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ABSTRACT

This paper presents a wavelet-neural network based on the L;-norm minimisation for learning chaotic time series.
The proposed approach, which is based on multi-resolution analysis, uses wavelets as activation functions in the
hidden layer of the wavelet-network. We propose using the L;-norm, as opposed to the Ly-norm, due to the well-
known fact that the L;-norm is superior to the Ly-norm criterion when the signal has heavy tailed distributions or
outliers. A comparison of the proposed approach with previous reported schemes using a time series benchmark is
presented. Simulation results show that the proposed wavelet-network based on the L;-norm performs better than
the standard back-propagation network and the wavelet-network based on the traditional L,-norm when applied to
synthetic data.

RESUMEN

En este articulo se presenta una red neuronal-wavelet basada en la minimizacion de la norma L; para aprendizaje
de series de tiempo caoticas. El método propuesto, el cual se basa en un analisis multi-resolucion, utiliza wavelets
como funciones de activacion en la capa oculta de la red neuronal-wavelet. Se propone utilizar la norma L;, en
lugar de la tradicional norma Lj, debido a que la norma L; es superior a la norma L, cuando la senal tiene
distribuciones sesgadas o de colas pesadas. Se presenta una comparacion del método propuesto con esquemas
reportados previamente utilizando series de tiempo cadticas conocidas. Los resultados de simulacion revelan que
la red neuronal-wavelet basada en la norma L; tiene una mejor eficiencia que la red neuronal con propagacion
hacia atras v la red neuronal-wavelet basada en la tradicional norma L, cuando se aplica a datos sintéticos.
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1. INTRODUCTION

Despite the potential of neural networks, there are several problems that remain to be solved. First, it is well known
that the back-propagation algorithm for training the multi-layer perceptron, also known as back-propagation network
(BPN), suffers for having slow convergence, and the convergence is not normally guaranteed [1 & 9]. Second, the
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number of hidden units, which determines the structure of the network, is chosen empirically by trial and error.
Furthermore, the activation functions are global functions which do not allow local learning or manipulation of the
network [1&3]. As a result, there have been some efforts to improve the performance of neural networks (see e.g. [1,
3, 7, 8, 10-14]). The results reported in these works show the advantages offered by combination of neural networks
with wavelet representation when compared with general statistical methods and the back-propagation network.
Examples of wavelet-networks (WN) applied to time series prediction are presented in [10-14]. Wavelet-networks are a
class of neural networks that employ wavelets as activation functions. These have been recently proposed as an
alternative approach to the traditional neural networks with sigmoidal activation functions (see e.g., [3, 7, 14]1). In [7], a

1
( +E) -layer neural network based on wavelets is introduced. However, this approach is still using an algorithm of

back-propagation type for the learning of the network. In [3], the off-line learning algorithm is based on the traditional
Lynorm, which is basically a non-iterative Least Squares problem and it can be solved using the Moore-Penrose
pseudo inverse rule [9]. The Ly-norm may be inaccurate especially where the measurements contain large errors [6]. It
is well known that the L;-norm outperforms the L,-norm when the signal has heavy tailed distributions or outliers.
Generally speaking, the L;-norm is superior to the L,-norm (with p > 1 ie., p =2,00) criteria if the error distribution

has long tails [4&6].

In the work reported in this paper an algorithm is proposed for learning chaotic times series based on wavelet-
networks and the L;-norm minimisation. The results reported show that wavelet-networks have better approximation
properties than the back-propagation network when applied to synthetic data. This is due to the fact that wavelets, in
addition to forming an orthogonal basis, have the capability to explicitly represent the behaviour of a function with
different resolutions of input variables [3]. The rest of this paper is organised as follows. Section 2 presents a review of
wavelet theory. Section 3, introduces the wavelet-network based on the L;-norm minimisation algorithm, and its
implementation through linear programming and the dual simplex method. Section 4 presents a brief description of
chaotic time series. In Section 5, a comparison of different approaches reported in the literature and the wavelet-
network based on the L;-norm minimisation using synthetic data is presented. Finally, Section 6 presents the
conclusions drawn from previous sections and suggests some future work.

