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ABSTRACT 
 
In this paper, a family of simple formulas for the calculation of the pseudo inverse of a rectangular matrix 
of less than maximum rank is derived using linear vector space methods. The principal result is that the 
pseudo inverse  A+  of a matrix  A  can be calculated as  A+ = Q(PTAQ)−1PT, where  P  and   Q  are 
rectangular matrices  whose  r  columns  are  vectors that form a basis for the spaces spanned by the 
columns and rows, respectively, of matrix  A. This leaves the user the liberty to choose the basis to take 
into consideration other questions such as amount of work needed and ill-conditioning of the matrix that 
has to be inverted. The formulas are particularized for rectangular matrices that have maximum rank and 
for the trivial case in which the original matrix is non-singular.  Illustrative numerical examples are worked 
out for several choices of basis vectors and the results are compared with those provided by the 
program Mathematica through its function PseudoInverse[A].   
 
KEY WORDS: pseudo inverse, generalized inverse, least square solutions, linear vector spaces, 
orthogonal projections. 
   
RESUMEN 
 
En este artículo se deduce una familia de fórmulas simples para el cálculo de la seudo inversa  de una 
matriz rectangular de rango menor que el máximo del número de filas y el número de columnas 
utilizando métodos de espacios vectoriales lineales. El resultado principal es que la seudo inversa  A+ 
de una matriz A se puede calcular con la fórmula   
A+ = Q(PTAQ)−1PT, donde P y Q son matrices rectangulares cuyas r columnas ( r es el rango de la 
matriz A) son vectores que forman una base para los espacios generados por las columnas y filas 
respectivamente de la matriz A. Esto le deja al usuario la libertad de escoger la base y tomar en 
consideración otras cuestiones como la cantidad de trabajo requerida y el mal condicionamiento de la 
matriz A.  Las fórmulas se particularizan para matrices rectangulares que tienen máximo rango y para el 
caso trivial en que la matriz original es no-singular. Se presentan las soluciones de ejemplos numéricos 
ilustrativos para varias selecciones de vectores base, y los resultados se comparan con los que 
proporciona el programa Mathematica a través de su función PseudoInverse[A].  
 
PALABRAS CLAVE: seudo inversa, inversa generalizada, solución de mínimos cuadrados, espacios 
vectoriales lineales, proyecciones ortogonales.      
  
 
 
1. INTRODUCTION 
 
The pseudo inverse of a matrix is a generalization of the inverse of a matrix which is used in a way 
similar to the latter to solve (in a least square sense explained below) systems of equations that do not 
have a solution or whose solution is not unique. All matrices, whether square or not, have a pseudo 
inverse. When the inverse matrix exists, it coincides with the pseudo inverse. When a rectangular matrix  
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A  has maximum rank, that is, its rank is equal to the minimum of  (m, n), where  m  is the number of 
rows and  n  the number of columns, there are simple formulas for the pseudo inverse  A+  involving 
expressions such as A+ = (ATA)−1AT     or     A+ = AT(AAT)−1.  When the rank of  A  is smaller than both  
m  and  n,  the situation becomes more complicated. Some possibilities are to obtain the singular value 

decomposition of  A  in the form  A = U ⎥
⎦

⎤
⎢
⎣

⎡Λ
00
0

VT, where V  and  U  are orthogonal matrices and   Λ  is 

a diagonal matrix with  r  positive entries λ1, λ2, ... , λr.  The pseudo inverse matrix  A+  is given by  A+ = 

V ⎥
⎦

⎤
⎢
⎣

⎡Γ
00
0

UT, where  Γ is a diagonal matrix with  r  positive entries  λ1
−1, λ2

−1, ... , λr
−1. (See  Dahlquist y 

Björk [1],  pp. 143 – 146.)  Although the method appears straightforward, it has the considerable difficulty 
of having to solve for the eigenvectors and eigenvalues of  symmetric matrices   ATA  and   AAT and 
orthogonalize the vectors corresponding to repeated eigenvalues including the zero eigenvalue.  There 
are short cuts that eliminate the zero eigenvalue and consider only the positive ones using rectangular 
matrices  Up  and  Vp,  which are portions of  U   and  V.  Golub & Reinsch [2] give alternative methods 
together with listings of computer programs for obtaining the singular value decomposition and, hence, 
the pseudo inverse.     A second popular method to handle the case  r < m, n  consists in factoring  
matrix  A, m×n   of rank  r  into two factors   B, m×k  and  C, k×n   both of rank  r, and apply the formula  
A+ = CT(CCT)−1(BTB)−1BT.  In Noble [3] pp. 142 – 146, the author gives a method for doing the 
factorization when  A  satisfies certain conditions and  explains in a problem how to generalize the 
method for  any  A.  
 
