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ABSTRACT 
 
This paper presents a wavelet-neural network based on the L1-norm minimisation for learning chaotic time series. 
The proposed approach, which is based on multi-resolution analysis, uses wavelets as activation functions in the 
hidden layer of the wavelet-network. We propose using the L1-norm, as opposed to the L2-norm, due to the well-
known fact that the L1-norm is superior to the L2-norm criterion when the signal has heavy tailed distributions or 
outliers. A comparison of the proposed approach with previous reported schemes using a time series benchmark is 
presented. Simulation results show that the proposed wavelet-network based on the L1-norm performs better than 
the standard back-propagation network and the wavelet-network based on the traditional L2-norm when applied to 
synthetic data. 
 
RESUMEN 
 
En este artículo se presenta una red neuronal-wavelet basada en la minimización de la norma L1 para aprendizaje 
de series de tiempo caóticas. El método propuesto, el cuál se basa en un análisis multi-resolución, utiliza wavelets 
como funciones de activación en la capa oculta de la red neuronal-wavelet. Se propone utilizar la norma L1, en 
lugar de la tradicional norma L2, debido a que la norma L1 es superior a la norma L2 cuando la señal tiene 
distribuciones sesgadas o de colas pesadas. Se presenta una comparación del método propuesto con esquemas 
reportados previamente utilizando series de tiempo caóticas conocidas. Los resultados de simulación revelan que 
la red neuronal-wavelet basada en la norma L1 tiene una mejor eficiencia que la red neuronal con propagación 
hacia atrás y la red neuronal-wavelet basada en la tradicional norma L2 cuando se aplica a datos sintéticos. 
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1. INTRODUCTION 
 
Despite the potential of neural networks, there are several problems that remain to be solved. First, it is well known 
that the back-propagation algorithm for training the multi-layer perceptron, also known as back-propagation network 
(BPN), suffers for having slow convergence, and the convergence is not normally guaranteed [1 & 9]. Second, the 
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number of hidden units, which determines the structure of the network, is chosen empirically by trial and error. 
Furthermore, the activation functions are global functions which do not allow local learning or manipulation of the 
network [1&3]. As a result, there have been some efforts to improve the performance of neural networks (see e.g. [1, 
3, 7, 8, 10-14]). The results reported in these works show the advantages offered by combination of neural networks 
with wavelet representation when compared with general statistical methods and the back-propagation network. 
Examples of wavelet-networks (WN) applied to time series prediction are presented in [10-14]. Wavelet-networks are a 
class of neural networks that employ wavelets as activation functions. These have been recently proposed as an 
alternative approach to the traditional neural networks with sigmoidal activation functions (see e.g., [3, 7, 14]). In [7], a 

)
2
11( � -layer neural network based on wavelets is introduced. However, this approach is still using an algorithm of 

back-propagation type for the learning of the network. In [3], the off-line learning algorithm is based on the traditional 
L2-norm, which is basically a non-iterative Least Squares problem and it can be solved using the Moore-Penrose 
pseudo inverse rule [9]. The L2-norm may be inaccurate especially where the measurements contain large errors [6]. It 
is well known that the L1-norm outperforms the L2-norm when the signal has heavy tailed distributions or outliers. 
Generally speaking, the L1-norm is superior to the Lp-norm (with 1!p  i.e., f ,2p ) criteria if the error distribution 

has long tails [4&6].  
 
In the work reported in this paper an algorithm is proposed for learning chaotic times series based on wavelet-
networks and the L1-norm minimisation. The results reported show that wavelet-networks have better approximation 
properties than the back-propagation network when applied to synthetic data. This is due to the fact that wavelets, in 
addition to forming an orthogonal basis, have the capability to explicitly represent the behaviour of a function with 
different resolutions of input variables [3]. The rest of this paper is organised as follows. Section 2 presents a review of 
wavelet theory. Section 3, introduces the wavelet-network based on the L1-norm minimisation algorithm, and its 
implementation through linear programming and the dual simplex method. Section 4 presents a brief description of 
chaotic time series. In Section 5, a comparison of different approaches reported in the literature and the wavelet-
network based on the L1-norm minimisation using synthetic data is presented. Finally, Section 6 presents the 
conclusions drawn from previous sections and suggests some future work. 
 
2. A REVIEW OF WAVELET THEORY 
 
Wavelet transforms involve representing a general function in terms of simple, fixed building blocks at different scales 
and positions. These building blocks are generated from a single fixed function called mother wavelet by translation 
and dilation operations. The continuous wavelet transform considers a family [2 & 5] 
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where ���a , ��b  with, 0za  and )(�\  satisfies the admissibility condition. For discrete wavelets the scale (or 

dilation) and translation parameters in Eq. (1) are chosen such that at level m  the wavelet � �xaa mm �
00\  is ma0  times 

the width of )(x\ . That is, the scale parameter }:{ 0 Zmaa m �  and the translation parameter 

},:{ 00 Zkmakbb m � . This family of wavelets is thus given by [2] 
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so the discrete version of the wavelet transform is 
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where ��,  denotes the 2L -inner product. 

