resulting 
rules  to  build  an  Association‐Rule‐based  Value 
Iteration (ARVI, see Algorithm 2) algorithm, where 
each decision rule  is an association rule. Then, we 
assign  to  each  association  rule  a  transition 
probability and a reward. 
 

One  advantage  of  the  use  of  association  rules  is 
that they can be computed by using efficient data  
mining  algorithms  such  as  Apriori  [25]  and  FP‐
growth  [33].  Another  advantage  is  that  the 
confidence  measure  of  each  rule  can  be  used 
directly  as  transition  probability.  Rewards  can  be 
computed by using Equation (11) at the same time. 
For  large datasets,  the number of passes  through 
the  dataset may  render  some mining  algorithms 
unfeasible. For  instance, Apriori requires  k   (3  for 
our  case)  dataset  scans  whereas  FP‐growth  only 
requires  two. Thus, we may prefer  the use of FP‐
growth  for  cases  where  the  dataset  is  large. 

However, a sampling based algorithm (e.g., FPMax 
[34])  may  be  used  to  obtain  successive 
approximations  of  the  set  of  association  rules. 
From  these approximations, an approximate MDP 
can  readily  be  obtained  and  solved  at  the  same 
time the agent gathers experience data. 

 
For  the  solution  of  the  resulting  association‐rule‐
based MDP, we  have modified  value  iteration  in 
terms  of  association  rules.  Let 

( ){ }kkkkk assLLL ,, ′==  be the set of association 

rules  with  a  given  maximum  support  and 
confidence  (obtained  by  Apriori  or  other 
association rule mining technique),  R  be the state 
rewards, T  be the state transition probabilities of 
each  rule  and  n  be  the number of  states,  γ  be 
the discount factor,  ε  be the maximum error and  
numit  be the maximum number of iterations. Our 
resulting value  iteration algorithm (ARVI)  is shown 
in the next figure. 
13 

 
Even though we have not applied any accelerating 
methods yet (as those shown in a previous section) 
in  this  first algorithm, we expect  this approach  to 
be faster than classic value iteration (which uses an 
expensive  3‐D  transition  probability  matrix).  In 
order  to  improve  this  first  algorithm,  we  have 
formulated  several  variants  of  our  ARVI  by  the 
application  of  state‐of‐the‐art  acceleration 
procedures such as asynchronous updates [18] and 
prioritization by using a static reordering of states 
[23]. The first variant of our ARVI 

 
(ARVI2),  shown  in  Algorithm  (3),  only  uses 
asynchronous  updates  [18].  The  second  variant 
(ARVI3),  shown  in  Algorithm  (4),  updates 
synchronously  only  those  states  (as well  as  their 
neighbors)  whose  value  function  changed  in  the 
previous  iteration  [23]  (in  order  to  focus 
computation  in regions of the problem  which  are 
expected    to   be    maximally   productive,    and  
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simultaneously avoid useless backups. In this case, 
the  order  of  evaluation  of  the  states  is  not 
modified.  The  third  variant  (ARVI4),  shown  in 
Algorithm  (5), updates asynchronously only  those 
states  (as  well  as  their  neighbors)  whose  value 
function  changed  in  the  previous  iteration  [23]. 
The  forth  variant  of  our  ARVI  (ARVI5),  shown  in 
Algorithm  (6),  uses  the  same  acceleration 
procedures as ARVI4 but uses a static reordering of 
the states in decreasing order of maximum reward. 
This  is  because  it  is  better  to  use  a  good  static 
ordering instead of a good dynamic ordering. Thus, 
state  reordering  is  performed  only  once  (during 
initialization) such that, for each sweep, they are  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
updated in an approximately optimal order.  In this 
case, sorting is performed using the sort method of 
the  Array  Java  class,  which  has  a  complexity  of 
( )nnO log . Note  that  variable  reordering  is only 

effective when  using  asynchronous  updates  [23]. 
The  fifth    variant  of  our  ARVI  (ARVI6)  uses  the 
same  acceleration  procedures  as  ARVI5  but  uses 
the modified topological ordering algorithm shown 
in Algorithm (7). The use of a priority queue for all 
states  of  the  model  may  result  in  an  excessive 
overhead.  For  special  cases  of  acyclic MDPs  the 
use  of  a  topological  sort  on  the  states  yields  an 
optimal ordering of states. For other cases, a good 
possibility could be to reorder the states to make  