2. A REVIEW OF WAVELET THEORY
Wavelet transforms involve representing a general function in terms of simple, fixed building blocks at different scales

and positions. These building blocks are generated from a single fixed function called mother wavelet by translation
and dilation operations. The continuous wavelet transform considers a family [2 & 5]

W, (x) = — W(x_bj (1)
a,b - ,
| Jal "L a

where a € R", b e R with, a = 0 and w(-) satisfies the admissibility condition. For discrete wavelets the scale (or

dilation) and translation parameters in Eq. (1) are chosen such that at level m the wavelet a(’)”t//(agmx) is a, times
the width of w(x). That is, the scale parameter {a=a, :meZ} and the translation parameter

{b = kbya, : m,k € Z} . This family of wavelets is thus given by [2]
W, (%) = a3" Py (ay"x — kb)), (2)

so the discrete version of the wavelet transform is

d, . = (800w, (0)) = a,"" [ gl (ay"x — kby)dx. a)
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where <,> denotes the L*-inner product.

To recover g(x) from the coefficients {d,, . } . the following stability condition should exist [2],

Ag@[ < T3 e, ) <Ble )

meZ keZ

with A>0 and B < oo for all signals g(x) in L*(R) denoting the frame bounds. These frame bounds can be

computed from a,, b, and y(x) [2]. The reconstruction formula is thus given by

AiB %;<g(x):'//m,k (x)>V/m,k (%) (5)

Note, that the closer A and B, the more accurate the reconstruction. When A=B=1, the family of wavelets then forms
an orthonormal basis [2].

g(x)~

2.1 Orthonormal Bases and Multi-resolution Analysis

The mother wavelet function w(x), scaling a, and translation b, parameters are specifically chosen such that
¥, (x) constitute orthonormal bases for L (R) [2&5]. To form orthonormal bases with good time-frequency
localisation properties, the time-scale parameters (b,a) are sampled on a so-called ayadic grid in the time-scale

plane, namely, a, =2 and b, =1 [2 & 5]. Thus, from Eq. (2) substituting these values, we have a family of
orthonormal bases

V0 () =272 (27" x k). (6)

Using Eq. (3), the orthonormal wavelet transform is thus given by

d, ., = (200, () =2"" [g(xw, (2" x—k)dx 7)

and the reconstruction formula is obtained from Eq. (5). A formal approach to construct orthonormal bases is provided
by multi-resolution analysis (MRA) [5]. The idea of MRA is to write a function g(x) as a limit of successive

approximations, each of which is a smoother version of g(x). The successive approximations thus correspond to
different resolutions [5].

2.2 Discrete Wavelet Transform: Decomposition and Reconstruction

Since the idea of multi-resolution analysis is to write a signal g(x) as a limit of successive approximations, the

differences between two successive smooth approximations at resolution 2" and 2 give the detail signal at
resolution 2" . In other words, after choosing an initial resolution /, any signal g(x) € L*(R) can be expressed as
[2&5]:

g(x)= ZCL,k¢L,k (x)+z de,k‘//m,k (x), (8)
keZ m=L keZ

where the detail or wavelet coefficients {dm,k} are given by Eq. (7), while the approximation or scaling coefficients

{c,.« are defined by
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Cos =277 [ 200, 27" x = K)dx, )

where @, , (x) denotes the scaling function. Equations (7) and (9) express that a signal g(x) is decomposed in

details {d,, , } and approximations {c,, , } to form a multi-resolution analysis of the signal [5]. Equation (8) is used for

the wavelet-network proposed in the following section.

3. PROPOSED WAVELET-NETWORK: L, - NORM MINIMISATION

Assume that the training data 7' for approximation is a set of observations as follows:

T={(x;,y,):x;€eR,y, eRi=12,...M},

where x, denotes the input, y, represents the output and A is the number of observations. The algorithm for the

L,-norm may be formulated as a linear programming problem and the idea is to find a design vector @ e R that
minimises the energy function J(x), viz.

