FLOW CONTROL DESIGN FOR A FLEXIBLE AND ADAPTIVE ROUTER IN
PARALLEL SYSTEMS

A. De Luca' & A. Jiménez»

' CINVESTAV-IPN. Electric Engineering. Computation Section. e-mail: dlap@delta.cs.cinvestav.mx
? Universidad Autonoma Metropolitana. Electronic Department. e-mail: ajf@correo.azc.uam.mx
? ESIME-IPN. Electric Engineering Department

Received: January 13", 2003. Accepted April 2", 2003

ABSTRACT

The present article contains a high performance buffer design, useful for message flow control in parallel systems.
The appropriate handling of the buffers is an important activity for the flow control function. The proposed buffer,
which we have denominated as Self-Compacting Buffer (SCB), reduces the communication latency through a highly
efficient management of their space, and a hardware implementation. The SCB was designed with a parallel-
distributed control unit, using a control cell for each storage locality. Their capacity is expandable: it can grow width
and length, preserving the complexity of its control cells. The SCB allows simultaneous writing and reading
operations in a single clock cycle.

RESUMEN

El presente articulo contiene el diseno de un buffer de alto desempeno, Util para el control de flujo de mensajes en
sistemas paralelos. El manejo adecuado de buffers es una actividad importante de la funcion de control de flujo. El
buffer propuesto, el cual hemos denominado como SCB (Buffer AutoCompactante), permite reducir la latencia de
comunicacion mediante una administracion altamente eficiente de su espacio y una implantacion de hardware. El
SCB fue disenado con una unidad de control distribuida paralela, utilizando una celda de control para cada
localidad de almacenamiento. Su capacidad es expandible: puede crecer en ancho y largo, manteniendo constante
la complejidad de sus celdas de control. El SCB permite la realizacion simultanea de operaciones de escritura y
lectura en un solo ciclo de reloj.

KEYWORDS: Routers, Flow Control, Parallel systems, Self-compacting buffer, VHDL.

1. INTRODUCTION

Parallel processing is a future systems technological key. The main challenge of this systems type, searching for a
bigger performance, is the latency time reduction in data communication, which represents an important “bottle
neck” now [1-4].

From the router performance point of view in parallel systems, there are two important parameters [5]: routing delay
and flow control latency. The first one refers to the lapsed time from the moment when a message arrives to router
until the output port is determined by which it will be send. The second corresponds to the frequency that this
message can be sent by the router. Once the output port is assigned, the message is stored in a buffer associated to
arrival port, so that later on it is directed to the corresponding output port [6,7]. The handling of this information is
denominated flow control At this moment for several reasons, the flow control task is slower than the control route
one [8,9].

199
Vol. 2 No. 3 December 2004

Flow control design for a flexible and adaptive router in parallel systems, A. De Luca & A. Jiménez, 199-204

The goal of this work consists on designing a quick structure that carries out the flow control function to reduce at the
minimum possible the difference between flow control time and route control time.

We propose a design based on a basic reading and writing operations and their variants model, in which their main
properties were characterized. The design was realized in a primitive operations set and it was proven that it matchs
the proposed design. Later on, the primitive operations set is represented in a table and, using this table, the design is
implemented in logical circuits. Finally, with the help of a logical simulation tool, it is verified that the conditions table
fulfill the representation of the model, and so the design is justified.

The circuit was designed totally in hardware fashion, to increase the performance [10,11]. Also a parallel-distributed
control is used, with a control cell for each buffer locality. The buffer capacity is expandable: it can grow in width and
length, maintaining unaffected its control cells complexity. The simultaneous reading and writing operations are
executed in a single clock cycle.

2. SCB DEVELOPMENT

The flow controller proposed in this project is based in the DAMQ flow controller outlined by Tamir and Frazier [12].

The main objective of this implementation is to obtain a high performance buffer with a minimum writing and
reading cycle, using efficiently its storage capacity. The proposed buffer avoids empty storage spaces between the
data, and its circuit is designed to reduce access times as much as possible. This device is denominated Self-
Compacting Buffer, because it maintains the busy spaces adjacent permanently.

2.1 The SCB Operation Principle

The SCB is a FIFO type data multi-array where each array is independent and of variable size. It is possible to complete
reading and writing operations simultaneously, and the space occupied in the SCB remains always compacted.