Algorithm 2. ARVI (synchronous updates).

function ( )numitTLR ,,,,,ARVI εγ  

( ) ( )asRsU
a

,max0 =  for ns ,,2,1 K=  
1=t  

do 
 ( ) ( )asRasJ ,, =  for ns ,,2,1 K=  and ma ,,2,1 K=  
 for 1=k  to L  
  ( )( )kLa action=  
  ( )( )kLs teinitialsta=  
  ( )( )kLs finalstate=′  
  ( ) ( ) ( ) ( )sUkTasJasJ t ′+= −1,, γ  
 end 
 ( ) ( )asJsU

a

t ,max=  for ns ,,2,1 K=  
 1+= tt  
while numitt <  and ε>− − 21tt UU   

( ) ( )asJs
a

,maxarg=π  for ns ,,2,1 K=  
return π  
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the  transition  matrix  “nearly  triangular”  [23]. 
Another option is to compute the topological order 
of  the  states.  For  acyclic  MDPs,  at  least  one 
topological  order  exists;  and  usual  algorithms  for 
topological sorting with linear running time in the  

number of nodes and the number of edges can be 
used. Unfortunately,  real world  problems  involve 
cyclic  MDPs  and  making  a  topological  sorting  is 
impossible.  However,  in  this  case,  a  modified 
topological ordering method can still be used [23]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Algorithm 3. ARVI2 (asynchronous updates and improved termination criterion). 

function ( )numitTLR ,,,,,ARVI2 εγ  

( ) ( )asRsU
a

,max=  for ns ,,2,1 K=  
1=t  

do 
 ( ) ( )asRasJ ,, =  for ns ,,2,1 K=  and ma ,,2,1 K=  
 0=mxerr  
 1=k  
 do 
  ( )( )kLs teinitialsta=  

 while Lk ≤  and ( )( ) skL =teinitialsta  
  ( )( )kLs finalstate=′  

( )( )kLa action=    
  ( ) ( ) ( ) ( )sUkTasJasJ ′+= γ,,    
  1+= kk  
 end 
 ( )asJmx

a
,max=  

 ( )sUmxerr −=  
 { }mxerrerrmxerr ,max=  
 ( ) mxsU =  

 while Lk ≤  
 1+= tt  
while numitt <  and ε>mxerr   
( ) ( )asJs

a
,maxarg=π  for ns ,,2,1 K=  

return π  
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Algorithm 4. ARVI3 (synchronous updates of states that change between iterations and 
improved termination criterion). 

function ( )numitTLR ,,,,,ARVI3 εγ  

( ) ( )asRsU
a

,max0 =  for ns ,,2,1 K=  

( ) ( )sUsB 00 =  for ns ,,2,1 K=  

( ){ }ε>= sBs 0changed  
1=t  

do 
 for all changed∈s  
  ( ) ( )

( )
( )( )( )kLUkTasJ t

ask
finalstate, 1

,rulesof

−

∈
∑=  

  ( ) ( ) ( )asJasRsU
a

t ,,max γ+=  

  ( ) ( ) ( )sUsUsB ttt 1−−=  
 end 
 for all ( ) changedchangedneighbors −∈s  
  ( ) ( )

( )
( )( )( )kLUkTasJ t

ask
finalstate, 1

,rulesof

−

∈
∑=  

  ( ) ( ) ( )asJasRsU
a

t ,,max γ+=  

  ( ) ( ) ( )sUsUsB ttt 1−−=  
 end 
 ( ) ( ){ }ε>∪∈= sBsss t,neighborschangedchanged  
 1+= tt  
while numitt <  and ( ) ε>sBt

s
max   

( ) ( ) ( ){ }asJasRs
a

,,maxarg γπ +=  for ns ,,2,1 K=  
return π  
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Algorithm 5. ARVI4 (asynchronous updates of states that change between iterations and 
improved termination criterion). 

function ( )numitTLR ,,,,,ARVI4 εγ  

( ) ( )asRsU
a

,max=  for ns ,,2,1 K=  

( ) ( )sUsB =  for ns ,,2,1 K=  
( ){ }ε>= sBschanged  

1=t  
do 
 for all changed∈s  

( ) ( )
( )

( )( )( )kLUkTasJ
ask

finalstate,
,rulesof

∑
∈

=  

( ) ( ) ( ){ } ( )sUasJasRsB
a

−+= ,,max γ  

( ) ( ) ( )sUsBsU +=  
 end 
 for all ( ) changedchangedneighbors −∈s  
  ( ) ( )