The generalized inverse of  a linear operator was introduced for integral operators by Fredholm in 1903. 
Subsequently, Moore [4]  and Penrose [5]  generalized the concept of the inverse of a matrix 
independently as a way  to “solve” systems of linear equations even in the cases in which the matrix of 
coefficients is singular and  is not even square.  This generalized inverse matrix  is also called the 
natural inverse (Lanczos [6], pp.124 – 138)  or pseudo inverse (Zadeh & Desoer [7].)  In the literature, it 
is known as the Moore-Penrose pseudoinverse.  The principal characteristic of the pseudo inverse A+  of 
a matrix  A is that in the case of a system of linear equations  
 

Ax = b,      (1) 
 
which  in the case of a square non-singular matrix  A can be solved by premultiplying both sides of the 
equation by the inverse of  A  giving 
 

A−1Ax = Ix = x = A−1b,    (2) 
 
in the case that A is singular, its inverse does not exist, and to solve the equation one must examine the 
situation further to see if the equation does indeed have a solution and, in case it does, if the solution is 
unique and, in the case it is not unique, how to find all the possible solutions.  
 With the introduction of the pseudo inverse, independently of the singularity of matrix  A,  a 
“unique solution” can be found in a very similar way through pseudoinverse  A+ as follows: 
 

xms = A+b     (3) 
 
We have placed quotation marks around the words  “unique solution” because  xms  may not be a 
solution at all of equation (1), in case it does not have a solution, or because, in case it does have a 
solution, we are singling out only one of a possible infinity of solutions. In fact, if xm  represents all the 
vectors in the domain of A  that satisfy  

 
||||min bAxx −=

xm ,   (4) 
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where  “||  ||” stands for the Euclidean norm or length of a vector  which is the square root of the sum of 
the squares of the components of the vector with respect to the orthonormal natural basis     [1, 0, 0, ... 
0], [0, 1, 0, ... , 0], ... [0, 0, 0, ... , 1],  we will call xms the shortest of the vectors satisfying equation (4).  
 
2. GEOMETRICAL INTERPRETATION 
 
If a  linear system of equations  has  n  unknowns  and the matrix of coeficients has rank  n,   the system 
has a unique solution which, at the same time, is the solution with minimum length. If this is not the case, 
the system may not have a solution because the right hand side vector is not in the range space of the 
matrix of coefficients. In such a case, although there is no solution, a solution  whose right side vector is 
closest to the given right hand side vector can be obtained by orthogonally projecting  the given right 
hand vector onto the range space of the matrix of coefficients. This is shown for a three dimensional 
case in Fig. 1 that can also be used to illustrate the case in which the right side vector is already in the 
range space of the coefficient matrix. In such a case, it is not neccessary to perform the projection but 
any vector in the range space will be a minimum residual solution (with the residual being zero.), so the 
solution is not unique. 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Let us consider the case in which there are many solutions to the system, whether we have projected the 
right side vector or not. All the solutions have the same residue vector and we are looking for the 
shortest of these solutions. This is illustrated in Fig. 2.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Linear Vector Space Derivation of an Expression for the Pseudo Inverse. 

Linear variety  V which is a solution to  
equation  (2).  (It extends in all  directions )  
Any  vector from the  origen to a point in 
the plane is a solution.  

Vector whose arrow head is on the point in 
the plane  V closest to the origen.  The 
vector is orthogonal to the plane.  (More 
properly said, it is orthogonal to the plane 
that passes through the origin  parallel to the 
linear variety   V  which is the null space of 
the matrix   A  of equation  (2).)  Of all the 
solutions, it is the shortest.

Figure 2 

One of the possible solutions  to equation  (2). It is not the 
shortest.    

One of the solutions of the homogeneous system 

líne ortogonal to plane  Q   

vector  on plane  Q closest  
to vector  b    

 plane Q:  range space of matrix  A  
(it extends in all directions and passes 
through the origin, it is a subspace of 
the three domensional space. )  Figure 1 