 
To recover )(xg  from the coefficients }{ ,kmd , the following stability condition should exist [2], 
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with A>0 and f�B  for all signals )(xg  in )(2 �L  denoting the frame bounds. These frame bounds can be 

computed from 0a , 0b  and )(x\  [2]. The reconstruction formula is thus given by 
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xg km
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| .                                                    (5) 

Note, that the closer A and B, the more accurate the reconstruction. When A=B=1, the family of wavelets then forms 
an orthonormal basis [2]. 
 
2.1 Orthonormal Bases and Multi-resolution Analysis 
 
The mother wavelet function )(x\ , scaling 0a  and translation 0b  parameters are specifically chosen such that 

)(, xkm\  constitute orthonormal bases for )(2 �L  [2&5]. To form orthonormal bases with good time-frequency 

localisation properties, the time-scale parameters ),( ab  are sampled on a so-called dyadic grid in the time-scale 

plane, namely, 20  a  and 10  b  [2 & 5]. Thus, from Eq. (2) substituting these values, we have a family of 

orthonormal bases 
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, kxx mm
km � �� \\ .                                                                        (6) 

Using Eq. (3), the orthonormal wavelet transform is thus given by 
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and the reconstruction formula is obtained from Eq. (5). A formal approach to construct orthonormal bases is provided 
by multi-resolution analysis (MRA) [5]. The idea of MRA is to write a function )(xg  as a limit of successive 

approximations, each of which is a smoother version of )(xg . The successive approximations thus correspond to 

different resolutions [5]. 
 
2.2 Discrete Wavelet Transform: Decomposition and Reconstruction 
 
Since the idea of multi-resolution analysis is to write a signal )(xg  as a limit of successive approximations, the 

differences between two successive smooth approximations at resolution 12 �m  and 2 give the detail signal at 

resolution m2 . In other words, after choosing an initial resolution L , any signal )()( 2 �� Lxg  can be expressed as 

[2&5]: 
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where the detail or wavelet coefficients }{ ,kmd  are given by Eq. (7), while the approximation or scaling coefficients 

}{ ,kmc  are defined by  
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where )(, xkmI  denotes the scaling function. Equations (7) and (9) express that a signal )(xg  is decomposed in 

details }{ ,kmd  and approximations }{ ,kmc  to form a multi-resolution analysis of the signal [5]. Equation (8) is used for 

the wavelet-network proposed in the following section. 
 
3. PROPOSED WAVELET-NETWORK: 1L - NORM MINIMISATION 

 
Assume that the training data T  for approximation is a set of observations as follows: 

},...,2,1,,:),{( MiyxyxT iiii  ���� , 

where ix  denotes the input, iy  represents the output and M is the number of observations. The algorithm for the 

1L -norm may be formulated as a linear programming problem and the idea is to find a design vector N��Z  that 

minimises the energy function )(xJ , viz. 
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The model represented by Eq. (10) is also called least absolute deviations optimisation model, where 
NMu��T ( NM t ), My ��  and NR�Z  [6]. The matrix T  denotes the wavelet and scaling functions, Z  are 

the weights to be estimated and Mr ��  is the unknown error vector that account for model errors. Minimisation of 

the 1L -norm is complicated by the fact that the function 
p

y�TZ  is not differentiable for this value of p [4]. 

However, it may be formulated as a linear programming (LP) problem. Let the matrix T  comprises the basis functions, 

that is, wavelet )(, xkm\  and scaling )(, xkmI  functions Zkm �, , where m and k denote the dilation and 

translation parameters respectively. Following the theory of MRA proposed by Mallat [5], any function )()( 2 �� Lxg  

may be decomposed as in Eq. (8). Equation (8) can be represented in a more compact form, 

jmijmj
xxg ,, )()( ZT¦  where > @kmkLjm dc ,,, �Z  denotes the weights to be estimated and > @kmkLjm ,,, \IT �  

are the basis functions. Figure 1 shows the structure of a typical wavelet-network for learning chaotic time series. 
 