M
J(x) = [rn().
i=1
Where
N
)=y, -, 0,(x)o,,(=12,..,M). (10)
j=1

The model represented by Eqg. (10) is also called least absolute deviations optimisation model, where
R (M=N) yeR" and @ € R" [6]. The matrix @ denotes the wavelet and scaling functions, @ are
the weights to be estimated and ¥ € R™ is the unknown error vector that account for model errors. Minimisation of
the L,-norm is complicated by the fact that the function ||l9a) — y||p is not differentiable for this value of p [4].

However, it may be formulated as a linear programming (LP) problem. Let the matrix @ comprises the basis functions,
that is, wavelet w, (x) and scaling @, ,(x) functions m,k € Z, where m and & denote the dilation and

translation parameters respectively. Following the theory of MRA proposed by Mallat [5], any function g(x) € L*(R)
may be decomposed as in Eg. (8). Equation (8) can be represented in a more compact form,
g(x) = Z/ 0,,(x)o, ; where @, € [cL’kdm,k] denotes the weights to be estimated and 6, ; € [¢L,kl//m’k]

are the basis functions. Figure 1 shows the structure of a typical wavelet-network for learning chaotic time series.

The scaling functions, ¢ —nodes , capture the lowest frequency components, and are analogous to the bias value

that is present in neural networks. The details of the signal are then captured by adding wavelet functions,
w —nodes . This process of adding wavelet functions constitutes the hierarchical multi-resolution learning [3]. The

weights, @,, ;, are then estimated using the L, -norm minimisation. The minimisation problem

minimise z

1

Vi _Z em,j(xi)a)m,j
j
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W — nodes

Figure 1. Structure of a wavelet-neural network with tapped delay line ( z - dela ). The hidden layer comprises scaling

and wavelet functions, and ¢ and d denote the estimated scaling and wavelet coefficients respectively

may be converted into a LP problem as follows [6]:

minimise z [y

l

subject tor, , >y, = >0, (x)®, ,(=12,.,M),

J
Poi 2 Zem,j(xi)a)m,j Vi
J

where 7, =y, — Zj 0, ;(x,)o, ; denotes the absolute error with which a);’j —optimal fail to satisfy the exact

solution. In order to solve this problem, Eq. (12) may be written as the standard form of a LP problem by adding some

slack variables. Then, the optimal solution of r,:,l. and a);’j would be [6]

. Vi~ zj Hm,_/ (xi)a):z,j

r, . =1nax =

m,i *®
Zj Hm,j(x[)a)m,_/ — Y

The on-line version of this algorithm is obtained by adding more variables in Eq. (12), viz.

Vi~ Zj em,j (xi)a);:l,j

M+l
minimisez v,

1,0
i=l1

subjecttor, >y, = > 6, (x)w, ,(i=12,..M +D)r, 2> 6, (x)®,  —
J J
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and addition of new basis functions introduce a new variable @ thus previous solutions may be used to update

m,N+1"

wavelet and scaling coefficients. When M is becoming large Eq. (14) may be converted to its dual LP problem (after
adding some slack variables), and it may be solved through the dual simplex algorithm [6], viz.

maximise Z VoiVi

1

subjectto— Y 0, (x)+ .0, (x),,=0,(j=12,.,N) 0<v, <2,(i=12,.,M) (15)

The advantage of using this dual version is that it allows having a sensitivity analysis, that is, previous solutions of the
original problem may be used to solve a new problem. Equations (14) and (15) are then used in Section 5 to evaluate

the proposed wavelet-network based on the L,-norm minimisation for learning chaotic time series.