Right side vector b 
not in plane Q.    
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The first thing we have to consider is that equation (1) may not have a true solution. Let us assume that  
matrix  A  is  m×n  of rank  r < m, n.  Vector x, then, has  n  components while  b  has  m  components.  
For equation (1) to have a solution, the necessary and sufficient condition is that vector  b  lies in the  
range R(A), that is the space spanned by the columns of A.  If  b  does not lie in the space spanned by 
the columns of  A,  the best solution, in the sense of a residue vector of minimal Euclidean length, is 
obtained by replacing vector  b  by a vector that is the orthogonal projection of  b  on the range R(A). 
This can be done by  constructing a vector  whose components are the inner products of vector  b  with 
a set of  normalized vectors forming a basis for the range space  R(A).  This basis can be formed by 
finding  r  linearly independent vectors among the columns of  A  and  normalizing them so they have 
unit length.  Let us assume we have done that and that we form a matrix  P,  m×r  whose columns are 
the normalized linearly independent vectors mentioned. By premultiplying both sides of equation (1) by 
PT,  the transpose of  P,   we obtain  
 

PTAxm = PTb                                                              (5) 
 
where we have added a subscript to x  since, unless  b  is in R(A), it is not the solution of the original 
equation. The right side of (5)  is the orthogonal projection of  b  on  R(A).  Equation (5) is guaranteed to 
have a solution since the range of  A  is the same as the range of  PTA  because the effect of  PT  is to 
project  each column of  A  unto R(A).  Any solution to equation (5) has the property specified by 
equation (4).  
 
Because we have assumed that  r < m, n,  equation (5) will have an infinity of solutions, each of which is 
formed as the sum of any particular solution plus any vector in the null space  N(PTA), which  is the 
solution space  of the homogeneous system PTAx = 0, which is the same as the null space  N(A), of all 
the solutions of equation (5), we are looking for the shortest one. We can form this solution by looking for 
the shortest possible particular solution and taking the zero vector (which does not increase the length of 
the particular solution) as the part contributed by the null space. The solution space of a linear system of 
equations, when it exists, is the subspace  N(A) of dimension  n – r,  where  n  is the number of 
components of the unknown vector and  r  is the rank of the matrix of coefficients,  displaced  parallel to 
itself from the origin by a particular solution. (See Fig. 1 for a three dimensional illustration.)  The 
shortest possible particular solution must be orthogonal to  N(A), that is, it must lie in the orthogonal 
complement of  N(A),  which is the range space of  AT (Zadeh & Desoer [7],  p. C.17.)  This shortest 
vector can be obtained by forcing the solution vector  x  to lie in  R(AT).  This, in turn, can be 
accomplished by expressing  x  as a linear combination of base vectors of  R(AT). A set of  r  
independent columns of  AT  can serve as the mentioned base, or what is the same, a set of  r  
independent rows of  A since the columns of AT are the rows of A. 

If we form a matrix Q, n×r  whose columns are  r  linearly independent vectors with  n  
components that span the space generated by rows of  matrix  A, we can introduce a new variable 
vector  ξ  obeying  
 

xms = Qξ                                                                     (6) 
 
into equation (5) obtaining  
 

PTAQξ = PTb                                                             (7) 
 
We are using the double subindex  ms  because we are restricting vector  xm  to the range of AT. Since 
vectors ξ and PTb, on both sides of equation (7),  are forced to lie in the range of  A  and the range of AT  
, respectively, both of dimension  r (See Zadeh & Desoer [7], p. C.15.) the  r×r  matrix  PTAQ  is a one-to-
one  mapping of the range of  AT onto the range of  A;  hence, its standard inverse exists, and we can 
solve equation (7) to obtain  
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ξ = (PTAQ)−1PTb                                                       (8) 
 
Multiplying both sides of equation (8) by  Q  and taking  equation (6) into consideration, we obtain finally  
 

xms = Qξ = Q(PTAQ)−1PTb                                                   (9) 
 
Comparing equation (9) with equation (3), we deduce an expression for  pseudo inverse A+  of   A 
 

A+ =  Q(PTAQ)−1PT                                                 (10) 
 
We recall that the  r  columns of matrix  P  are any set of normalized elements of a basis for the space 
spanned by the columns of  A. The  r  columns of  Q are any set of elements of a basis for the space 
spanned by the rows of  A.  We now show that the columns of  P  need not be normalized. Let  P’= PD  
be the  matrix whose columns are  the non-nomalized vectors  of  a basis for the space spanned by the 
columns of  A, where  D  is a diagonal matrix whose elements are the lengths of the columns of P.  The 
diagonal matrix D is non-singular  since none of the columns of  P is the zero vector.  We have  
 

P = P’D−1 
 
which, when the right hand side replaces every instance of  P in  equation (10),  becomes 
 

A+ =  Q{(P’D−1)TAQ}−1(P’D−1)T= Q{P’TAQ}−1P’T 
 
where we have replaced the transpose of a product by the product of the transposes of the factors in 
opposite order, the inverse of a product of non-singular matrices by the product of the inverses of the 
factors in reverse order and the product of a matrix and its inverse by the unit matrix, which disappears 
from the expression. Since the form of the expression with or without apostrophes for the P  is the same, 
(we can repeat the argument for matrix Q) we can interpret equation (10) as a formula for the pseudo 
inverse with  matrices P and Q  having columns which are any complete set of basis vectors of the 
spaces spanned by the columns and rows of A, respectively. 
 