( )
( )( )( )kLUkTasJ

ask

finalstate,
,rulesof

∑
∈

=  

( ) ( ) ( ){ } ( )sUasJasRsB
a

−+= ,,max γ  

  ( ) ( ) ( )sUsBsU +=  
 end 

( ) ( ){ }ε>∪∈= sBsss ,neighborschangedchanged  
 1+= tt  
while numitt <  and ( ) ε>

∈
sB

cs hanged
max   

( ) ( ) ( ){ }asJasRs
a

,,maxarg γπ +=  for ns ,,2,1 K=  
return π  
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Algorithm 6. ARVI5 (asynchronous updates of states that change between iterations, static 
ordering of states and improved termination criterion). 

function ( )numitTLR ,,,,,ARVI5 εγ  

( )TLR ,,staticsort  

( ) ( )asRsU
a

,max=  for ns ,,2,1 K=  

( ) ( )sUsB =  for ns ,,2,1 K=  
( ){ }ε>= sBschanged  

1=t  
do 
 for all changed∈s  

( ) ( )
( )

( )( )( )kLUkTasJ
ask

finalstate,
,rulesof

∑
∈

=  

( ) ( ) ( ){ } ( )sUasJasRsB
a

−+= ,,max γ  

( ) ( ) ( )sUsBsU +=  
 end 
 for all ( ) changedchangedneighbors −∈s  
  ( ) ( )

( )
( )( )( )kLUkTasJ

ask

finalstate,
,rulesof

∑
∈

=  

( ) ( ) ( ){ } ( )sUasJasRsB
a

−+= ,,max γ  

  ( ) ( ) ( )sUsBsU +=  
 end 

( ) ( ){ }ε>∪∈= sBsss ,neighborschangedchanged  
 1+= tt  
while numitt <  and ( ) ε>

∈
sB

cs hanged
max   

( ) ( ) ( ){ }asJasRs
a

,,maxarg γπ +=  for ns ,,2,1 K=  
return π  
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6. Experiments 
 
For evaluating our approach, we chose  the sailing 
domain [35]. This is a finite state and action‐space 
stochastic shortest path problem, where a sailboat 
has  to  find  the shortest path between  two points 
of a lake under fluctuating wind conditions.  
 
The  details  of  the  problem  are  as  follows:  the 
sailboat’s  position  is  represented  as  a  pair  of 
coordinates on a grid of  finite size. The controller 
has 8 actions giving the direction to a neighboring 
grid  position.  Each  action  has  a  cost  (required 
time) depending on the direction of the action and  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
the wind. For the action whose direction is just the 
opposite  of  the  direction  of  the  wind,  the  cost 
must  be  high.  For  example,  if  the wind  is  at  45 
degrees measured from the boat’s heading, we say 
that the boat is on an upwind tack. On such a tack, 
it takes 4 seconds to sail from one waypoint to one 
of  the nearest neighbors. But,  if  the wind  is at 90 
degrees  from  the boat’s heading,  the boat moves 
faster  through  the water  and  can  reach  the  next 
waypoint in only 3 seconds. Such a tack is called a 
crosswind tack. If the wind is a quartering tailwind, 
we say that the boat is on a downwind tack; such a 

Algorithm 7. Modified topological reordering [23].

// Initialization: dc is an array representing the in-degree of each state. p is a 
partition of the state space. 

0←dc  
for all ps∈  do 
 for all Aa∈  do 
  for all ps ∈′  do  
  if ( ) 0,, ≠′sasT  then increment [ ]( )sdc ′  
 end for 
end for 
 
// Main loop: finalOrder  is an array representing the final state ordering. 