4. DESCRIPTION OF CHAOTIC TIME SERIES

In this section, we briefly review the chaotic time series used in this work. Chaos is the mathematical term for the
behaviour of a system that is inherently unpredictable. Unpredictable phenomena are readily apparent in all areas of
life [15]. Many systems in the natural world are now known to exhibit chaos or non-linear behaviour, the complexity of
which is so great that they were previously considered random. One might argue that the many factors that influence
this kind of systems are the reason for this unpredictability. But chaos can occur in systems that have few degrees of
freedom as well. The critical ingredient in many chaotic systems is what mathematicians call sensitive dependence to
initial conditions. If one makes even slightest change in the initial configuration of the system, the resulting behaviour
may be dramatically different [15]. The chaotic time series are generated by a logistic map function. This function was
explored by ecologists and biologists who used it to model population dynamics. It was popularized by Robert May in
1976 as an example of a very simple non-linear equation being able to produce very complex dynamics. The
mathematical equation that describes the logistic map function is given by

x(i +1) = ax(i)(1 - x(7))., (16)

where =4, and the initial condition x(0) =0.000104 . It is worth noting that for the logistic map function, the

specific parameters are selected because they are the more representative values for chaotic behaviour, and also note
that it is the most commonly used in the literature (see e.g., [1, 3, 8, 15, 16]).

5. SIMULATION RESULTS

This section presents a comparison between the L, -norm reported in [3] and the L,-norm for the wavelet-network

described in Section 3. The orthogonal Battle-Lemarié wavelet is used as basis functions (see Figure 2). We select the
Battle-Lemarie wavelet due to the well-known fact that it has a high degree of smoothness. This important
characteristic allows a better frequency localisation and thus a better approximation of more complicated functions
[2]. Furthermore, a comparison has been done with other reported approaches such as BPN [9] and wavelet-networks
[7 & 8]. It is worth mentioning that the approach reported in [7] needs to estimate not only the weights but also the
translation and dilation parameters using an algorithm of back-propagation type, whereas the approach presented
here the weights are estimated only, and the dilation and translation parameters follow a regular grid in the input
space.

The performance of the different learning algorithms is evaluated using a time series generated by the logistic map
function defined in Eq. (16) which contains periodic and aperiodic cycles. The first 300 points are used for training, and
generalisation is done with the next 200 points. The commonly used notation for BPN 1x 6 x1 denotes the number
of inputs, hidden units and outputs, respectively. The learning rate for the BPN was set to 0.1 and the momentum
term was set to 0.07. The sigmoid function is considered as a basis function. For the wavelet-networks two levels of
resolution are considered. Since the resolution levels depends on the wavelet itself, the levels of resolutions are
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chosen according to global and local approximation errors for the training data. New i —nodes, added to the
wavelet-network, are trained to minimise the error from the coarser resolutions. This procedure is continued until the
wavelet-network satisfies the performance requirements. The computational complexity of this procedure depends on
the total number of training data. Simulation results show that the first two resolution levels reduce considerably the
global and local approximation errors. Note that the weights of ¢ —nodes and w —nodes at other resolution levels

are unaffected by the addition of new y —nodes allowing independent training of each node [3]. Figure 3 shows
the prediction of the logistic map function using the proposed wavelet-network based on the L;-norm minimisation,

and the mean square error (MSE) at each multi-resolution stage. This figure shows that the proposed approach has a
good prediction and generalisation performance on unseen data. Note that the optimal wavelet-network may be
designed by removing nodes with small contribution to the approximation of the unknown function. This is due to the
fact that the orthonormality allows removal of nodes without retraining [3].

Wavelet Function : Battle-Lemarie Scaling Function : Battle-Lemarie
4 T T T T 3.5 T T T T T
3 3r
2l m=-30k=0.0 25
m=-3.0k=0.0
= - 2
E* 1 -
o E@ 15¢ /| m=-1.0k=10
Zo—————— ]J &
g0 =~ 3
~ (o]

-3 -2 -1 0 1 2 3 4 -3 -2 -1 0 1 2 3 4

Figure 2. Example of the Battle-Lemarié wavelet and scaling function
with different dilations and translations parameters

Testing Data Set
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Time[i] Multiresolution Stage
(a) (b)

Higure 3. (a) Prediction of the testing data set using the wavelet-network based on the L, -norm with two resolution
levels (m = 0,—1 ). Actual testing data set (solid line), prediction network output (dotted line).
(b)Training error and testing error for each multi-resolution stage.