The arrays in the buffer are segments whose size varies during the writing and reading operations. The SCB advantage
is that their segments always stay adjacent and the following empty buffer space is available to allow increasing the
size of any segment. In the SCB is possible to execute writing and reading operations at the same time, even in the
same buffer locality. The segments are located inside the buffer in growing order of their address. The data written in
each segment are treated like insertions. An insertion causes the displacement of the subsequent data. The reading
operations are treated as extractions, that generate a movement in inverse direction. In this way, the SCB stays
compacted. In Fig. 1, an example of a SCB is shown with four contiguous segments of different sizes and an empty
space. In Fig. 2(a), the same SCB is shown after having written a data in segment 2. The arrow in the figure indicates
that all data that are after the writing localities are displaced downwards, leaving an empty space to insert the new
data. Fig. 2(b) shows the SCB after having executed a writing operation or insertion in the segment 2 and two
sequential reading operations or extractions in segment 3. In this figure, the arrow indicates that all the data located
after the reading address are displaced upwards one position in every reading operation, at the same time that the
datum is read during the operation. With this final shift, we avoid leaving the space created during the extraction, and
in this way we achieve a compact array.

A high efficiency is reached by the self-compacting technique described previously. The self-compacting is achieved
using a distributed control circuit that decides simultaneously in each buffer cell, the actions that must be taken
during a reading and/or writing.

The high performance is obtained using hardware in the implementation of the distributed control algorithm that
manages the buffers.

In order to manage the multi-segmented buffer, a novel addressing model is used that makes the SCB scalable with a
constant addresses bus width.

200
Vol. 2 No. 3 December 2004

Flow control design for a flexible and adaptive router in parallel systems, A. De Luca & A. Jiménez, 199-204

—»
seg. 1 —») —>)
¢ . seg. seg.
5 insert <+ <«
s P Q
= seg. 2 S —> —>
%" + @ [seg. 2 seg. 2
S » kS D N
o =1
= seg. 3 o > > extract
o) @ » seg. 3
@ - = seg. 3 ‘
—»> - <+
seg. 4 [€4— —» —» seg. 4
seg. 4 <« ¢ E
empty empty @
space empty space
space

Figure 2. SCB with modifications.
a) with one writing in segment 2
b) with two reading in segment 3

Figure 1. Self-Compacting Buffer with
four segments

2.2 SCB structure

The SCB is structured by three fundamental parts: the AR Addresses Register, the Control Circuit, and the Storage Cells.
The AR register contains 77 cells, equal in number to the storage cells. The Control Circuit is also constituted by 5 cells,
one for each storage locality.

The Addresses Register, called AR, contains the writing pointers WWX, and the reading pointers RRx, where WW
represents the writing address, RR represents the reading address and x represents the segment number. In addition,
AR contains an address of data type for each segment and an address of zero type for all the empty space. The AR
register should manage four writing pointers, four reading pointers, four data addresses and a zero address. In total,
they are thirteen address values, which are implemented with five bits to achieve an upward order. After resetting AR
register only the four address pointers will appear (WW1 to WW4) and the pointer for empty space (¢).

The Memory Cells associated to the Writing Pointers correspond to the beginning of each segment and they have the
specific purpose of containing only the state of each segment but no data. The state indicates if the segment is empty
or not. At the beginning of the process, the state of every segment is empty, for that reason, the Writing Pointers are
contiguous and they occupy only the first four cells. The data writing in a segment x is always made in the following
cell to Writing Pointer of this segment. The memory cells contents, before the writing, are simultaneously displaced
one position downwards.

Each bit in a data word is stored during a single clock period, in a couple of flip-flops connected in series. In the rising
transition the first flip-flop is loaded. The second flip-flop is loaded with the clock slope edge. The reading operations
are carried out in the second flip-flop before loading a new data.

Reading Pointers don't exist, they are created for the first time during the first writing of each segment. The Reading
Pointers always point to first written data or to the oldest in each segment. Both reading and writing operations are
executed in a single clock cycle. During a reading operation, an empty locality is generated and it is immediately
occupied, in the same clock cycle.

201
Journal of Applied Research and Technology

Flow control design for a flexible and adaptive router in parallel systems, A. De Luca & A. Jiménez, 199-204

0<AR<W <

Ja.