for ( )1,,0 −= pi K  do 

 let s be the index of the smallest non-negative value in dc  
 [ ] 1−←sdc  

 [ ] sipfinalOrder ←−−1  

 for all Aa∈  do 
  for all ps ∈′  do  
  if ( ) 0,, ≠′sasT then decrement [ ]( )sdc ′  
 end for 
end for 
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tack  takes 2  seconds. Finally,  if  the boat  is  sailing 
directly  downwind, we  say  that  it  is  on  an  away 
tack  (only 1 second  is  required). Otherwise,  if  the 
wind is hitting the left side of the sails we say that 
the  boat  is  on  a  port  tack.  If  the wind  is  on  the 
right‐hand side, we say that it is a starboard tack. If 
the  boat  is  heading  directly  into  the  wind  or 
directly away from the wind, then it is on neither a 
starboard nor a port  tack. When changing  from a 
port to a starboard tack (or vice versa), we assume 
that our sailor wastes 3 seconds  (delay)  for every 
such change of tack. To keep our model simple, we 
assume  that  the wind  intensity  is constant but  its 
direction can change at any  time. The wind could 
come from one of three directions: either from the 
same direction as the old wind or from 45 degrees 
to  the  left or  to  the  right of  the old wind. Table  I 
shows  the  probabilities  of  a  change  of  wind 
direction. 
 

Each  current  state  s   comprises a position of  the 
boat  ( )yx, , a tack   { }2,1,0∈t  and a current wind 

direction  { }7,,1,0 K∈w .  When  the  heading  is 
along  one  of  the  diagonal  directions,  the  time  is 

multiplied  by  2   to  account  for  the  somewhat 
longer distance that must be traveled.  
 

All the experiments were performed on a 2.66 GHz 
Pentium  D  computer  with  1  GB  RAM.  All 
algorithms were implemented in the Java language 
under a  robotic planning environment. The  initial 
and maximum size of the stack of the  Java virtual 
machine  was  set  to  800  MB  and  1536  MB, 
respectively.  

 
For  all  the  experiments, we  set  710−=ε ,  1=γ  

and  1000=numit .  Since  1=γ ,  we  are  dealing 
with an undiscounted MDP where convergence  is 
not guaranteed by the Banach fixed point theorem 
and  the  bound  of  the  number  of  iterations  (see 
equation (5)) no longer holds [36]. Fortunately, the 
presence  of  absorbing  states  (states  with  null 
reward  and  100%  probability  of  staying  in  the 
same  state) may allow  the algorithm  to  converge 
[37]. 

 
The lake size was varied from 6 6´  to 200 200´  
and the resulting number of states varied from 384 
to 940896, respectively. We repeated each run 10 
times  and  then  we  calculated  the  average  and 
standard deviation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  N  NE  E  SE  S  SW  W  NW 
N 
NE 
E 
SE 
S 
SW 
W 
NW 

0.4 
0.4 
 
 
 
 
 

0.4 

0.3 
0.3 
0.4 

 
0.3 
0.3 
0.4 

 
 

0.3 
0.3 
0.4 

 
 
 

0.3 
0.2 
0.3 

 
 
 
 

0.4 
0.3 
0.3 

 
 
 
 
 

0.4 
0.3 
0.3 

0.3 
 
 
 
 
 

0.4 
0.3 

 

Table I. Probabilities of change of wind direction. First column indicates old wind 
direction and first row indicates new wind direction. 
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7.Results    
 
Figure 1  shows  the  solution  time as a  function of 
the  number  of  states  for  all  the  algorithms, 
excepting  ARVI6. We  can  see  that  ARVI5  (which 
uses  asynchronous updates of  states  that  change 
between  iterations  as well  as  static  reordering  in 
decreasing  order  of  maximum  reward)   i s   

significantly  faster  than  the other algorithms. We 
can  see  in Table  II  that,  for 940896  states, ARVI5 
was almost 3 times faster than VDP. Even our first 
algorithm  (ARVI,  which  did  not  include  any 
acceleration procedure) is approximately 1.2 times 
faster  than  VDP. We  can  see  in  Figure  2  that  all 
algorithms  are  clearly  faster  than  classic  value 
iteration. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Solution time as a function of the number of states for all the approaches, excepting ARVI6.

Algorithm  Solution time (ms)  Relative solution time 

VDP  1376571.9  3.16 

ARVI  1095706.3  2.50 

ARVI2  766124.9  1.76 

ARVI3  782284.5  1.79 

ARVI4  499172.0  1.14 

ARVI5  436302.9  1.0 

Table II. Summary of results in terms of solution time for all the algorithms excepting ARVI6 (the 
number of states was 940896). Relative solution times are calculated with respect to the solution time 

of ARVI5.
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Figure 2. Close‐up of the solution time (for less than 3000 states) as a function of the number of states 
for all the approaches, excepting ARVI6. 

