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ABSTRACT

A dynamic friction model for the tire-road interface is used in an optimal control scheme for emergency braking of
vehicles. The controller sets a target relative velocity curve that the vehicle must track in order to achieve braking in
minimum time. It is shown that this curve corresponds to the solution of a minimum time optimal control problem.
The final goal of the control is to improve the safety levels in highway transportation.

RESUMEN

Se utiliza un modelo dinamico de friccion para la interfase llanta-pavimento en el disefio de un esquema de control
optimo para el frenado de emergencia de vehiculos. El controlador establece una curva de referencia para la
velocidad relativa que el vehiculo debe seguir para poder alcanzar el frenado en tiempo minimo. Se muestra que
esta curva corresponde con la solucion de un problema de control dptimo. El objetivo final de este esquema de
control es aumentar los niveles de seguridad en autopistas.
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1. INTRODUCTION

The main purpose for the increasing levels of automation in vehicles is to improve the capacity of highway systems
and to sustain or improve its actual safety levels. One of the key points that is necessary to achieve safe operation of
these systems lies in their ability to perform emergency braking maneuvers properly, as according to [1] the most
drastic faults in automated highways imply performing this kind of manuever. Daily situations indicate that this is also
the case for manual driving. Safety during emergency braking is very much related with the braking capability of each
vehicle. When this capability is known, it is possible to set appropriate minimum intervehicle distances that will
preserve safety during emergency braking [2]. Braking capability depends mostly on the tire-road contact forces.
These are difficult to know precisely because they change with the type of tire, road and weather conditions.

The goal of this paper is to present the design of an optimal emergency braking control. The design uses a dynamical
friction model to describe the interaction forces between tire and road and assumes that the parameters of the model
are known or that is possible to estimate them with some adaptive scheme [3]. This dynamic friction model applied to
tire-road contact was first introduced by [16]. In this paper, however, the emphasis is not on deriving the
instantaneous tire-road contact force. The goal is rather to obtain a global description of the behaviour of this force
and, based on it, designing a target surface that the controller must track during emergency braking in order to
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achieve minimum time braking. This controller is intended for use in a warning system that would allow vehicles to
keep always a safe distance with respect to vehicle in front.

Using a singular perturbations analysis approach it is possible to prove that the optimal braking trajectory can be
computed with the velocity of the vehicle and the relative velocity between tire and road'.

The paper is divided into seven sections, including this introduction. Section 2 presents a simplified model of the
vehicle dynamics, while section 3 describes the first order dynamic friction model that describes the tire-road
interface. In section 4 the optimal control analysis is presented and section 5 presents an alternative design controller

using Lyapunov technigues. Simulation results are described in section 6 and, finally, section 7 presents conclusions
and directions for future work.

2. VEHICLE MODELING

In this paper only the longitudinal dynamic is considered, a quarter vehicle model is used?. The longitudinal motion of
the vehicle is expressed by

mo=4F - F,_, (1)

where vis the vehicle longitudinal velocity, m is its mass, F, is the tire-road force and F,, is the aerodynamic drag
force. This equation assumes that the forces in the tires are evenly distributed

The rotational dynamics of the wheel is described by
lo=t,-7,-F.R, (2)
where w is the angular velocity, /the moment of inertia of the wheel, z, is the driving torque, 7, is the braking torque

and Ris the effective radius of the wheel. In Egs. (1) and (2), it is assumed that the longitudinal velocity v and the
angular velocity are related by the relative velocity sdefined as

s=U-Rw. (3)
The time derivate of Eq. (3) is
s=0—Row . (4)

Substituting Egs. (1) and (2) in Eq. (4)

' This is the difference between the velocity of the vehicle’s centre of mass velocity and the tangential velocity of the
tire at the zone of contact with the road.

This model is widely used in the literature; see [4, 5 and 6].
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The aerodynamic drag force F,, is usually expressed as
Fax = Cuxuz’ (6)

with C,, a constant that depends on the effective longitudinal area, air density and the shape of the vehicle [7].