Case 10, 0<AR<WX,
static space

Case 1, with empty segment
state

Case 2, with no-empty

.

segment state

AR=Wx —>

)

Case 3, the previous cell
indicates empty segment

-

Case 4, the previous cell
indicates no-empty segment

AR>Wx <

Case 5, 0<AR> with no-previous
Whx-active

Case 6, AR=0 with previous
W-no-active

(| 00000

< Case 7, AR=0 with previous

] R-no-active

00000
AR=0 <

Case 8, AR=0 with previous
R-active

Case 9, AR=0 with no-previous
Rl or WI

0<AR<Wx !

Jc

Case 17=10, 0<AR<WX,
static space

 Case 18=1, with empty

segment state

AR=Wx —|

Case 19=2, with no-empty
segment state

-

\[Case 20=3, , the previous cell

R>AR>Wx<

\

indicates empty segment
Case 21=4, , the previous cell
L_indicates no-empty segment

Case 22=5, R>AR>Wx, without
preceding a W-active prompter

AR=Rx —>

~

AR>RXx (L :

cell is D prompter
Case 25, AR>Rx,

ase 23, AR=Rx, the previous
cell is W prompter
l Case 24, AR=Rx, the previous

AR=0 |

static space

Case 26, AR=0,
static space

Vol. 2 No. 3 December 2004

3b.

0<AR<Rx <

.

AR=RX —»
,
\{

AR>Rx <

100000 | N
00000

AR=0<

| Case 12, 0<AR<Rx,
static space

Case 13, 0<AR<Rx, this cell
is W prompter

Case 14, 0<AR<Rx, this cell
is not W prompter

Case 11, AR=Rx

> Case 15, AR>Rx

> Case 16, AR=0

Jd.

0<AR<Rx <

\

AR=Rx —)|

-

Wx>AR>Rx <

7

\\
AR=Wx—>]

//

BN

AR>Wx

s

00000
AR=0 { !

Case 27=12, 0<AR<Rx,
static space
Case 28=13, 0<AR<Rx,
this cell is a W prompter
Case 29=14, 0<AR<RY, this
cell is not a W prompter

—{ Case 30=11, AR= Rx

"\ Case 31=15, Wx>AR>Rx, the

following cell is not promp. W

(Case 32, previous to an
active-W with empty state

_1 Case 33, previous to an

active-W with no-empty state|

N [Case 34, AR=Wx, with

empty segment state
Case 35, AR=Wx, with

L no-empty segment state
Case36, AR>Wx,

static space

Case 37, AR=0,
static space

Figure 3. a) Cases with a single writing operation,

b) Cases with a sindle reading operation
¢) Cases with simultaneous reading and writing operations(W < R)
a) Cases with simultaneous reading and writing operations (W > R)

202

Flow control design for a flexible and adaptive router in parallel systems, A. De Luca & A. Jiménez, 199-204

The SCB is controlled by a distributed control circuit, where each memory cell MC, is associated to a Local Control Cell:
LCC. Each MC is controlled by its own LCC. The commands generated by each Control Cell are specific for each
Memory Cell associated, and they are generated simultaneously in all the cells. The commands that receive the
Memory Cells are for the execution of any of the following operations:

writing

reading
writing/reading

shift down

shift up

segment state setting
no action

The control decisions for each LCC are made starting from the current conditions of the cell and from the conditions
of the adjacent cells. There exist 37 different states, according to their operation and location. In Figures 3a, 3b, 3¢ and
3d all the possible cases and the conditions for each one are described.

In each LCC signs are received and generated to know and let know the cells status. To execute the necessary
operation, the control also takes into account the relative position of the writing and reading addresses, when both of
them are given simultaneously. Fig. 4 shows the interrelation among the AR register cells, the Local Control Cells, the
Memory Cells, and the adjacent cells (upper and lower).