Consider the matrix of coefficients A (taken from Noble [3] p. 145.)   
 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−

−−
−

−−
−

=

2101
1011
3110

3110
1011

2101

A  

 
Matrix A has rank 2  because the first two rows are independent (one has a zero where the other one 
does not) while, by inspection, we see that the third row is equal to the first row minus the second one; 
the fourth row is equal to the negative of the third row; the fifth row is equal to the negative of the second 
row, and the sixth row is equal to the negative of the first row.  The number of independent rows of any 
matrix is equal to the number of independent columns of the same matrix. Therefore, we expect two 
independent columns for A.  Since the first two columns of  A  are independent  (one has a zero where 
the other does not) we do not have to look further, we can take them as the two columns of  P and, 
therefore, its transpose  PT  is   
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⎥
⎦

⎤
⎢
⎣

⎡
−−

−−
=

011110
110011TP  

 
To construct matrix Q,  we take as columns the first two rows of  A; thus, 
 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−−

=

12
01
10
11

Q  

 
Using equation (10), we calculate   
 

(PTAQ)−1 = 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−−
=⎥

⎦

⎤
⎢
⎣

⎡
−

−− −

102
5

51
4

51
1

102
7

1416
410 1

 

 
And, finally, we calculate the pseudo inverse from equation (10)  
 

A+ =  Q(PTAQ)−1PT = 
 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−

−−−

−−−

−−−

17
1

34
1

34
3

34
3

34
1

17
1

102
7

102
5

51
1

51
1

102
5

102
7

51
4

102
13

102
5

102
5

102
13

51
4

34
5

17
3

34
1

34
1

17
3

34
5

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−−
−−−
−−−

−−−

=

639936
752257
81355138

1518331815

102
1

. 

 
The results coincide with those given by the program Mathematica through its function 
PseudoInverse[A]. (Wolfram [8], p. 850.)  By the way, the book by Noble [3] gives a wrong answer 
differing only from ours in the sign of the matrix.  
 
There are several alternatives to calculate the pseudo inverse of a matrix, given that  we can select any 
basis for the column space and the row space of  A.  Instead of the  P  and  Q matrices used, we could 
have used other independent columns and rows of A. For example, if we use the first and fourth columns 
of  A  to form  P,  and we keep the same  Q  we have 
 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−

=⎥
⎦

⎤
⎢
⎣

⎡
−−−

−−
=

12
01
10
11

,
213312

110011
QPT  

 
while for A+  applying equation (10) we get exactly the same result as before.  
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In this particular case, we saw by inspection that matrix A  was of rank 2 and found, also by inspection, 
two independent columns and rows of A.  In more complicated cases, we may have to reduce  A   or  AT  
to  row-reduced echelon form or some other form that will give us the information of the rank r  of  A  and 
also provide  r  linearly independent vectors. Those vectors can be used to form  matrices P  and  Q.  
For example, if we reduce AT  and  A  to row-reduced echelon form, we obtain 
 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−−

−−

⇒

000000
000000
011110
101101

TA          

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡
−−
−−

⇒

0000
0000
0000
0000
3110
2101

A  

 
  With the non-zero rows of the reduced matrices, we construct matrices PT and  Q   
 

⎥
⎦

⎤
⎢
⎣

⎡
−−

−−
=

011110
101101TP                

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

=

32
11

10
01

Q  

 
and if we use these matrices in equation (10), we obtain identical results for   A+  as before. 
 
Another way of finding the rank of a matrix and obtaining a complete set of basis vectors for the range of  
A  and AT  is to apply to the columns and rows of  A  the Gram-Schimdt orthogonalization process. 
(Noble [3] p. 314.)  By applying this process, we obtain a set of orthonormal vectors that span the space 
generated by  the vectors to which it is applied. It also discovers which of the vectors are linearly 
dependent on the previously processed vectors because it produces the zero vector when that happens. 
Instead of normalizing the vectors, which involves taking square roots, the process can be applied 
without normalization, in which case we end with a set of orthogonal (not orthonormal) vectors which 
span the same space as the vectors processed, and which can be used as basis vectors to construct 
matrices  PT  and  Q.  If such a non-normalized process is applied to  A  and  AT , we get  
 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−−

−−
=

2
1

2
111

2
1

2
1

110011
TP            

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−−

=

3
22

6
11
10
6
71

Q  

When equation (10) is applied with these matrices in place, we obtain results identical to those obtained 
before. 
 