The force in the tire has negative direction during braking and can be expressed as a function of normal load and the
friction coefficient

Fo=—pFy=—p" 2 7)

where u is the friction coefficient between tire and road and Fy = mg/4 is the normal force in each tire. In this paper a
plane road is considered, if the road has a slope, the normal load can be modified accordingly.
Substituting Egs. (6) and (7) in Egs. (1) and (5) vehicle dynamics is described by

O=—cu—dv’, (8)

s=—(a+c)u—b-dv* +er,, (9)

with a= Rzmg/4], b=Rt/l, c =g, d=C,/mand e = R/ Finally the braking torque 7, can be expressed

as7, = K, P, ,with K, aknown constantand £, the pressure in the master cylinder, that is the control signal.

3. TIRE-ROAD FRICTION INTERFACE

Most of the literature related to tire-road friction is based on pseudo-static models for friction as in [8] and [9] in which

friction coefficient u is a function of the ftire slip® p and some other parameters like vehicle velocity and normal load.
Recently, Canudas et al [10] introduced dynamic friction models that include one or more internal states, looking for a
better description of the friction phenomenon. These new dynamical models are based on the idea that the surfaces
in contact are very irregular at a microscopic level and therefore the contact occurs at different points between these
irregularities. This contact can be seen in a simple way like the one that happens between elastic bristles and that is
illustrated in Fig. 1. When a tangent force is applied these bristles are bent like springs, increasing the friction force, if
the force is large enough, these bristles will deform in such a way that they will slip. Obviously this is a random
phenomenon because of the irregularity of the surfaces.

Figure 1. Interface between two surfaces through elastic bristles

3Slip pis definedas p=s/v.
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The model presented here uses the average deformation of the bristles zand is similar to
the one used in [11] and is of the form

o,s
@zs——o‘ ‘z (10)
dt g(s)
,u—i—az+0'2—0's (11)
_F -~ 1 25

1/2
s

L,

s

gls)=p +(u. —p)e

where oy is the normalized longitudinal stiffness, ¢: the normalized longitudinal damping and a, is the normalized
viscous relative damping. These three parameters characterize a specific road type. The function g(s) intents to model
the Stribeck effect [10]; g, is the normalized Coulomb friction, g is the normalized static friction (u. < u, € [0,1]), vy is
the Stribeck relative velocity. This last parameter plays the role of a time constant of the system, when ds) is
considered as a first order system.

When the new dynamic model of friction is introduced, the order of the complete system increases. However, the
inner dynamics of the friction state zis much faster than that of s and v. This fact was proven using a singular

perturbation approach in [12]*. Based on this approach, it is possible, from Egs. (10) and (12), to obtain the equilibrium
of the internal state in terms of sand p, that is

UO‘P‘L

=8O e | (13)

0,
When Eq. (13) is substituted in Eq. (11), this results in a friction function of the form

_o‘o‘s‘L

u=g(s)+(o,s—g(s)e " —o,s. (14)

This last equation represents a pseudo-static solution to the dynamic friction model that is comparable to those in [8]
and [9]. By using it, it is possible to compare in similar conditions pseudo-static and dynamic friction models. It is
interesting to remark that, although the equivalent pseudo-static solution in Eq. (14) was derived directly from a
dynamic friction model, it has an analytic structure with some points in common with the pseudo-static model
presented in [9]° that was derived solely based on experiments.

# See Theorem 9.1 in [13] for details about the singular perturbation analysis approach.
> More details in [12].
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4. MINIMUM BRAKING TIME OPTIMAL CONTROL LAW DESIGN

In optimal control theory the goal is to minimize a performance index of the system, this index is usually expressed in

the form
iy
J =I Ldt.
0

In this paper the goal is to minimize the time taken in an emergency braking, therefore L =1 and J = trand the
boundary conditions are v, =v,,0, =0,s, =0 and s;= 0 (see [14] for more details).

Taking the vehicle model in Egs. (8) and (9) the Hamiltonian of the system is given by

H=2(-cu—dv*)+ (- (a+c)u-b-dv* +eK,P,)+1 (15)
and the adjoin system is
/?;U:/”tu(ca—ﬂ+2duj+/ly( (a+c)a—’u+2du ) (16)
ov ov
A, :/luca—’u—i-/lv(a+c)a—’u. (17)
‘ os s

Due to the fact that the final time is not specified, the transversality condition can be set as H(tf ) = (0. Furthermore,

in this case, the Hamiltonian is not an explicit function of time, therefore

H@H=0,vreoz,] e
along the optimal trajectory. The optimal control is then given by
b, A =argmin H(x,A,P,). (19)
From Eqg. (15), the switching function is
=5k, (20)
or,