Figure 3 shows the number of iterations required by each algorithm to reach the solution as a function 
of  the  number  of  states,  excepting  ARVI6. We  can  observe  that  or  fastest  algorithm  ARVI5  also 
required the smallest number of  iterations. For example, for 940896 states, VDP took 373  iterations 
whereas ARVI5 required 338 iterations. 

Figure 3. Number of iterations as a function of the number of states for all the algorithms, excepting 
ARVI6. 
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Figure 4 shows a comparison between ARVI5 and 
ARVI6 in terms of solution time as a function of the 
number  of  states.  Figure  5  shows  a  comparison 
between ARVI5 and ARVI6 in terms of the number 
iterations  to  reach  the  solution. We  can  see  that 
ARVI6  requires  slightly  less  iterations  than ARVI5, 
but ARVI5  is  significantly  faster  than ARVI6,  even 
when they differ only in the way states are sorted. 
This  shows  clearly  that  the  modified  topological 
reordering algorithm used by ARVI6 was very slow 
in comparison with the ordering algorithm used by 
ARVI5 (in decreasing order of maximum reward by 
means  of  quicksort).  In  this  case,  the  use  of 
topological  ordering  does  not  reflect  in  a  better 
solution  time  because  of the high overhead  

incurred  to  find  the  topological  ordering.  An 
alternative  to  this  modified  topological  ordering 
algorithm  is  to  remove  the  smallest  set  of 
transitions  that  render  the  MDP  acyclic  (also 
known  as  feedback  arc  set  problem)  and  to  use 
linear  complexity  algorithms  for  acyclic  graphs 
based on depth‐first search. Unfortunately, it turns 
out that the feedback arc set problem is known to 
be NP‐complete  [38]. Another possibility  to  find a 
topological ordering would be  to apply a  strongly 
connected  components  algorithm  as  in  [39]. 
Anyway,  preliminary  results  obtained  in  an 
experiment in which we used a strongly connected 
component  algorithm  indicated  that  our 
reordering was still faster. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4. Comparison in terms of solution time for two algorithms using different reordering methods. 
ARVI5 uses a reordering method based on maximum reward and ARVI6 uses a modified topological 

ordering algorithm. 
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In all cases our ARVI5 yielded the smallest solution 
time but  slightly more  iterations  than ARVI6. This 
implicates  that,  at  least  in  the  sailing  strategies 
problem,  the  combination  of  asynchronous 
updates,  prioritization with  static  ordering  of  the 
states  in  decreasing  order  of  their  maximum 
reward, results in the fastest algorithm. The use of 
prioritization  and  partitioning  (excepting  static 
ordering  in decreasing value of maximum reward) 
in  the  sailing  strategies  problem  resulted  in 
excessive overhead. This may be due in part to the 
cyclic  nature  of  the  resulting MDPs  as  shown  in 
[23] for the SysAdmin problem. 
 
8. Conclusions 
 
In  this  paper we  have  successfully  tested  a  new 
approach for the estimation and solution of MDPs  
based  on  association  rules  (obtained  by   using 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efficient  methods  such as Apriori and other  
powerful  association  rule mining  techniques)  and 
the  application  of  state‐of‐the‐art  acceleration 
procedures  such  as  asynchronous  updates  and 
prioritization with static reordering of the states. In 
addition, we tested a new criterion for reordering 
states  and  compared  it  with  the  modified 
topological reordering algorithm proposed in [23]. 
 
We  compared  our  approach with  other methods 
such  as  classic  value  iteration  [18]  and  dynamic 
programming  [40,  41].  At  least  in  the  sailing 
domain,  our  approach  combined  with 
asynchronous  updates  and  prioritization  using  a 
static  reordering  of  states  in  decreasing  order  of 
maximum reward yielded the lowest solution time 
with  the  lowest number  of  iterations.  In  general, 
the use of prioritization and partitioning excepting 
static  ordering  by  decreasing  value  of maximum 

Figure 5. Comparison in terms of number of iterations for two algorithms using different reordering 
methods. ARVI5 uses a reordering method based on maximum reward and ARVI6 uses a modified 

topological ordering algorithm. 
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reward  resulted  in  excessive  overhead.  This may 
be  in  part  because  of  the  cyclic  nature  of MDPs 
resulting  from  the  sailing  strategies  problem  (as 
shown before [23]).  Since the use of the modified 
topological  reordering  algorithm  resulted  in  less 
iterations  than  the  state  reordering  algorithm 
based on maximum reward, further work will focus 
other criteria for finding an optimal state ordering. 
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