B R N R S SR
vy v v 1
‘WI RI ADWI DSSI USSO AUWO AURQO
— - WW ss4—
—» RR
— AR EM —»

! ///MS —1»
4k Control Cell /vr—{»
<4— xoc / X3C—»
<4— XiIC / XaC—»
<4— Xx2C / ATRO —

\ /
V\"O R‘O ADV‘VO DS‘SO USSI AUWI AURI
Y vy v v 1 1 1
1 " A S A
] Vo b] /] /X |
Data, W / -’
ww » LCC.i | MCui 3 ¢
RR > f > R
6 Zero s / / v
Data, »n // < g
wWw " M P
RR > LcC. G s S
6 Cero ! / v B
Data.
; [A
\IX{\RN t LCCnH MCnH o _ R
O Ll
6 Cero Ad J P
NNV 222
] \
Addresses Register ! e
WW RR Control Cells Memory input channelaGartales
AR channnels

Figure 4. Interrelation of AR register with Control and Memory Cells, in the SCB

The SCB performs the flow control function required for the router structure. The crossbar in Fig. 4 has the function of
sending the memory data toward the output channels, in accordance with an output algorithm whose function is part
of the flow control of the messages received in memory.

3. CONCLUSION

The high performance offered by the SCB with operation cycles in one clock cycle, besides its high efficiency degree,
reached by means of the self-compacting, make it very useful in communication applications where the latency is
critical. Particularly, we proposed the SCB to be used as message buffer in multicomputer parallel systems where the

203
Journal of Applied Research and Technology

Flow control design for a flexible and adaptive router in parallel systems, A. De Luca & A. Jiménez, 199-204

high performance is limited by the “bottle neck” that represents the communication latency. The messages routing in
parallel systems is limited mainly in the flow control function. The SCB helps to solve this problem in an important way.

The SCB was designed with a simulation tool provided by FOUNDATION Series Software Co. through XILINX
Programmable Logic Co [13]. The tool is based on the VHDL language (VHSIC Hardware Description Language), and it
allows the design implementation in an integrated circuit of FPGA type (Field Programmable Gate Array) [10,13,14].

4. REFERENCES

Hwang K. Advanced Computer Architecture: Parallelism, Scalability, Programmability. McGraw-Hill, 1993.
Thin-fries |. G., Vassiliadis S., Pechanek G. G., Johnson H. D. & Green D. M. To Processing Unit Flexible for
Multiprocessor Machine Organizations. Instrumentation and Development, vol. 3, not. 4, pages 20-32, 1994.
Jiménez-Flores A. & De Luca P. A., Design of a Flexible and Adaptive Router for Parallel Systems. Computation
International Congress CIC"99. IPN, México.

Delgado-Frias |., Vassiliadis S, Johnson H. D., Summerville D. & De Luca A. A Processing Unit for Multiprocesor
Organizations. Department of Electrical Engineering, State University of New York at Binghamton. 1996.

Duato, . & Sudhakar Y. Interconnection Networks: an engineering approach. IEEE Computer Society Press,
1997.

McHugh |. A. Algorithmic Graph Theory. Prentice-Hall, 1990.

Park J., Vassiliadis S. & Cold Thin |. G. Router Architecture for Oblivious Routing Algorithms. Parallel Computing
Technologies (PaCT-93), Obninsk, Russia, 1993.

Culler D. E., Singh |. P., and Gupta A. Parallel Computer Architecture: A hardware/Software Approach. Morgan
Kaufmann Publishers Inc., 1999, pp. 1025.

Tanenbaum A. S., Structured Computer Organization. Prentice Hall Inc., 1999.

Jay C. VHDL and Synthesis Tools Provide to Generic Design Entry Platform Into FPGAs, PLDs and ASICs.
Microprocessors and Microsystems, Volume 17, Issue 7, September 1993, 391-398

Dally W. |, Chao L, Chien A. A, Hassoun S., Horwat W., Kaplan ., Song P., Scott B. T. Architecture of to
Message-Driven Processor. 25 Years ISCA: Retrospectives and Reprints, pp 337-344, 1998.

Tamir Y. and Frazier G.L. Dynamically Allocated Multi-queue Buffers for VLSI Communication Switches. IEEE
Trans. On Computers, volume 41, Not. 6 pp. 725-737, June, 1992.

VHDL Reference Guide. Xilinx Inc., 1999.

Pellerin D., Taylor D. VHDL. Made Easy. Prentice Hall PTR., 1997.

204

Vol. 2 No. 3 December 2004

	Previous Article
	ABSTRACT
	RESUMEN
	1. INTRODUCTION
	2. SCB DEVELOPMENT
	2.1 The SCB Operation Principle
	2.2 SCB structure

	3. CONCLUSION
	4. REFERENCES
	Next Article
	Back to Index