Eq. (20) and its time derivative must vanish when the trajectories lie on a singularity of Eq. (20). Taking time derivative
of Eq. (20) and substituting A,

H =eK, 1, (21
H, :eKbl:/”tuca;l+/1s(a+c)a'u:|. (22)
0s 0s

The singular case of interest corresponds to the arc when H, = 0, which implies 4, = 0 ; substituting this condition
yields
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H, :eKbl:/”tucaaﬂ}:O. (23)

S

0
Eqg. (23) is very important because it shows that in the optimal trajectory a—’u =0 or 4, =0. If the second condition

s
holds, the adjoin vector would be zero in the singular sub-arc. This is a contradiction because the adjoin vector must
0
not vanish under any circumstance®. Therefore, a—ﬂ =0 along the singular sub-arc, regardless of v, the other state
S

of the system.

It is possible to find the optimal control, demanding consistency in H, =0 and 'H1 = (. On the other hand, the

control signal is physically bounded, i.e., 0 < B, < P, . Therefore, analyzing Egs. (19), (22) and (23) and the bounds

max

on the control signal, Pbopt is given by the following law

Pl,lnax !‘f‘ Hl > 0
P10 if H,<0 . (24)
F, if H =0

sin g

To guarantee Hl =0"andtofind B, ,itisnecessary to take the second derivative of H with respect time and
sin g

substitute A, in it

H, =ecK, {zu(ca—” + 2duj + A, ((a + c)a—“ + 2duﬂa—’u +A i(a—”j} : (25)

ov ov Os Y dt\ os
Based on Eq. (23), the analysis reduces to find
, :i(a—”jzo. (26)
dt\ Os

To hold the Eq. (26), it is necessary that

di\os ) os®  ovds )
o’ 2 O u 2
= —(a+c)u—-b-dv” +eK,P, |+ ——\-cu—dv)]=0
8s2(( ):U bb) Guas( H )
After some manipulations to Eq. (27), the singular control Pbsmg is
1 82,u( o’ u B
P. = cu+do’ | = | +(a+c)u+do’|. (28)
A {aszj (a+c)u
¢ See [15].
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5. LYAPUNOV BASED, MAXIMUM FRICTION CONTROL LAW

This section presents a design that is based on the results derived in the previous section to obtain the optimal
control, that is, however, easier to implement. The goal of this controller is to force the system state into a desired a
reference trajectory. This trajectory is represented by a desired relative velocity s, that produces maximum friction
force at the current vehicle velocity and will lead to zero velocity at the end of the emergency braking process.

Using Eq. (23), that states (2’“] =0 and Eq. (14)
s

Uogee g s g)] 0. e
where
v gls) (o Ofls)
g'(s)= gas f(S)—F~

For a given value of v, Eq. (29) allows to obtain a desired value for the relative velocity s, such that Eq. (23) is

satisfied’. The next step in this controller design is trying to take the system state to this curve. For this purpose, the
following error signal is introduced

§=5-5,. (30)
Whose time derivative is
S=5—5,. (31)
Define the Lyapunov function candidate
W:1*2+102+£qwt)2 (32)
2 2 2

with K > 0. Taking the time derivative of Eq. (32) and substituting Egs. (8), (9) and (31)

W = §§+ Kfjfdt

, . (33)
=5\ —(a+c)u—b—dv* +eK,P, —sd}tu[—cy—duz]ﬁLKsIsdt
If the control signal Py, is taken as
1 2 . _
P, :—(a+c),u+d,u + Hs +K1J‘Sdt (34)
ek,

and substituted into Eq. (33), then

W:—cyu—dzf+H§2+(K1+K)§j§dt. (35)

See [12] for details.
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Analyzing this last equation, considering that v and u are positive at every time and that ¢ and d are positive constants,
if K, is chosen in such a way that the last term is negative and H < 0, then Eq. (35) becomes negative definite.

Due to the fact that | sdt is only zero when s = 0; and using Barbalat’s lemma, it can be concluded that the point

s =0 and v =0 is asymptotically stable.

6. SIMULATIONS RESULTS

In this section simulation results of an emergency braking maneuver are presented for both control laws described in
the previous sections. The parameters used for the vehicle model were borrowed from [16] and are shown in Table I.