The scaling functions, nodes�I , capture the lowest frequency components, and are analogous to the bias value 

that is present in neural networks. The details of the signal are then captured by adding wavelet functions, 
nodes�\ . This process of adding wavelet functions constitutes the hierarchical multi-resolution learning [3]. The 

weights, jm,Z , are then estimated using the 1L -norm minimisation. The minimisation problem 

jmijm
j

i
i
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Figure 1. Structure of a wavelet-neural network with tapped delay line ( 1�z : delay). The hidden layer comprises scaling 

and wavelet functions, and ĉ  and d̂  denote the estimated scaling and wavelet coefficients respectively 
 

may be converted into a LP problem as follows [6]: 
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j jmijmiim xyr ,,, )( ZT  denotes the absolute error with which optimaljm �*

,Z  fail to satisfy the exact 

solution. In order to solve this problem, Eq. (12) may be written as the standard form of a LP problem by adding some 

slack variables. Then, the optimal solution of *
,imr  and *

, jmZ  would be [6] 
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The on-line version of this algorithm is obtained by adding more variables in Eq. (12), viz. 
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and addition of new basis functions introduce a new variable 1, �NmZ , thus previous solutions may be used to update 

wavelet and scaling coefficients. When M  is becoming large Eq. (14) may be converted to its dual LP problem (after 
adding some slack variables), and it may be solved through the dual simplex algorithm [6], viz. 

i
i

im yv¦ , maximise  

),...,2,1(,20  ),...,2,1(,0)()( subject to ,,,, MivNjvxx im
i

imijmijm
i

 dd  �� ¦¦ TT                 (15) 

The advantage of using this dual version is that it allows having a sensitivity analysis, that is, previous solutions of the 
original problem may be used to solve a new problem. Equations (14) and (15) are then used in Section 5 to evaluate 
the proposed wavelet-network based on the 1L -norm minimisation for learning chaotic time series. 

 
4. DESCRIPTION OF CHAOTIC TIME SERIES 
 
In this section, we briefly review the chaotic time series used in this work. Chaos is the mathematical term for the 
behaviour of a system that is inherently unpredictable. Unpredictable phenomena are readily apparent in all areas of 
life [15]. Many systems in the natural world are now known to exhibit chaos or non-linear behaviour, the complexity of 
which is so great that they were previously considered random. One might argue that the many factors that influence 
this kind of systems are the reason for this unpredictability. But chaos can occur in systems that have few degrees of 
freedom as well. The critical ingredient in many chaotic systems is what mathematicians call sensitive dependence to 
initial conditions. If one makes even slightest change in the initial configuration of the system, the resulting behaviour 
may be dramatically different [15]. The chaotic time series are generated by a logistic map function. This function was 
explored by ecologists and biologists who used it to model population dynamics. It was popularized by Robert May in 
1976 as an example of a very simple non-linear equation being able to produce very complex dynamics. The 
mathematical equation that describes the logistic map function is given by 

))(1)(()1( ixixix � � D ,                                                                   (16) 

where 4 D , and the initial condition 000104.0)0(  x . It is worth noting that for the logistic map function, the 

specific parameters are selected because they are the more representative values for chaotic behaviour, and also note 
that it is the most commonly used in the literature (see e.g., [1, 3, 8, 15, 16]).  
 
5. SIMULATION RESULTS 
 
This section presents a comparison between the 2L -norm reported in [3] and the 1L -norm for the wavelet-network 

described in Section 3. The orthogonal Battle-Lemarié wavelet is used as basis functions (see Figure 2). We select the 
Battle-Lemarie wavelet due to the well-known fact that it has a high degree of smoothness. This important 
characteristic allows a better frequency localisation and thus a better approximation of more complicated functions 
[2]. Furthermore, a comparison has been done with other reported approaches such as BPN [9] and wavelet-networks 
[7 & 8]. It is worth mentioning that the approach reported in [7] needs to estimate not only the weights but also the 
translation and dilation parameters using an algorithm of back-propagation type, whereas the approach presented 
here the weights are estimated only, and the dilation and translation parameters follow a regular grid in the input 
space. 
 
The performance of the different learning algorithms is evaluated using a time series generated by the logistic map 
function defined in Eq. (16) which contains periodic and aperiodic cycles. The first 300 points are used for training, and 
generalisation is done with the next 200 points. The commonly used notation for BPN 161 uu   denotes the number 
of inputs, hidden units and outputs, respectively. The learning rate for the BPN was set to 0.1 and the momentum 
term was set to 0.07. The sigmoid function is considered as a basis function. For the wavelet-networks two levels of 
resolution are considered. Since the resolution levels depends on the wavelet itself, the levels of resolutions are 



 
Wave-Network Based on L1-Nomr Minimsation For Learning Chaotics Time Series.  V. Alarcon-Aquino et al, 211-221 