Table | shows the performance of different approaches, and the approach proposed in this paper. It can be seen that
wavelet-networks outperform BPN, and this is due to the fact that neural networks based on conventional single-
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resolution schemes cannot learn complicated time series, and consequently the training process often converge very
slowly and the trained network may not generalise well. This is also due to the fact that wavelets, in addition to
forming an orthogonal basis, have the capability to explicitly represent the behaviour of a function a different
resolutions of input variables. That is, a wavelet-network is first trained to learn the mapping at the coarsest resolution
level and then trained to include elements of the mapping at higher resolutions until the desired level of
generalisation has been reached [3]. This hierarchical multi-resolution training can result in a more meaningful
interpretation of the resulting mapping and adaptation of networks that are more efficient than conventional
methods [14]. Furthermore, note that the proposed approach performs better than previous reported wavelet-

networks schemes [3, 7, 8] for the testing data set. The wavelet-network based on the L,-norm performs better than
the L, -norm. This is due to the well-known fact that the L,-norm has advantages in situations where the data are
erratic (presence of outliers, long-tailed error distributions or the error distribution is not well known) [4]. The wavelet-
network based on the L,-norm eliminates the need for the user to guess the size of the network. That is, the network

begins learning by having only scaling functions and new wavelet nodes are added until the optimality criterion or
tolerance is satisfied [3]. Furthermore, the learning is faster, due to the fact that only a single layer (either scaling or
wavelet nodes) is trained at any given time and there is no need to propagate errors backwards as in BPN.

lable |
Performance Comparison
MSE
Approaches Model Training Set Testing Set
BPN[9] 1-6-1, 5000 lter. 0.005295 0.006491
WN [7], [8] 1-6-1, 5000 Iter. 0.001112 0.001073
WN- LZ norm [3] 2 ¢ _nodeS, 4 (// -nodes 0.001443 0.001201
Proposed WN- Ll norm 2 ¢ _nodeS, 4 W -nodes 0.001245 0.000974

6. CONCLUSIONS

An approach for learning chaotic time series based on waveletnetworks and the L;-norm minimisation has been

proposed. This approach has been evaluated using a chaotic time series generated by a logistic map function. The
results show that the wavelet-network proposed in this paper performs better than previous reported approaches [3,
7-9] when applied to synthetic data. Note that wavelet-networks have better approximation properties than the back-
propagation network. This is due to the fact that wavelets, in addition to forming an orthogonal basis, have the
capability to explicitly represent the behaviour of a function a different resolutions of input variables. The wavelet-
network based on the L,-norm minimisation eliminates the need to select the number of hidden units before the

training phase begins. This hierarchical nature enables each wavelet to model the residual error from the previous
approximation. That is, a wavelet-network can first be trained to learn the mapping at the coarsest resolution level and
then trained to include elements of the mapping at higher resolutions until the desired level of generalisation is
reached [3]. This hierarchical multi-resolution training can result in a more meaningful interpretation of the resulting
mapping and adaptation of networks that are more efficient than conventional methods [14].

The wavelet selected as basis function for the studied approach plays an important role in the approximation process.
The selection of the wavelet depends on the type of function to be approximated. Based on the analyzed chaotic
time series, a wavelet with good frequency localization like the Battle-Lemarié showed better approximation results
when tested with the logistic map function. This is due to the fact that the Battle-Lemarié wavelet has high degree of
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smoothness. This important characteristic allows a better approximation of more complicated functions. Further work
needs to be done to evaluate the performance of the proposed approach under different scenarios of data streams.

At present, the wavelet-network based on the L,-norm minimisation is being extended to recurrent neural networks
and other types of wavelets.
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