Prior to attempting the emergency braking manoeuvre, vehicles are cruising at a constant speed of 30 77/5.

Table | Simulation parameters

Vehicle mass, m 1701 [kg]
Wheel inertia, / 2.603 [kg m]
Wheel radius, R 0.323 [m]
Brake system gain, K, 0.9 [m2]
Aerodynamic drag constant, C, 0.3693 [kg/m]
Longitudinal stiffness, o, 40 [1/m]
Longitudinal damping, o, 0.0049 [s/m]
Viscous relative damping, o, 0.0018 [s/m]
Normalized Coulomb friction coefficient, u. | 0.6
Normalized static friction coefficient, 0.9

Stribeck velocity, vy 12.5 [m/s]

Fig. 2 shows the evolution of the system states, v and s, when the optimal control law is applied. It is clear that the
velocity decreases rapidly to zero, from its initial value of 30 /m/s/ In Fig. 3, the deceleration attained during the
braking process and the braking torque are shown. From the pressure plot it can be seen that initially the system
applies maximum pressure until the relative velocity is taken to the singular solution of the optimal control law. Once
there, the pressure is controlled so as to keep the relative velocity in the singular arc, solution to the optimal control
problem. Some switching to zero pressure can also be observed. The evolution of the Hamiltonian and its time

derivative, Hy and H, ,are shown in Fig. 4, where it is clear that their values are very close to zero, as expected.
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# i)

Fidure 2. Minimum braking time control law; time evolution of the system states:
velocity v and relative velocity s

Figure 3. Minimurm braking time control law; acceleration during braking
and pressure in the master cylinder Py

T ey

Ewabatioes of Hl
t T T T T T T T

Figure 4. Minimum braking time control law; time evolution of swilching function
H and its time derivative H,
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The simulation results when the maximum friction law is applied are shown in Figs. 5-7. Fig. 5 illustrates the time
evolution of the desired and real relative velocities and their difference (left, right and bottom plot, respectively). Fig. 6
shows the velocity and deceleration in the braking process. It can be noted that, as friction increases with reduction in
velocity, the deceleration is higher at low velocities. Finally, Fig. 7 shows the braking torque applied to the wheels and
the coefficient of friction, both as function of time.

Cresired relstive velocity
T

Relatve velocaty
o T T T o T T T

5 Imig)

Error for the irajectory
¢ T T T T T T T T

(i)

T

Time []

Figure 5. Lyapunov based maximum friction control law; Reference relative velocity S,
real relative velocity s and error in relative velocity §  during the braking process

Velocity

Teene (1)

Acceleration

¥ [mis?)

Figure 6. Lyapunov based maximum friction control law; Velocity v and acceleration during braking
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Friction coefficient

Time [5]

Py [KPal

Figure 7. Lyapunov based maximum friction control law;
Pressure in the master cylinder Py and friction coefficient

To compare the two control laws, Fig. 8 was included. It shows the two master cylinder pressure signals, the optimal
braking pressure, Pb,,; given by Eqg. (24), and the maximum friction pressure, Py, given by Eq. (34). From the plots, it is
clear that both control laws are very similar and that the difference between the two signals is close to zero.

Phim and Pb Max friction

2000

WEDD%\ ————— R e R pommsmooe- et SEEEEE B

oo — e e R B I i :

Py ¥ Py P21

T oo e T B -

Time [5]

Error between Ph__and Ph Maxz friction

'sing

1500 . . .
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~Pby, kPl
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P sing
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Figure 8. Comparison between minimum braking time control law and Lyapunov based
maximum fricition control law and difference between the two control signals
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7. CONCLUSION

In this paper an emergency braking control law for wheeled vehicles was designed using optimal control theory. The
design of this law is based on the assumption that the force at the tire-road interface can be appropriately described
by a dynamic friction model. As expected in minimum time optimal control problems, the solution consist in keeping
the master cylinder pressure in the curve that represents the minimization of the Hamiltonian. As a simpler alternative
in terms of implementation, a maximum friction control law was designed based on Lyapunov techniques. Simulation
results of an emergency braking maneuver using both control laws are presented. The performance in both cases is
extremely good and only slight differences can be appreciated between the two control laws. This controller is
intended for use in conjunction with a warning system that would allow drivers to keep always a safe distance with
respect to vehicle in front.
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