4. SPECIAL CASES FOR MATRIX  A 
 
In the derivation of an expression for the peudo inverse of an  m×n  rectangular matrix  A,  we assumed 
the most complicated case when  the rank of the matrix is less than both  m  and  n.  Often the rank of  A  
is equal to the smallest of  n, m   (it cannot be larger than the smallest of them.)   In such a case, the 
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expression for the calculation of the pseudo inverse becomes simpler because one of the matrices  P  or  
Q  can be taken to be equal to a unit matrix and the other matrix can be taken to be equal to the 
transpose of A. 
 
Let us first take the case  m > n = r.  This corresponds to the case in which matrix  A  is tall and narrow, 
there are more equations than variables (the system is overdetermined.)   The most common case is 
that there is no solution to the system of equations, unless the right side vector  b  happens to lie in the 
space generated by the few columns of  A.  The typical application is the fitting of parameters of a model 
to experimental points in which, in order to reduce the probability of obtaining poor parameter values, the 
number  m  of experimental points is larger than the number  n  of unknown parameters.  The first part of 
the process is as before, we have to obtain the orthogonal projection of  vector  b  into the space 
spanned by the columns of A;  hence, matrix  P  is obtained as before without any change. Once we 
have the right side vector in the range of  A of dimension  r = n, we are sure there is a solution to the 
modified system of equations. Now, since the rank of the new matrix  PTA  is  n,  and there are  n  
unknowns  in a system where the right hand side has  n  components, there is nothing else to do; the 
problem can be solved and it has a unique solution. In this case, the expression for the pseudo inverse 
A+  is  A+ = (PTA)−1PT.  Since  P  will have as columns  r = n  independent vectors that span the same 
space as the  n = r  columns of  A,  the columns of  P  can be taken to be the same as the columns of  A.  
Therefore, the expression for  A+  could  be written  
 

A+ = (ATA)−1AT                                                                   (11) 
 
We now consider the case in which  n > m = r.  This is a case of an undetermined system: few equations 
and many unknowns.  Matrix  A  is short and wide. The system will have an  n – r fold  infinity of 
solutions. The problem is to obtain the shortest one of them. We do not need to project vector  b  into the 
range of  A  because it is already in it. What we need to do is to force the solution to lie in the range of  
AT.  We proceed as in the second part of the general case and find a set of independent vectors 
spanning the same space as the columns  of  AT.  This space is  r-dimensional  and, since AT  has  r = m  
independent columns (as both  A  and  AT  have the same rank), all its columns are independent and 
they can be taken as a basis for the m-dimensional space; thus, we might choose  Q = AT.  In this case, 
the expression for  A+  could be written  
 

A+ = AT(AAT)−1                                                       (12) 
 
Finally, we mention the case in which  m = n = r.  In this case, matrix  A  is square and non-singular. 
There is no need to project  b  into the range of  A since the range of  A  is the whole space and there is 
a unique solution for any  b. Since the solution is unique, there is no need to force the solution to lie in 
the range of  AT.  Thus, for this case, the expression for the pseudo inverse  A+  is  

 
A+ = A−1     ,                                                             (13) 

 
that is, for this case, the pseudo inverse coincides with the standard inverse. 
 
Although equation (11) is very simple and easy to remember, for numerical reasons the choice of   P  
that led to it may result in ill-conditioning of the matrix that is to be inverted. In such a case, 
orthogonalizing the columns of  A  accurately may improve the accuracy of the solution of the so-called 
normal equations considerably. In Dahlquist & Bjorck [1], pp. 200 – 204, the authors give a simple 
example to illustrate this situation. This is one of a possible number of situations in which the freedom to 
choose  matrices  P  and  Q  as matrices whose columns are basis for certain subspaces has clear 
practical advantages.    
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5. CONCLUSION 
 
We have derived new general expressions for calculating the pseudo inverse of  a rectangular matrix 
(includes square matrices as a particular case) .  The matrix may have any rank that does not exceed 
either the number of rows or columns, as it should. Since the matrices appearing in the resulting 
formulas have columns or rows which span the column or row space of the matrix, there is considerable 
leeway which permits the user to choose bases which may have better properties than others, either 
because of ease of calculation or because of better numerical performance.  
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