217 
Journal of Applied Research and Technology 

 

chosen according to global and local approximation errors for the training data. New nodes�\ , added to the 

wavelet-network, are trained to minimise the error from the coarser resolutions. This procedure is continued until the 
wavelet-network satisfies the performance requirements. The computational complexity of this procedure depends on 
the total number of training data. Simulation results show that the first two resolution levels reduce considerably the 
global and local approximation errors. Note that the weights of nodes�I  and nodes�\  at other resolution levels 

are unaffected by the addition of new nodes�\  allowing independent training of each node [3]. Figure 3 shows 

the prediction of the logistic map function using the proposed wavelet-network based on the 1L -norm minimisation, 

and the mean square error (MSE) at each multi-resolution stage. This figure shows that the proposed approach has a 
good prediction and generalisation performance on unseen data. Note that the optimal wavelet-network may be 
designed by removing nodes with small contribution to the approximation of the unknown function. This is due to the 
fact that the orthonormality allows removal of nodes without retraining [3].  
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Figure 2. Example of the Battle-Lemarié wavelet and scaling function 

with different dilations and translations parameters 
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Figure 3. (a) Prediction of the testing data set using the wavelet-network based on the 1L -norm with two resolution 

levels ( 1,0 � m ). Actual testing data set (solid line), prediction network output (dotted line). 
(b)Training error and testing error for each multi-resolution stage. 

 
Table I shows the performance of different approaches, and the approach proposed in this paper. It can be seen that 
wavelet-networks outperform BPN, and this is due to the fact that neural networks based on conventional single-
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resolution schemes cannot learn complicated time series, and consequently the training process often converge very 
slowly and the trained network may not generalise well. This is also due to the fact that wavelets, in addition to 
forming an orthogonal basis, have the capability to explicitly represent the behaviour of a function a different 
resolutions of input variables. That is, a wavelet-network is first trained to learn the mapping at the coarsest resolution 
level and then trained to include elements of the mapping at higher resolutions until the desired level of 
generalisation has been reached [3]. This hierarchical multi-resolution training can result in a more meaningful 
interpretation of the resulting mapping and adaptation of networks that are more efficient than conventional 
methods [14]. Furthermore, note that the proposed approach performs better than previous reported wavelet-
networks schemes [3, 7, 8] for the testing data set. The wavelet-network based on the 1L -norm performs better than 

the 2L -norm. This is due to the well-known fact that the 1L -norm has advantages in situations where the data are 

erratic (presence of outliers, long-tailed error distributions or the error distribution is not well known) [4]. The wavelet-
network based on the 1L -norm eliminates the need for the user to guess the size of the network. That is, the network 

begins learning by having only scaling functions and new wavelet nodes are added until the optimality criterion or 
tolerance is satisfied [3]. Furthermore, the learning is faster, due to the fact that only a single layer (either scaling or 
wavelet nodes) is trained at any given time and there is no need to propagate errors backwards as in BPN. 
 

Table I 
Performance Comparison 

MSE 

Approaches Model Training Set Testing Set 

BPN[9] 1-6-1, 5000 Iter. 0.005295 0.006491 

WN [7], [8] 1-6-1, 5000 Iter. 0.001112 0.001073 

WN- 2L norm [3] 2 I –nodes, 4\ -nodes 0.001443 0.001201 

Proposed WN- 1L norm 2I -nodes, 4\ -nodes 0.001245 0.000974 

 
6. CONCLUSIONS 
 
An approach for learning chaotic time series based on wavelet-networks and the 1L -norm minimisation has been 

proposed. This approach has been evaluated using a chaotic time series generated by a logistic map function. The 
results show that the wavelet-network proposed in this paper performs better than previous reported approaches [3, 
7-9] when applied to synthetic data. Note that wavelet-networks have better approximation properties than the back-
propagation network. This is due to the fact that wavelets, in addition to forming an orthogonal basis, have the 
capability to explicitly represent the behaviour of a function a different resolutions of input variables. The wavelet-
network based on the 1L -norm minimisation eliminates the need to select the number of hidden units before the 

training phase begins. This hierarchical nature enables each wavelet to model the residual error from the previous 
approximation. That is, a wavelet-network can first be trained to learn the mapping at the coarsest resolution level and 
then trained to include elements of the mapping at higher resolutions until the desired level of generalisation is 
reached [3]. This hierarchical multi-resolution training can result in a more meaningful interpretation of the resulting 
mapping and adaptation of networks that are more efficient than conventional methods [14].  
 
The wavelet selected as basis function for the studied approach plays an important role in the approximation process. 
The selection of the wavelet depends on the type of function to be approximated. Based on the analyzed chaotic 
time series, a wavelet with good frequency localization like the Battle-Lemarié showed better approximation results 
when tested with the logistic map function. This is due to the fact that the Battle-Lemarié wavelet has high degree of 
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smoothness. This important characteristic allows a better approximation of more complicated functions. Further work 
needs to be done to evaluate the performance of the proposed approach under different scenarios of data streams. 
At present, the wavelet-network based on the 1L -norm minimisation is being extended to recurrent neural networks 

and other types of wavelets. 
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